This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// Tiny TFJS train / predict example. | |
async function myFirstTfjs() { | |
// Create a simple model. | |
const model = tf.sequential(); | |
model.add(tf.layers.dense({units: 1, inputShape: [1]})); | |
// Prepare the model for training: Specify the loss and the optimizer. | |
model.compile({ | |
loss: 'meanSquaredError', | |
optimizer: 'sgd' | |
}); | |
// Generate some synthetic data for training. (y = 2x - 1) | |
const xs = tf.tensor2d([-1, 0, 1, 2, 3, 4], [6, 1]); | |
const ys = tf.tensor2d([-3, -1, 1, 3, 5, 7], [6, 1]); | |
// Train the model using the data. | |
await model.fit(xs, ys, {epochs: 250}); | |
// Use the model to do inference on a data point the model hasn't seen. | |
// Should print approximately 39. | |
document.getElementById('micro_out_div').innerText += | |
model.predict(tf.tensor2d([20], [1, 1])); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment