Skip to content

Instantly share code, notes, and snippets.

@ssghost
Created December 31, 2019 06:29
Show Gist options
  • Save ssghost/a9d7ddb35bc8ea44661f4c9b7c6ec3fb to your computer and use it in GitHub Desktop.
Save ssghost/a9d7ddb35bc8ea44661f4c9b7c6ec3fb to your computer and use it in GitHub Desktop.
Cirq: Demonstrates the Bernstein–Vazirani algorithm.
"""Demonstrates the Bernstein–Vazirani algorithm.
The (non-recursive) Bernstein–Vazirani algorithm takes a black-box oracle
implementing a function f(a) = a·factors + bias (mod 2), where 'bias' is 0 or 1,
'a' and 'factors' are vectors with all elements equal to 0 or 1, and the
algorithm solves for 'factors' in a single query to the oracle.
=== EXAMPLE OUTPUT ===
Secret function:
f(a) = a·<0, 0, 1, 0, 0, 1, 1, 1> + 0 (mod 2)
Sampled results:
Counter({'00100111': 3})
Most common matches secret factors:
True
"""
import random
import cirq
def main(qubit_count=8):
circuit_sample_count = 3
# Choose qubits to use.
input_qubits = [cirq.GridQubit(i, 0) for i in range(qubit_count)]
output_qubit = cirq.GridQubit(qubit_count, 0)
# Pick coefficients for the oracle and create a circuit to query it.
secret_bias_bit = random.randint(0, 1)
secret_factor_bits = [random.randint(0, 1) for _ in range(qubit_count)]
oracle = make_oracle(
input_qubits, output_qubit, secret_factor_bits, secret_bias_bit
)
print(
"Secret function:\nf(a) = a·<{}> + {} (mod 2)".format(
", ".join(str(e) for e in secret_factor_bits), secret_bias_bit
)
)
# Embed the oracle into a special quantum circuit querying it exactly once.
circuit = make_bernstein_vazirani_circuit(input_qubits, output_qubit, oracle)
# Sample from the circuit a couple times.
simulator = cirq.Simulator()
result = simulator.run(circuit, repetitions=circuit_sample_count)
frequencies = result.histogram(key="result", fold_func=bitstring)
print("Sampled results:\n{}".format(frequencies))
# Check if we actually found the secret value.
most_common_bitstring = frequencies.most_common(1)[0][0]
print(
"Most common matches secret factors:\n{}".format(
most_common_bitstring == bitstring(secret_factor_bits)
)
)
def make_oracle(input_qubits, output_qubit, secret_factor_bits, secret_bias_bit):
"""Gates implementing the function f(a) = a·factors + bias (mod 2)."""
if secret_bias_bit:
yield cirq.X(output_qubit)
for qubit, bit in zip(input_qubits, secret_factor_bits):
if bit:
yield cirq.CNOT(qubit, output_qubit)
def make_bernstein_vazirani_circuit(input_qubits, output_qubit, oracle):
"""Solves for factors in f(a) = a·factors + bias (mod 2) with one query."""
c = cirq.Circuit()
# Initialize qubits.
c.append(
[cirq.X(output_qubit), cirq.H(output_qubit), cirq.H.on_each(*input_qubits),]
)
# Query oracle.
c.append(oracle)
# Measure in X basis.
c.append([cirq.H.on_each(*input_qubits), cirq.measure(*input_qubits, key="result")])
return c
def bitstring(bits):
return "".join(str(int(b)) for b in bits)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment