-
-
Save sschepis/635826da64beeb1d2185e07dc3248266 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import matplotlib.pyplot as plt | |
from scipy.linalg import eigh_tridiagonal | |
from sympy import isprime | |
def potential_function(modulus): | |
"""Define the potential function V(x) for a given modulus.""" | |
return np.array([10 if (n % 2 == 0 or n % 3 == 0) else 1 for n in range(modulus)]) | |
def solve_schrodinger(modulus, V, hbar=1.0, m=1.0): | |
"""Solve the Schrödinger equation for a given potential function V(x).""" | |
N = len(V) | |
dx = 1.0 # Assuming unit spacing for simplicity | |
diagonal = np.full(N, -2.0) | |
off_diagonal = np.full(N - 1, 1.0) | |
# Solve the eigenvalue problem to get energies and wavefunctions | |
energies, wavefunctions = eigh_tridiagonal(diagonal + V, off_diagonal) | |
return energies, wavefunctions | |
def compute_prime_distribution(modulus): | |
"""Compute the distribution of primes across residue classes modulo a given modulus.""" | |
primes = [n for n in range(1, 1000) if isprime(n)] | |
prime_distribution = np.zeros(modulus) | |
for p in primes: | |
prime_distribution[p % modulus] += 1 | |
return prime_distribution | |
def correlation_analysis(wavefunction, prime_distribution): | |
"""Calculate the correlation between the wave function's probability density and the prime distribution.""" | |
wave_prob_density = np.abs(wavefunction) ** 2 | |
correlation = np.corrcoef(wave_prob_density, prime_distribution)[0, 1] | |
return correlation | |
def visualize_and_output_results(modulus, V, wavefunctions, prime_distribution, correlation, energies): | |
"""Visualize the results and output detailed analysis.""" | |
x = np.arange(modulus) | |
wave_prob_density = np.abs(wavefunctions[:, 0]) ** 2 | |
# Plot the potential, wavefunction, and prime distribution | |
plt.figure(figsize=(14, 8)) | |
plt.plot(x, V, label='Potential V(x)', color='red') | |
plt.plot(x, wave_prob_density, label='Wavefunction Probability Density |ψ(x)|^2', color='blue') | |
plt.bar(x, prime_distribution / prime_distribution.sum(), alpha=0.3, label='Normalized Prime Distribution', color='green') | |
plt.xlabel('Position x (Residue Class)') | |
plt.ylabel('Energy / Probability Density / Prime Count') | |
plt.title(f'Quantum Model for Prime Distribution Modulo {modulus}') | |
plt.legend() | |
plt.grid(True) | |
plt.show() | |
# Output the results | |
print(f"Modulus: {modulus}") | |
print(f"Correlation between wavefunction and prime distribution: {correlation:.4f}") | |
print(f"Energy levels (first 5): {energies[:5]}") | |
print(f"Prime Distribution: {prime_distribution}") | |
print(f"Wavefunction Probability Density: {wave_prob_density}") | |
print("-" * 50) | |
def main(): | |
moduli = [6, 12, 18, 30] # Moduli to analyze | |
for modulus in moduli: | |
V = potential_function(modulus) | |
energies, wavefunctions = solve_schrodinger(modulus, V) | |
prime_distribution = compute_prime_distribution(modulus) | |
correlation = correlation_analysis(wavefunctions[:, 0], prime_distribution) | |
visualize_and_output_results(modulus, V, wavefunctions, prime_distribution, correlation, energies) | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment