Last active
April 2, 2022 13:28
-
-
Save stefan-it/feb6c35bde049b2c19d8dda06fa0a465 to your computer and use it in GitHub Desktop.
NER fine-tuning with PyTorch-Transformers (heavily based on https://github.com/kamalkraj/BERT-NER)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from __future__ import absolute_import, division, print_function | |
import argparse | |
import glob | |
import logging | |
import os | |
import random | |
import numpy as np | |
import torch | |
from torch import nn | |
import torch.nn.functional as F | |
from torch.nn import CrossEntropyLoss | |
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler, | |
TensorDataset) | |
from torch.utils.data.distributed import DistributedSampler | |
from tensorboardX import SummaryWriter | |
from tqdm import tqdm, trange | |
from pytorch_transformers import (WEIGHTS_NAME, BertConfig, | |
BertForTokenClassification, | |
BertForSequenceClassification, BertTokenizer, | |
RobertaConfig, | |
RobertaForSequenceClassification, | |
RobertaTokenizer, | |
XLMConfig, XLMForSequenceClassification, | |
XLMTokenizer, XLNetConfig, | |
XLNetForSequenceClassification, | |
XLNetTokenizer) | |
from pytorch_transformers import AdamW, WarmupLinearSchedule | |
from seqeval.metrics import classification_report | |
from utils_glue import compute_metrics | |
# Prepare GLUE task | |
output_modes = { | |
"ner": "classification", | |
} | |
class Ner(BertForTokenClassification): | |
def forward(self, input_ids, token_type_ids=None, attention_mask=None, labels=None,valid_ids=None,attention_mask_label=None): | |
#sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask, output_all_encoded_layers=False) | |
sequence_output, _ = self.bert(input_ids, token_type_ids, attention_mask) | |
batch_size,max_len,feat_dim = sequence_output.shape | |
valid_output = torch.zeros(batch_size,max_len,feat_dim,dtype=torch.float32,device='cuda') | |
for i in range(batch_size): | |
jj = -1 | |
for j in range(max_len): | |
if valid_ids[i][j].item() == 1: | |
jj += 1 | |
valid_output[i][jj] = sequence_output[i][j] | |
sequence_output = self.dropout(valid_output) | |
logits = self.classifier(sequence_output) | |
if labels is not None: | |
loss_fct = CrossEntropyLoss(ignore_index=0) | |
# Only keep active parts of the loss | |
attention_mask_label = None | |
if attention_mask_label is not None: | |
active_loss = attention_mask_label.view(-1) == 1 | |
active_logits = logits.view(-1, self.num_labels)[active_loss] | |
active_labels = labels.view(-1)[active_loss] | |
loss = loss_fct(active_logits, active_labels) | |
else: | |
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) | |
return loss | |
else: | |
return logits | |
class InputExample(object): | |
"""A single training/test example for simple sequence classification.""" | |
def __init__(self, guid, text_a, text_b=None, label=None): | |
"""Constructs a InputExample. | |
Args: | |
guid: Unique id for the example. | |
text_a: string. The untokenized text of the first sequence. For single | |
sequence tasks, only this sequence must be specified. | |
text_b: (Optional) string. The untokenized text of the second sequence. | |
Only must be specified for sequence pair tasks. | |
label: (Optional) string. The label of the example. This should be | |
specified for train and dev examples, but not for test examples. | |
""" | |
self.guid = guid | |
self.text_a = text_a | |
self.text_b = text_b | |
self.label = label | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, input_ids, input_mask, segment_ids, label_id, valid_ids=None, label_mask=None): | |
self.input_ids = input_ids | |
self.input_mask = input_mask | |
self.segment_ids = segment_ids | |
self.label_id = label_id | |
self.valid_ids = valid_ids | |
self.label_mask = label_mask | |
def readfile(filename): | |
''' | |
read file | |
''' | |
f = open(filename) | |
data = [] | |
sentence = [] | |
label= [] | |
for line in f: | |
if len(line)==0 or line.startswith('-DOCSTART') or line[0]=="\n": | |
if len(sentence) > 0: | |
data.append((sentence,label)) | |
sentence = [] | |
label = [] | |
continue | |
splits = line.split(' ') | |
sentence.append(splits[0]) | |
label.append(splits[-1][:-1]) | |
if len(sentence) >0: | |
data.append((sentence,label)) | |
sentence = [] | |
label = [] | |
return data | |
class DataProcessor(object): | |
"""Base class for data converters for sequence classification data sets.""" | |
def get_train_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the train set.""" | |
raise NotImplementedError() | |
def get_dev_examples(self, data_dir): | |
"""Gets a collection of `InputExample`s for the dev set.""" | |
raise NotImplementedError() | |
def get_labels(self): | |
"""Gets the list of labels for this data set.""" | |
raise NotImplementedError() | |
@classmethod | |
def _read_tsv(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
return readfile(input_file) | |
class NerProcessor(DataProcessor): | |
"""Processor for the CoNLL-2003 data set.""" | |
def get_train_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "train.txt")), "train") | |
def get_dev_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "valid.txt")), "dev") | |
def get_test_examples(self, data_dir): | |
"""See base class.""" | |
return self._create_examples( | |
self._read_tsv(os.path.join(data_dir, "test.txt")), "test") | |
def get_labels(self): | |
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC", "[CLS]", "[SEP]"] | |
def _create_examples(self,lines,set_type): | |
examples = [] | |
for i,(sentence,label) in enumerate(lines): | |
guid = "%s-%s" % (set_type, i) | |
text_a = ' '.join(sentence) | |
text_b = None | |
label = label | |
examples.append(InputExample(guid=guid,text_a=text_a,text_b=text_b,label=label)) | |
return examples | |
def convert_examples_to_features(examples, label_list, max_seq_length, tokenizer): | |
"""Loads a data file into a list of `InputBatch`s.""" | |
label_map = {label : i for i, label in enumerate(label_list,1)} | |
features = [] | |
for (ex_index,example) in enumerate(examples): | |
textlist = example.text_a.split(' ') | |
labellist = example.label | |
tokens = [] | |
labels = [] | |
valid = [] | |
label_mask = [] | |
for i, word in enumerate(textlist): | |
token = tokenizer.tokenize(word) | |
tokens.extend(token) | |
label_1 = labellist[i] | |
for m in range(len(token)): | |
if m == 0: | |
labels.append(label_1) | |
valid.append(1) | |
label_mask.append(1) | |
else: | |
valid.append(0) | |
if len(tokens) >= max_seq_length - 1: | |
tokens = tokens[0:(max_seq_length - 2)] | |
labels = labels[0:(max_seq_length - 2)] | |
valid = valid[0:(max_seq_length - 2)] | |
label_mask = label_mask[0:(max_seq_length - 2)] | |
ntokens = [] | |
segment_ids = [] | |
label_ids = [] | |
ntokens.append("[CLS]") | |
segment_ids.append(0) | |
valid.insert(0,1) | |
label_mask.insert(0,1) | |
label_ids.append(label_map["[CLS]"]) | |
for i, token in enumerate(tokens): | |
ntokens.append(token) | |
segment_ids.append(0) | |
if len(labels) > i: | |
label_ids.append(label_map[labels[i]]) | |
ntokens.append("[SEP]") | |
segment_ids.append(0) | |
valid.append(1) | |
label_mask.append(1) | |
label_ids.append(label_map["[SEP]"]) | |
input_ids = tokenizer.convert_tokens_to_ids(ntokens) | |
input_mask = [1] * len(input_ids) | |
label_mask = [1] * len(label_ids) | |
while len(input_ids) < max_seq_length: | |
input_ids.append(0) | |
input_mask.append(0) | |
segment_ids.append(0) | |
label_ids.append(0) | |
valid.append(1) | |
label_mask.append(0) | |
while len(label_ids) < max_seq_length: | |
label_ids.append(0) | |
label_mask.append(0) | |
assert len(input_ids) == max_seq_length | |
assert len(input_mask) == max_seq_length | |
assert len(segment_ids) == max_seq_length | |
assert len(label_ids) == max_seq_length | |
assert len(valid) == max_seq_length | |
assert len(label_mask) == max_seq_length | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s" % (example.guid)) | |
logger.info("tokens: %s" % " ".join( | |
[str(x) for x in tokens])) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info("input_mask: %s" % " ".join([str(x) for x in input_mask])) | |
logger.info( | |
"segment_ids: %s" % " ".join([str(x) for x in segment_ids])) | |
# logger.info("label: %s (id = %d)" % (example.label, label_ids)) | |
features.append( | |
InputFeatures(input_ids=input_ids, | |
input_mask=input_mask, | |
segment_ids=segment_ids, | |
label_id=label_ids, | |
valid_ids=valid, | |
label_mask=label_mask)) | |
return features | |
logger = logging.getLogger(__name__) | |
ALL_MODELS = sum((tuple(conf.pretrained_config_archive_map.keys()) for conf in (BertConfig, XLNetConfig, XLMConfig, RobertaConfig)), ()) | |
MODEL_CLASSES = { | |
'bert': (BertConfig, BertForSequenceClassification, BertTokenizer), | |
'xlnet': (XLNetConfig, XLNetForSequenceClassification, XLNetTokenizer), | |
'xlm': (XLMConfig, XLMForSequenceClassification, XLMTokenizer), | |
'roberta': (RobertaConfig, RobertaForSequenceClassification, RobertaTokenizer), | |
} | |
def set_seed(args): | |
random.seed(args.seed) | |
np.random.seed(args.seed) | |
torch.manual_seed(args.seed) | |
if args.n_gpu > 0: | |
torch.cuda.manual_seed_all(args.seed) | |
def train(args, train_dataset, model, tokenizer): | |
""" Train the model """ | |
if args.local_rank in [-1, 0]: | |
tb_writer = SummaryWriter() | |
args.train_batch_size = args.per_gpu_train_batch_size * max(1, args.n_gpu) | |
train_sampler = RandomSampler(train_dataset) if args.local_rank == -1 else DistributedSampler(train_dataset) | |
train_dataloader = DataLoader(train_dataset, sampler=train_sampler, batch_size=args.train_batch_size) | |
if args.max_steps > 0: | |
t_total = args.max_steps | |
args.num_train_epochs = args.max_steps // (len(train_dataloader) // args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // args.gradient_accumulation_steps * args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ['bias', 'LayerNorm.weight'] | |
optimizer_grouped_parameters = [ | |
{'params': [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)], 'weight_decay': args.weight_decay}, | |
{'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=args.learning_rate, eps=args.adam_epsilon) | |
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=args.warmup_steps, t_total=t_total) | |
if args.fp16: | |
try: | |
from apex import amp | |
except ImportError: | |
raise ImportError("Please install apex from https://www.github.com/nvidia/apex to use fp16 training.") | |
model, optimizer = amp.initialize(model, optimizer, opt_level=args.fp16_opt_level) | |
# multi-gpu training (should be after apex fp16 initialization) | |
if args.n_gpu > 1: | |
model = torch.nn.DataParallel(model) | |
# Distributed training (should be after apex fp16 initialization) | |
if args.local_rank != -1: | |
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], | |
output_device=args.local_rank, | |
find_unused_parameters=True) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(train_dataset)) | |
logger.info(" Num Epochs = %d", args.num_train_epochs) | |
logger.info(" Instantaneous batch size per GPU = %d", args.per_gpu_train_batch_size) | |
logger.info(" Total train batch size (w. parallel, distributed & accumulation) = %d", | |
args.train_batch_size * args.gradient_accumulation_steps * (torch.distributed.get_world_size() if args.local_rank != -1 else 1)) | |
logger.info(" Gradient Accumulation steps = %d", args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
global_step = 0 | |
tr_loss, logging_loss = 0.0, 0.0 | |
model.zero_grad() | |
train_iterator = trange(int(args.num_train_epochs), desc="Epoch", disable=args.local_rank not in [-1, 0]) | |
set_seed(args) # Added here for reproductibility (even between python 2 and 3) | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration", disable=args.local_rank not in [-1, 0]) | |
for step, batch in enumerate(epoch_iterator): | |
model.train() | |
batch = tuple(t.to(args.device) for t in batch) | |
input_ids, input_mask, segment_ids, label_ids, valid_ids,l_mask = batch | |
inputs = {'input_ids': batch[0], | |
'attention_mask': batch[1], | |
'token_type_ids': batch[2] if args.model_type in ['bert', 'xlnet'] else None, # XLM and RoBERTa don't use segment_ids | |
'labels': batch[3]} | |
#outputs = model(**inputs) | |
outputs = model(input_ids, segment_ids, input_mask, label_ids,valid_ids,l_mask) | |
loss = outputs #[0] # model outputs are always tuple in pytorch-transformers (see doc) | |
if args.n_gpu > 1: | |
loss = loss.mean() # mean() to average on multi-gpu parallel training | |
if args.gradient_accumulation_steps > 1: | |
loss = loss / args.gradient_accumulation_steps | |
if args.fp16: | |
with amp.scale_loss(loss, optimizer) as scaled_loss: | |
scaled_loss.backward() | |
torch.nn.utils.clip_grad_norm_(amp.master_params(optimizer), args.max_grad_norm) | |
else: | |
loss.backward() | |
torch.nn.utils.clip_grad_norm_(model.parameters(), args.max_grad_norm) | |
tr_loss += loss.item() | |
if (step + 1) % args.gradient_accumulation_steps == 0: | |
scheduler.step() # Update learning rate schedule | |
optimizer.step() | |
model.zero_grad() | |
global_step += 1 | |
if args.local_rank in [-1, 0] and args.logging_steps > 0 and global_step % args.logging_steps == 0: | |
# Log metrics | |
if args.local_rank == -1 and args.evaluate_during_training: # Only evaluate when single GPU otherwise metrics may not average well | |
results = evaluate(args, model, tokenizer) | |
for key, value in results.items(): | |
tb_writer.add_scalar('eval_{}'.format(key), value, global_step) | |
tb_writer.add_scalar('lr', scheduler.get_lr()[0], global_step) | |
tb_writer.add_scalar('loss', (tr_loss - logging_loss)/args.logging_steps, global_step) | |
logging_loss = tr_loss | |
if args.local_rank in [-1, 0] and args.save_steps > 0 and global_step % args.save_steps == 0: | |
# Save model checkpoint | |
output_dir = os.path.join(args.output_dir, 'checkpoint-{}'.format(global_step)) | |
if not os.path.exists(output_dir): | |
os.makedirs(output_dir) | |
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training | |
model_to_save.save_pretrained(output_dir) | |
torch.save(args, os.path.join(output_dir, 'training_args.bin')) | |
logger.info("Saving model checkpoint to %s", output_dir) | |
if args.max_steps > 0 and global_step > args.max_steps: | |
epoch_iterator.close() | |
break | |
if args.max_steps > 0 and global_step > args.max_steps: | |
train_iterator.close() | |
break | |
if args.local_rank in [-1, 0]: | |
tb_writer.close() | |
return global_step, tr_loss / global_step | |
def evaluate(args, model, tokenizer, prefix, label_map): | |
# Loop to handle MNLI double evaluation (matched, mis-matched) | |
eval_task_names = ("mnli", "mnli-mm") if args.task_name == "mnli" else (args.task_name,) | |
eval_outputs_dirs = (args.output_dir, args.output_dir + '-MM') if args.task_name == "mnli" else (args.output_dir,) | |
results = {} | |
for eval_task, eval_output_dir in zip(eval_task_names, eval_outputs_dirs): | |
eval_dataset = load_and_cache_examples(args, eval_task, tokenizer, evaluate=True) | |
if not os.path.exists(eval_output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(eval_output_dir) | |
args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu) | |
# Note that DistributedSampler samples randomly | |
eval_sampler = SequentialSampler(eval_dataset) if args.local_rank == -1 else DistributedSampler(eval_dataset) | |
eval_dataloader = DataLoader(eval_dataset, sampler=eval_sampler, batch_size=args.eval_batch_size) | |
# Eval! | |
logger.info("***** Running evaluation {} *****".format(prefix)) | |
logger.info(" Num examples = %d", len(eval_dataset)) | |
logger.info(" Batch size = %d", args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
preds = None | |
out_label_ids = None | |
y_true = [] | |
y_pred = [] | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
model.eval() | |
batch = tuple(t.to(args.device) for t in batch) | |
with torch.no_grad(): | |
input_ids, input_mask, segment_ids, label_ids, valid_ids,l_mask = batch | |
outputs = model(input_ids, segment_ids, input_mask,valid_ids=valid_ids,attention_mask_label=l_mask) | |
logits = outputs #[:2] | |
logits = torch.argmax(F.log_softmax(logits,dim=2),dim=2) | |
logits = logits.detach().cpu().numpy() | |
label_ids = label_ids.to('cpu').numpy() | |
input_mask = input_mask.to('cpu').numpy() | |
for i, label in enumerate(label_ids): | |
temp_1 = [] | |
temp_2 = [] | |
for j,m in enumerate(label): | |
if j == 0: | |
continue | |
elif label_ids[i][j] == len(label_map): | |
y_true.append(temp_1) | |
y_pred.append(temp_2) | |
break | |
else: | |
temp_1.append(label_map[label_ids[i][j]]) | |
temp_2.append(label_map[logits[i][j]]) | |
report = classification_report(y_true, y_pred,digits=4) | |
logger.info("\n%s", report) | |
output_eval_file = os.path.join(args.output_dir, "eval_results.txt") | |
with open(output_eval_file, "w") as writer: | |
logger.info("***** Eval results *****") | |
logger.info("\n%s", report) | |
writer.write(report) | |
def load_and_cache_examples(args, task, tokenizer, evaluate=False): | |
if args.local_rank not in [-1, 0] and not evaluate: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
processor = NerProcessor() | |
output_mode = output_modes[task] | |
# Load data features from cache or dataset file | |
cached_features_file = os.path.join(args.data_dir, 'cached_{}_{}_{}_{}'.format( | |
'dev' if evaluate else 'train', | |
list(filter(None, args.model_name_or_path.split('/'))).pop(), | |
str(args.max_seq_length), | |
str(task))) | |
if os.path.exists(cached_features_file): | |
logger.info("Loading features from cached file %s", cached_features_file) | |
features = torch.load(cached_features_file) | |
else: | |
logger.info("Creating features from dataset file at %s", args.data_dir) | |
label_list = processor.get_labels() | |
if task in ['mnli', 'mnli-mm'] and args.model_type in ['roberta']: | |
# HACK(label indices are swapped in RoBERTa pretrained model) | |
label_list[1], label_list[2] = label_list[2], label_list[1] | |
examples = processor.get_dev_examples(args.data_dir) if evaluate else processor.get_train_examples(args.data_dir) | |
# Changed | |
features = convert_examples_to_features(examples, label_list, args.max_seq_length, tokenizer) | |
if args.local_rank in [-1, 0]: | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(features, cached_features_file) | |
if args.local_rank == 0 and not evaluate: | |
torch.distributed.barrier() # Make sure only the first process in distributed training process the dataset, and the others will use the cache | |
# Convert to Tensors and build dataset | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long) | |
all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long) | |
all_label_ids = torch.tensor([f.label_id for f in features], dtype=torch.long) | |
all_valid_ids = torch.tensor([f.valid_ids for f in features], dtype=torch.long) | |
all_lmask_ids = torch.tensor([f.label_mask for f in features], dtype=torch.long) | |
dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,all_valid_ids,all_lmask_ids) | |
#dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids) | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser() | |
## Required parameters | |
parser.add_argument("--data_dir", default=None, type=str, required=True, | |
help="The input data dir. Should contain the .tsv files (or other data files) for the task.") | |
parser.add_argument("--model_type", default=None, type=str, required=True, | |
help="Model type selected in the list: " + ", ".join(MODEL_CLASSES.keys())) | |
parser.add_argument("--model_name_or_path", default=None, type=str, required=True, | |
help="Path to pre-trained model or shortcut name selected in the list: " + ", ".join(ALL_MODELS)) | |
parser.add_argument("--task_name", default="ner", type=str, required=True, | |
help="The name of the task to train selected in the list: ner") | |
parser.add_argument("--output_dir", default=None, type=str, required=True, | |
help="The output directory where the model predictions and checkpoints will be written.") | |
## Other parameters | |
parser.add_argument("--config_name", default="", type=str, | |
help="Pretrained config name or path if not the same as model_name") | |
parser.add_argument("--tokenizer_name", default="", type=str, | |
help="Pretrained tokenizer name or path if not the same as model_name") | |
parser.add_argument("--cache_dir", default="", type=str, | |
help="Where do you want to store the pre-trained models downloaded from s3") | |
parser.add_argument("--max_seq_length", default=128, type=int, | |
help="The maximum total input sequence length after tokenization. Sequences longer " | |
"than this will be truncated, sequences shorter will be padded.") | |
parser.add_argument("--do_train", action='store_true', | |
help="Whether to run training.") | |
parser.add_argument("--do_eval", action='store_true', | |
help="Whether to run eval on the dev set.") | |
parser.add_argument("--evaluate_during_training", action='store_true', | |
help="Rul evaluation during training at each logging step.") | |
parser.add_argument("--do_lower_case", action='store_true', | |
help="Set this flag if you are using an uncased model.") | |
parser.add_argument("--per_gpu_train_batch_size", default=8, type=int, | |
help="Batch size per GPU/CPU for training.") | |
parser.add_argument("--per_gpu_eval_batch_size", default=8, type=int, | |
help="Batch size per GPU/CPU for evaluation.") | |
parser.add_argument('--gradient_accumulation_steps', type=int, default=1, | |
help="Number of updates steps to accumulate before performing a backward/update pass.") | |
parser.add_argument("--learning_rate", default=5e-5, type=float, | |
help="The initial learning rate for Adam.") | |
parser.add_argument("--weight_decay", default=0.0, type=float, | |
help="Weight deay if we apply some.") | |
parser.add_argument("--adam_epsilon", default=1e-8, type=float, | |
help="Epsilon for Adam optimizer.") | |
parser.add_argument("--max_grad_norm", default=1.0, type=float, | |
help="Max gradient norm.") | |
parser.add_argument("--num_train_epochs", default=3.0, type=float, | |
help="Total number of training epochs to perform.") | |
parser.add_argument("--max_steps", default=-1, type=int, | |
help="If > 0: set total number of training steps to perform. Override num_train_epochs.") | |
parser.add_argument("--warmup_steps", default=0, type=int, | |
help="Linear warmup over warmup_steps.") | |
parser.add_argument('--logging_steps', type=int, default=50, | |
help="Log every X updates steps.") | |
parser.add_argument('--save_steps', type=int, default=50, | |
help="Save checkpoint every X updates steps.") | |
parser.add_argument("--eval_all_checkpoints", action='store_true', | |
help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number") | |
parser.add_argument("--no_cuda", action='store_true', | |
help="Avoid using CUDA when available") | |
parser.add_argument('--overwrite_output_dir', action='store_true', | |
help="Overwrite the content of the output directory") | |
parser.add_argument('--overwrite_cache', action='store_true', | |
help="Overwrite the cached training and evaluation sets") | |
parser.add_argument('--seed', type=int, default=42, | |
help="random seed for initialization") | |
parser.add_argument('--fp16', action='store_true', | |
help="Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit") | |
parser.add_argument('--fp16_opt_level', type=str, default='O1', | |
help="For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']." | |
"See details at https://nvidia.github.io/apex/amp.html") | |
parser.add_argument("--local_rank", type=int, default=-1, | |
help="For distributed training: local_rank") | |
parser.add_argument('--server_ip', type=str, default='', help="For distant debugging.") | |
parser.add_argument('--server_port', type=str, default='', help="For distant debugging.") | |
args = parser.parse_args() | |
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train and not args.overwrite_output_dir: | |
raise ValueError("Output directory ({}) already exists and is not empty. Use --overwrite_output_dir to overcome.".format(args.output_dir)) | |
# Setup distant debugging if needed | |
if args.server_ip and args.server_port: | |
# Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script | |
import ptvsd | |
print("Waiting for debugger attach") | |
ptvsd.enable_attach(address=(args.server_ip, args.server_port), redirect_output=True) | |
ptvsd.wait_for_attach() | |
# Setup CUDA, GPU & distributed training | |
if args.local_rank == -1 or args.no_cuda: | |
device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") | |
args.n_gpu = torch.cuda.device_count() | |
else: # Initializes the distributed backend which will take care of sychronizing nodes/GPUs | |
torch.cuda.set_device(args.local_rank) | |
device = torch.device("cuda", args.local_rank) | |
torch.distributed.init_process_group(backend='nccl') | |
args.n_gpu = 1 | |
args.device = device | |
# Setup logging | |
logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
datefmt = '%m/%d/%Y %H:%M:%S', | |
level = logging.INFO if args.local_rank in [-1, 0] else logging.WARN) | |
logger.warning("Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", | |
args.local_rank, device, args.n_gpu, bool(args.local_rank != -1), args.fp16) | |
# Set seed | |
set_seed(args) | |
processors = {'ner': NerProcessor} | |
processor = processors[args.task_name]() | |
args.output_mode = output_modes[args.task_name] | |
label_list = processor.get_labels() | |
num_labels = len(label_list) + 1 | |
# Load pretrained model and tokenizer | |
if args.local_rank not in [-1, 0]: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
args.model_type = args.model_type.lower() | |
config_class, model_class, tokenizer_class = MODEL_CLASSES[args.model_type] | |
config = config_class.from_pretrained(args.config_name if args.config_name else args.model_name_or_path, num_labels=num_labels, finetuning_task=args.task_name) | |
tokenizer = tokenizer_class.from_pretrained(args.tokenizer_name if args.tokenizer_name else args.model_name_or_path, do_lower_case=args.do_lower_case) | |
model = model_class.from_pretrained(args.model_name_or_path, from_tf=bool('.ckpt' in args.model_name_or_path), config=config) | |
model = Ner.from_pretrained(args.model_name_or_path, num_labels=num_labels) | |
if args.local_rank == 0: | |
torch.distributed.barrier() # Make sure only the first process in distributed training will download model & vocab | |
model.to(args.device) | |
logger.info("Training/evaluation parameters %s", args) | |
# Training | |
if args.do_train: | |
train_dataset = load_and_cache_examples(args, args.task_name, tokenizer, evaluate=False) | |
global_step, tr_loss = train(args, train_dataset, model, tokenizer) | |
logger.info(" global_step = %s, average loss = %s", global_step, tr_loss) | |
# Saving best-practices: if you use defaults names for the model, you can reload it using from_pretrained() | |
if args.do_train and (args.local_rank == -1 or torch.distributed.get_rank() == 0): | |
# Create output directory if needed | |
if not os.path.exists(args.output_dir) and args.local_rank in [-1, 0]: | |
os.makedirs(args.output_dir) | |
logger.info("Saving model checkpoint to %s", args.output_dir) | |
# Save a trained model, configuration and tokenizer using `save_pretrained()`. | |
# They can then be reloaded using `from_pretrained()` | |
model_to_save = model.module if hasattr(model, 'module') else model # Take care of distributed/parallel training | |
model_to_save.save_pretrained(args.output_dir) | |
tokenizer.save_pretrained(args.output_dir) | |
# Good practice: save your training arguments together with the trained model | |
torch.save(args, os.path.join(args.output_dir, 'training_args.bin')) | |
# Load a trained model and vocabulary that you have fine-tuned | |
model = model_class.from_pretrained(args.output_dir) | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
model.to(args.device) | |
# Evaluation | |
results = {} | |
if args.do_eval and args.local_rank in [-1, 0]: | |
tokenizer = tokenizer_class.from_pretrained(args.output_dir, do_lower_case=args.do_lower_case) | |
checkpoints = [args.output_dir] | |
if args.eval_all_checkpoints: | |
checkpoints = list(os.path.dirname(c) for c in sorted(glob.glob(args.output_dir + '/**/' + WEIGHTS_NAME, recursive=True))) | |
logging.getLogger("pytorch_transformers.modeling_utils").setLevel(logging.WARN) # Reduce logging | |
logger.info("Evaluate the following checkpoints: %s", checkpoints) | |
for checkpoint in checkpoints: | |
global_step = checkpoint.split('-')[-1] if len(checkpoints) > 1 else "" | |
model = model_class.from_pretrained(checkpoint) | |
model = Ner.from_pretrained(checkpoint, num_labels=num_labels) | |
model.to(args.device) | |
label_map = {i : label for i, label in enumerate(label_list,1)} | |
result = evaluate(args, model, tokenizer, prefix=global_step, label_map=label_map) | |
#result = dict((k + '_{}'.format(global_step), v) for k, v in result.items()) | |
#results.update(result) | |
return results | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment