Create a gist now

Instantly share code, notes, and snippets.

What would you like to do?
Estimate filesystem lifetime with Mackerel
# -*- coding: utf-8 -*-
import requests
import time
import json
from StringIO import StringIO
import re
import sys
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import logging
logging.basicConfig()
logger = logging.getLogger(__name__)
logger.setLevel(level=logging.INFO)
MACKEREL_APIKEY = os.environ.get("MACKEREL_APIKEY")
BASEURL="https://mackerel.io"
epoch_time = int(time.time())
duration = 60 * 60 * 24
# duration = 60 * 60 * 24 * 7
THRESHOLD = 1
def fetch_hosts():
headers = {'X-Api-Key': MACKEREL_APIKEY}
payload = {}
r = requests.get(BASEURL+"/api/v0/hosts", headers=headers, params=payload)
hosts = json.load(StringIO(r.content))
return hosts['hosts']
def fetch_metrics(hostid, name, time_from, time_to):
payload = {'name': name, 'from': time_from, 'to': time_to}
headers = {'X-Api-Key': MACKEREL_APIKEY}
r = requests.get(BASEURL+"/api/v0/hosts/"+hostid+"/metrics", params=payload, headers=headers)
metrics = json.load(StringIO(r.content))
if metrics.has_key('metrics'):
return metrics['metrics']
else:
return []
def import_df(metrics, size):
# {u'metrics': [{u'value': 6.85, u'time': 1450575540}, {u'value': 7.03, u'time': 1450575600}]}
times = []
values = []
for metric in metrics:
times.append(metric['time'] - (epoch_time - duration))
values.append(metric['value'])
df = pd.DataFrame({'time': times, 'value': values})
#plt.plot(times, values, 'bo')
model = pd.ols(y=df['value'], x=df['time'], intercept=True)
#print model
#plt.plot(model.x['x'], model.y_fitted, 'g-')
#plt.hlines([size, size * 0.8], times[0], times[-1], linestyles="dashed")
#plt.show()
return model
def prepare_targets():
dat = {}
hosts = fetch_hosts()
for host in hosts:
if not dat.has_key(host['name']):
dat[host['name']] = {'id': host['id']}
meta = host['meta']
if meta.has_key('filesystem'):
dat[host['name']]['filesystem'] = meta['filesystem'].keys()
return dat
def human_readable_size(s):
s = float(s)
if s > 10**12:
return "%.2f TB" % (s / 10**12)
if s > 10**9:
return "%.2f GB" % (s / 10**9)
if s > 10**6:
return "%.2f MB" % (s / 10**6)
if s > 10**3:
return "%.2f MB" % (s / 10**3)
return "%d B" % s
def human_readable_time(s):
r = ""
unit = [("d", 60*60*24),("h", 60*60),("m", 60)]
for u in unit:
if s >= u[1]:
i = int(s / u[1])
r = r + "%s%s" % (i, u[0])
s = s - i * u[1]
return "%s%fs" % (r, s)
def process_targets(dat):
res = []
num = 0
for hostname in dat.keys():
num = num + 1
logger.info('fetching %s (%d/%d)', hostname, num, len(dat))
record = {'hostname': hostname, 'fs': [], 'nearest': sys.maxint}
if not dat[hostname].has_key('filesystem'):
continue
for fs in dat[hostname]['filesystem']:
(fs, count) = re.subn(r"^/dev/", "", fs)
if count == 0:
continue
metric_name = "filesystem." + fs + ".used"
metrics_size = fetch_metrics(dat[hostname]['id'], "filesystem."+ fs +".size", epoch_time, epoch_time - 60 * 10)
if len(metrics_size) == 0:
logger.info("skip the fs: %s" % (metric_name))
continue
metrics = fetch_metrics(dat[hostname]['id'], metric_name, epoch_time, epoch_time - duration)
size = 0
for m in metrics_size:
size = max(size, m['value'])
latest = 0
for m in metrics[::-1]:
if m['value'] > 0:
latest = m['value']
break
model = import_df(metrics, size)
x = model.beta.x
i = model.beta.intercept
logger.debug("metric:%s, x: %f, intercept: %f, size: %s, current: %s" % (metric_name, x, i, size, latest))
if x > 0:
target = size * THRESHOLD
e = (target-i)/x
record['fs'].append({'name': fs, 'latest': latest, 'size': size, 'x': x, 'i': i, 'fullin': e})
record['nearest'] = min(record['nearest'], e)
logger.debug("fs: %s, size: %s/%s, estimated %s" % (
fs,
human_readable_size(latest),
human_readable_size(size),
human_readable_time(e)))
else:
record['fs'].append({'name': fs, 'latest': latest, 'size': size, 'x': x, 'i': i})
logger.debug("fs: %s, used size is reducing." % (fs))
res.append(record)
return res
def output_results(res):
res = sorted(res, key=lambda x: x['nearest'])
for host in res:
for fs in sorted(host['fs'], key=lambda x: x['fullin'] if x.has_key('fullin') else sys.maxint):
if fs.has_key('fullin'):
print "%s:%s, size: %s/%s, full in %s" % (
host['hostname'], fs['name'],
human_readable_size(fs['latest']),
human_readable_size(fs['size']),
human_readable_time(fs['fullin']))
else:
print "%s:%s, size: %s/%s, never full" % (
host['hostname'], fs['name'],
human_readable_size(fs['latest']),
human_readable_size(fs['size']))
if __name__ == "__main__":
dat = prepare_targets()
res = process_targets(dat)
output_results(res)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment