Simple Gist of an ODE
import numpy as np | |
A1 = bs * ( astr * N ) ** 2 | |
A2 = c1 / tdS | |
A3 = ( 1 - bs ) * ( astr * N ) ** 2 | |
A4 = A1 * z0 | |
A5 = A3 * z0 | |
A6 = C | |
A7 = 0.5 * ( ( c2 / tt ) + ( c1 / tdS ) ) | |
A8 = ( c2 / tt ) - ( c1 / tdS ) | |
def dX_dt(X, t=0): | |
""" Return the triple ODE calculations """ | |
return array([ - A1 * X[2] + A4, | |
- A2 * X[1] + A3 * X[2] - A5, | |
X[0] - X[1] ]) | |
from scipy import integrate | |
t = linspace(0, 35, 1000) # time | |
X0 = array([0, 1, 0]) # initials conditions | |
X, infodict = integrate.odeint(dX_dt, X0, t, full_output=True) | |
infodict['message'] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment