Created
October 5, 2018 09:58
-
-
Save srishtis/5c7f55e8fd4043a76ab06d085d491ea8 to your computer and use it in GitHub Desktop.
Plot the explained variance in iris dataset
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# PLOTTING THE EXPLAINED VARIANCE CHARTS | |
################################## | |
#USING THE COVARIANCE MATRIX | |
################################## | |
tot = sum(eig_vals1) | |
explained_variance1 = [(i / tot)*100 for i in sorted(eig_vals1, reverse=True)] | |
cum_explained_variance1 = np.cumsum(explained_variance1) | |
trace3 = Bar( | |
x=['PC %s' %i for i in range(1,5)], | |
y=explained_variance1, | |
showlegend=False) | |
trace4 = Scatter( | |
x=['PC %s' %i for i in range(1,5)], | |
y=cum_explained_variance1, | |
name='cumulative explained variance') | |
data2 = Data([trace3, trace4]) | |
layout2=Layout( | |
yaxis=YAxis(title='Explained variance in percent'), | |
title='Explained variance by different principal components using the covariance matrix') | |
fig2 = Figure(data=data2, layout=layout2) | |
py.iplot(fig2) | |
################################## | |
#USING CORRELATION MATRIX | |
################################## | |
tot = sum(eig_vals3) | |
explained_variance = [(i / tot)*100 for i in sorted(eig_vals3, reverse=True)] | |
cum_explained_variance = np.cumsum(explained_variance) | |
trace1 = Bar( | |
x=['PC %s' %i for i in range(1,5)], | |
y=explained_variance, | |
showlegend=False) | |
trace2 = Scatter( | |
x=['PC %s' %i for i in range(1,5)], | |
y=cum_explained_variance, | |
name='cumulative explained variance') | |
data = Data([trace1, trace2]) | |
layout=Layout( | |
yaxis=YAxis(title='Explained variance in percent'), | |
title='Explained variance by different principal components using the correlation matrix') | |
fig = Figure(data=data, layout=layout) | |
py.iplot(fig) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment