Created
June 22, 2015 21:34
-
-
Save soumith/e3f722173ea16c1ea0d9 to your computer and use it in GitHub Desktop.
CIFAR-10 eyescream
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
---------------------------------------------------------------------- | |
-- CIFAR 8x8 | |
opt.scale = 8 | |
opt.geometry = {3, opt.scale, opt.scale} | |
local input_sz = opt.geometry[1] * opt.geometry[2] * opt.geometry[3] | |
local numhid = 600 | |
model_D = nn.Sequential() | |
model_D:add(nn.Reshape(input_sz)) | |
model_D:add(nn.Linear(input_sz, numhid)) | |
model_D:add(nn.ReLU()) | |
model_D:add(nn.Dropout()) | |
model_D:add(nn.Linear(numhid, numhid)) | |
model_D:add(nn.ReLU()) | |
model_D:add(nn.Dropout()) | |
model_D:add(nn.Linear(numhid,1)) | |
model_D:add(nn.Sigmoid()) | |
local numhid = 1200 | |
model_G = nn.Sequential() | |
model_G:add(nn.Linear(opt.noiseDim, numhid)) | |
model_G:add(nn.ReLU()) | |
model_G:add(nn.Linear(numhid, numhid)) | |
model_G:add(nn.Sigmoid()) | |
model_G:add(nn.Linear(numhid, input_sz)) | |
model_G:add(nn.Reshape(opt.geometry[1], opt.geometry[2], opt.geometry[3])) | |
---------------------------------------------------------------------- | |
-- CIFAR 8->14 | |
opt.coarseSize = 8 | |
opt.fineSize = 14 | |
opt.geometry = {3, opt.fineSize, opt.fineSize} | |
local input_sz = opt.geometry[1] * opt.geometry[2] * opt.geometry[3] | |
local nplanes = 64 | |
model_D = nn.Sequential() | |
model_D:add(nn.CAddTable()) | |
model_D:add(nn.SpatialConvolution(3, nplanes, 5, 5)) | |
model_D:add(nn.ReLU()) | |
model_D:add(nn.SpatialConvolution(nplanes, nplanes, 5, 5, 2, 2)) | |
local sz =math.floor( ( (opt.fineSize - 5 + 1) - 5) / 2 + 1) | |
model_D:add(nn.Reshape(nplanes*sz*sz)) | |
model_D:add(nn.ReLU()) | |
model_D:add(nn.Dropout()) | |
model_D:add(nn.Linear(nplanes*sz*sz, 1)) | |
model_D:add(nn.Sigmoid()) | |
local nplanes = 64 | |
model_G = nn.Sequential() | |
model_G:add(nn.JoinTable(2, 2)) | |
model_G:add(nn.SpatialConvolutionUpsample(3+1, nplanes, 5, 5, 1)) -- 3 color channels + conditional | |
model_G:add(nn.ReLU()) | |
model_G:add(nn.SpatialConvolutionUpsample(nplanes, nplanes, 5, 5, 1)) | |
model_G:add(nn.ReLU()) | |
model_G:add(nn.SpatialConvolutionUpsample(nplanes, 3, 5, 5, 1)) | |
model_G:add(nn.View(opt.geometry[1], opt.geometry[2], opt.geometry[3])) | |
---------------------------------------------------------------------- | |
-- CIFAR 14->28 | |
opt.coarseSize = 14 | |
opt.fineSize = 28 | |
opt.geometry = {3, opt.fineSize, opt.fineSize} | |
local input_sz = opt.geometry[1] * opt.geometry[2] * opt.geometry[3] | |
local nplanes = 128 | |
model_D = nn.Sequential() | |
model_D:add(nn.CAddTable()) | |
model_D:add(nn.SpatialConvolution(3, nplanes, 5, 5)) | |
model_D:add(nn.ReLU()) | |
model_D:add(nn.SpatialConvolution(nplanes, nplanes, 5, 5, 2, 2)) | |
local sz =math.floor( ( (opt.fineSize - 5 + 1) - 5) / 2 + 1) | |
model_D:add(nn.Reshape(nplanes*sz*sz)) | |
model_D:add(nn.ReLU()) | |
model_D:add(nn.Dropout()) | |
model_D:add(nn.Linear(nplanes*sz*sz, 1)) | |
model_D:add(nn.Sigmoid()) | |
local nplanes = 128 | |
model_G = nn.Sequential() | |
model_G:add(nn.JoinTable(2, 2)) | |
model_G:add(nn.SpatialConvolutionUpsample(3+1, nplanes, 7, 7, 1)) -- 3 color channels + conditional | |
model_G:add(nn.ReLU()) | |
model_G:add(nn.SpatialConvolutionUpsample(nplanes, nplanes, 7, 7, 1)) | |
model_G:add(nn.ReLU()) | |
model_G:add(nn.SpatialConvolutionUpsample(nplanes, 3, 5, 5, 1)) | |
model_G:add(nn.View(opt.geometry[1], opt.geometry[2], opt.geometry[3])) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment