Last active
October 27, 2022 13:43
-
-
Save sp5wwp/fc24815ae8812016e209f233c495130a to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
% root-Nyquist (M) filter design % | |
% Source: % | |
% https://my.ece.utah.edu/~farhang/Nyquist_M_r1.pdf % | |
% Edited by Wojciech SP5WWP to work with rcosdesign() % | |
% % | |
% parameters: % | |
% N: filter order (filter length = N+1) % | |
% M: number of samples per symbol period % | |
% alpha: rolloff factor (range 0 to 1) % | |
% gmaZ: Weight factor for middle tap and zero crossings % | |
% gmaT: Weight factor for the tails of g=h*h (used for % | |
% designs with robust behavor against timing jitter) % | |
% eta: Weight factor for tails of h (used for designs % | |
% with reduced PAR) % | |
% itns: Number of iterations for the least-squares % | |
% optimization % | |
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% | |
function h=rNyquistM(N,M,alpha,gmaZ,gmaT,eta,itns) | |
%%% Set up the weight matrix Gamma %%% | |
Gamma=zeros(1,1+N); Gamma(M+2:end)=gmaT; | |
Gamma(1:M:end)=gmaZ; Gamma=[Gamma ones(1,1+N/2)]; | |
Gamma2=Gamma.^2; Gamma2=diag(Gamma2); | |
%%% Initial filter %%% | |
h=rcosdesign(alpha,N/M,M); | |
if rem(N+1,2)==0 h1=h(1:(N+1)/2);else h1=h(1:N/2+1); end | |
Lh1=length(h1); | |
%%% Set up constraint matrices, Sn %%% | |
S=zeros(N+1,N+1,N+1); temp=ones(N+1,1); | |
for n=1:N+1 | |
S(:,:,n)=spdiags(temp,-(n-1),N+1,N+1); | |
end | |
%%% Set up the matrix Phi %%% | |
Phi=zeros(N+1,N+1); fo=(1/2/M)*(1+alpha); | |
Phi=[1-2*fo -2*fo*sinc(2*fo*[1:N])]; Phi=toeplitz(Phi); | |
Phi=Phi+1e-10*eye(size(Phi)); %to stabilize Chol fac. | |
%%% Form the matrices S′ and Phi′ %%% | |
I=eye(Lh1); J=hankel([zeros(Lh1-1,1); 1]); | |
if rem(N+1,2)==1 J=J(2:end,:); end | |
E=[I; J]; Phi1=E'*Phi*E; S1=[]; | |
for n=1:N+1 S1=[S1; E'*S(:,:,n)*E]; end | |
%%% Add tail constraint to reduce PAR %%% | |
X=zeros(Lh1,1); X(1:end-M)=eta; Phi1=Phi1+diag(X); | |
%%% Iterative least-squares optimization %%% | |
C=chol(Phi1); % Cholesky factorization | |
h1=h1'; | |
for kk=1:itns | |
B=kron(eye(N+1),h1')*S1; D=[B; C]; u=[1;zeros(N+Lh1,1)]; | |
h1=(h1+inv(D'*Gamma2*D)*(D'*Gamma2*u))/2; | |
end | |
h=E*h1; | |
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment