Tree Traversal Algorithms Implementations in Java on the SSaurel's Channel
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import java.util.LinkedList; | |
import java.util.Queue; | |
import java.util.Stack; | |
public class Tree { | |
// Root, Left, Right | |
public static < T > void preOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
System.out.print(node.data + " "); | |
preOrderTraverse(node.left); | |
preOrderTraverse(node.right); | |
} | |
public static < T > void iterativePreOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
// We create an empty stack and we push root to it | |
Stack < Node < T >> nodeStack = new Stack < > (); | |
nodeStack.push(node); | |
// We pop all items one by one. | |
// For each item, we make the following steps : print data, push its right child, push its left child | |
// We push right child in first for that left is processed first | |
while (!nodeStack.empty()) { | |
Node < T > currentNode = nodeStack.pop(); | |
System.out.print(currentNode.data + " "); | |
if (currentNode.right != null) | |
nodeStack.push(currentNode.right); | |
if (currentNode.left != null) | |
nodeStack.push(currentNode.left); | |
} | |
} | |
// Left, Root, Right | |
public static < T > void inOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
inOrderTraverse(node.left); | |
System.out.print(node.data + " "); | |
inOrderTraverse(node.right); | |
} | |
public static < T > void iterativeInOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
// We create an empty stack | |
Stack < Node < T >> nodeStack = new Stack < > (); | |
Node < T > currentNode = node; | |
// We traverse the tree | |
while (currentNode != null || nodeStack.size() > 0) { | |
// We try to reach the most left node of the current node | |
while (currentNode != null) { | |
// We add the pointer to the stack before traversing to the left node | |
nodeStack.push(currentNode); | |
currentNode = currentNode.left; | |
} | |
// Current Node is null a this point | |
currentNode = nodeStack.pop(); | |
System.out.print(currentNode.data + " "); | |
// Now, it's time to visit the right subtree | |
currentNode = currentNode.right; | |
} | |
} | |
// Left, Right, Root | |
public static < T > void postOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
postOrderTraverse(node.left); | |
postOrderTraverse(node.right); | |
System.out.print(node.data + " "); | |
} | |
public static < T > void iterativePostOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
// We create two stacks | |
Stack < Node < T >> nodeStack1 = new Stack < > (); | |
Stack < Node < T >> nodeStack2 = new Stack < > (); | |
// We push root to first stack | |
nodeStack1.push(node); | |
// We iterate while first stack is not empty | |
while (!nodeStack1.isEmpty()) { | |
// We pop an item from nodeStack1 and we push it to nodeStack2 | |
Node < T > tmpNode = nodeStack1.pop(); | |
nodeStack2.push(tmpNode); | |
// We push left and right children of removed item to nodeStack1 | |
if (tmpNode.left != null) | |
nodeStack1.push(tmpNode.left); | |
if (tmpNode.right != null) | |
nodeStack1.push(tmpNode.right); | |
} | |
// We print all elements of nodeStack2 | |
while (!nodeStack2.isEmpty()) { | |
Node < T > tmpNode = nodeStack2.pop(); | |
System.out.print(tmpNode.data + " "); | |
} | |
} | |
// Level traversal (Breadth-first search) | |
public static < T > void levelOrderTraverse(Node < T > node) { | |
if (node == null) | |
return; | |
Queue < Node < T >> queue = new LinkedList < > (); | |
// we add start node | |
queue.add(node); | |
// iterate while queue not empty | |
while (!queue.isEmpty()) { | |
// dequeue and print data | |
Node < T > next = queue.remove(); | |
System.out.print(next.data + " "); | |
// we add children nodes if not null | |
if (next.left != null) | |
queue.add(next.left); | |
if (next.right != null) | |
queue.add(next.right); | |
} | |
} | |
public static void main(String[] args) { | |
// We create the nodes of our tree | |
Node < String > A = new Node < String > ("A"); | |
Node < String > B = new Node < String > ("B"); | |
Node < String > C = new Node < String > ("C"); | |
Node < String > D = new Node < String > ("D"); | |
Node < String > E = new Node < String > ("E"); | |
Node < String > F = new Node < String > ("F"); | |
Node < String > G = new Node < String > ("G"); | |
Node < String > H = new Node < String > ("H"); | |
Node < String > I = new Node < String > ("I"); | |
Node < String > J = new Node < String > ("J"); | |
Node < String > K = new Node < String > ("K"); | |
// Root and building of the tree | |
Node < String > root = A; | |
A.left = B; | |
A.right = C; | |
B.left = D; | |
B.right = E; | |
D.left = H; | |
D.right = I; | |
E.left = J; | |
C.left = F; | |
C.right = G; | |
G.left = K; | |
System.out.println("Pre Order Traversal"); | |
preOrderTraverse(root); | |
System.out.println("\n"); | |
System.out.println("Iterative Pre Order Traversal"); | |
iterativePreOrderTraverse(root); | |
System.out.println("\n"); | |
System.out.println("========"); | |
System.out.println(); | |
System.out.println("In Order Traversal"); | |
inOrderTraverse(root); | |
System.out.println("\n"); | |
System.out.println("Iterative In Order Traversal"); | |
iterativeInOrderTraverse(root); | |
System.out.println("\n"); | |
System.out.println("========"); | |
System.out.println(); | |
System.out.println("Post Order Traversal"); | |
postOrderTraverse(root); | |
System.out.println("\n"); | |
System.out.println("Iterative Post Order Traversal"); | |
iterativePostOrderTraverse(root); | |
System.out.println("\n"); | |
System.out.println("========"); | |
System.out.println(); | |
System.out.println("Level Order Traversal"); | |
levelOrderTraverse(root); | |
System.out.println("\n"); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment