Created
February 11, 2023 19:51
-
-
Save stackdump/938275ffc5e03194ace7b33c2f1c7d1f to your computer and use it in GitHub Desktop.
pflow-tensors
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import math | |
import random | |
import torchflow | |
import torch | |
import examples.tictactoe | |
win_moves = [ | |
["00", "01", "02"], | |
["10", "11", "12"], | |
["20", "21", "22"], | |
["00", "10", "20"], | |
["01", "11", "21"], | |
["02", "12", "22"], | |
["00", "11", "22"], | |
["20", "11", "02"], | |
] | |
empty_board = { | |
'00': '', | |
'01': '', | |
'02': '', | |
'10': '', | |
'11': '', | |
'12': '', | |
'20': '', | |
'21': '', | |
'22': '' | |
} | |
m = torchflow.Model( | |
schema='tic-tac-toe', | |
machine=examples.tictactoe.machine | |
) | |
other_player = {'X': 'O', 'O': 'X'} # alternate players | |
win_encode = {'tie': 0, 'X': 1, 'O': 2} | |
def game_over(board: dict): | |
for _, value in board: | |
if not value: | |
return False | |
return True | |
def is_winner(player, board: dict): | |
for moves in win_moves: | |
if board[moves[0]][:1] != player: | |
continue | |
if board[moves[1]][:1] != player: | |
continue | |
if board[moves[2]][:1] != player: | |
continue | |
return True | |
return False | |
def compute_games(savefile: str = ''): | |
""" | |
recursively create all games of tic-tac-toe | |
""" | |
results = {'counter': 0, 'tie': 0, 'win': {'X': 0, 'O': 0}} | |
initial = m.initial_vector() | |
vector_space = len(m.transitions) + 1 # ['X00', 'O00',...'X22', 'O22'] + result | |
game_space = 255168 # total games | |
state_space = torch.zeros(game_space, vector_space) # all games stored as tensors | |
def store_game(game_board: dict, winner: str): | |
""" construct a tensor to represent a given sequence of gameplay """ | |
game_history = torch.zeros(vector_space) | |
for k, v in game_board.items(): | |
player_symbol = v[:1] # X | |
move_num = v[1:] # 11 | |
if move_num: | |
move_key = player_symbol+k | |
game_history[m.transitions[move_key]['offset']] = int(move_num)+1 # count starting with 1 | |
game_history[-1] = win_encode[winner] | |
state_space[results['counter']] = game_history | |
results['counter'] += 1 | |
# print(game_history) | |
# REVIEW: this is a forward step!! | |
def play_game(move=0, state=initial, board=empty_board): | |
if math.remainder(move, 2) == 0.0: | |
player = 'X' | |
else: | |
player = 'O' | |
if move > 3 and is_winner(other_player[player], board): | |
store_game(board, other_player[player]) | |
results['win'][other_player[player]] += 1 | |
return | |
available_moves = m.valid_transitions(state) | |
# random.shuffle(available_moves) | |
if len(available_moves) == 0: | |
store_game(board, 'tie') | |
results['tie'] += 1 | |
return | |
for row in available_moves: | |
action = row['action'] | |
next_state = row['next_state'] | |
next_board = board.copy() | |
next_board[action[1:]] = '%s%i' % (action[:1], move) # board['11'] = 'X0' | |
play_game( | |
move + 1, | |
next_state, | |
next_board | |
) | |
# break # show only 1 game | |
play_game() | |
if savefile: | |
torch.save(state_space, savefile) | |
return results # {'counter': 255168, 'win': {'X': 49392, 'O': 77904}} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import metamodel | |
import metamodel.error | |
import torch | |
# Extend pflow-metamodel package to support tensors | |
# https://pypi.org/project/pflow-metamodel/ | |
class Model(object): | |
places = {} | |
transitions = {} | |
def __init__(self, **kwargs): | |
""" | |
convert metamodel vectors to tensors | |
""" | |
self.m = metamodel.Model(kwargs['schema'], kwargs['machine']) | |
self.places = self.m.places | |
for label, txn in self.m.transitions.items(): | |
txn['delta'] = torch.tensor(txn['delta'], dtype=torch.int8) | |
# TODO: include guards | |
# for guardLabel, guard in txn['guards']: | |
# txn['guards'][guardLabel]['delta'] = torch.tensor( | |
# guard['delta'], dtype=torch.int8) | |
self.transitions[label] = txn | |
def initial_vector(self): | |
return torch.tensor(self.m.initial_vector()) | |
def valid_transitions(self, state: torch.Tensor, limit=0): | |
out = [] | |
for label, tx in self.transitions.items(): | |
ok, next_state, _ = self.transform(state, label) | |
if ok: | |
out.append({'action': label, 'next_state': next_state}) | |
if limit > 0 and len(out) >= limit: | |
break | |
return out | |
def transform(self, state: torch.Tensor, action: str, multiple: int = 1): | |
if multiple < 0: | |
raise metamodel.error.InvalidInput( | |
'invalid multiple %s' % multiple) | |
if action not in self.transitions: | |
raise metamodel.error.InvalidInput('unknown action: %s' % action) | |
t = self.transitions[action] | |
out = state + t['delta'] | |
ok = True | |
for _, p in self.places.items(): | |
i = p['offset'] | |
if out[i] < 0: # underflow | |
ok = False | |
if 0 < p["capacity"] < out[i]: # overflow | |
ok = False | |
return ok, out, t['role'] |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment