Skip to content

Instantly share code, notes, and snippets.

@stoensin
Created September 1, 2021 07:25
Show Gist options
  • Save stoensin/85ef8d1bba859a9c2bffc714e1634cbf to your computer and use it in GitHub Desktop.
Save stoensin/85ef8d1bba859a9c2bffc714e1634cbf to your computer and use it in GitHub Desktop.
from sklearn import datasets
iris = datasets.load_iris() # 导入数据集
X = iris.data # 获得其特征向量
y = iris.target # 获得样本label
# 自己创建数据集
from sklearn.datasets.samples_generator import make_classification
X, y = make_classification(n_samples=6, n_features=5, n_informative=2,
n_redundant=2, n_classes=2, n_clusters_per_class=2, scale=1.0,
random_state=20)
# n_samples:指定样本数
# n_features:指定特征数
# n_classes:指定几分类
# random_state:随机种子,使得随机状可重
# 作用:将数据集划分为 训练集和测试集
# 格式:train_test_split(*arrays, **options)
from sklearn.mode_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
"""
参数
---
arrays:样本数组,包含特征向量和标签
test_size:
  float-获得多大比重的测试样本 (默认:0.25)
  int - 获得多少个测试样本
train_size: 同test_size
random_state:
  int - 随机种子(种子固定,实验可复现)
shuffle - 是否在分割之前对数据进行洗牌(默认True)
返回
---
分割后的列表,长度=2*len(arrays),
  (train-test split)
"""
# 拟合模型
model.fit(X_train, y_train)
# 模型预测
model.predict(X_test)
# 获得这个模型的参数
model.get_params()
# 为模型进行打分
model.score(data_X, data_y) # 线性回归:R square; 分类问题: acc
# 定义线性回归模型
from sklearn.linear_model import LinearRegression
model = LinearRegression(fit_intercept=True, normalize=False,
copy_X=True, n_jobs=1)
"""
参数
fit_intercept:是否计算截距。False-模型没有截距
normalize: 当fit_intercept设置为False时,该参数将被忽略。 如果为真,则回归前的回归系数X将通过减去平均值并除以l2-范数而归一化。
n_jobs:指定线程数
"""
# 定义逻辑回归模型
from sklearn.linear_model import LogisticRegression
model = LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0,
fit_intercept=True, intercept_scaling=1, class_weight=None,
random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’,
verbose=0, warm_start=False, n_jobs=1)
"""参数
---
penalty:使用指定正则化项(默认:l2)
dual: n_samples > n_features取False(默认)
C:正则化强度的反,值越小正则化强度越大
n_jobs: 指定线程数
random_state:随机数生成器
fit_intercept: 是否需要常量
"""
from sklearn import naive_bayes
model = naive_bayes.GaussianNB() # 高斯贝叶斯
model = naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)
model = naive_bayes.BernoulliNB(alpha=1.0, binarize=0.0, fit_prior=True, class_prior=None)
"""
文本分类问题常用MultinomialNB
参数
---
alpha:平滑参数
fit_prior:是否要学习类的先验概率;false-使用统一的先验概率
class_prior: 是否指定类的先验概率;若指定则不能根据参数调整
binarize: 二值化的阈值,若为None,则假设输入由二进制向量组成
"""
from sklearn import tree
model = tree.DecisionTreeClassifier(criterion=’gini’, max_depth=None,
min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0,
max_features=None, random_state=None, max_leaf_nodes=None,
min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort=False)
"""决策树 参数
---
criterion :特征选择准则gini/entropy
max_depth:树的最大深度,None-尽量下分
min_samples_split:分裂内部节点,所需要的最小样本树
min_samples_leaf:叶子节点所需要的最小样本数
max_features: 寻找最优分割点时的最大特征数
max_leaf_nodes:优先增长到最大叶子节点数
min_impurity_decrease:如果这种分离导致杂质的减少大于或等于这个值,则节点将被拆分。
"""
from sklearn.svm import SVC
model = SVC(C=1.0, kernel=’rbf’, gamma=’auto’)
"""SVM参数
---
C:误差项的惩罚参数C
gamma: 核相关系数。浮点数,If gamma is ‘auto’ then 1/n_features will be used instead.
"""
from sklearn import neighbors
#定义kNN分类模型
model = neighbors.KNeighborsClassifier(n_neighbors=5, n_jobs=1) # 分类
model = neighbors.KNeighborsRegressor(n_neighbors=5, n_jobs=1) # 回归
"""参数
---
n_neighbors: 使用邻居的数目
n_jobs:并行任务数
"""
from sklearn import preprocessing
data = [[0, 0], [0, 0], [1, 1], [1, 1]]
# 1. 基于mean和std的标准化
scaler = preprocessing.StandardScaler().fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
# 2. 将每个特征值归一化到一个固定范围
scaler = preprocessing.MinMaxScaler(feature_range=(0, 1)).fit(train_data)
scaler.transform(train_data)
scaler.transform(test_data)
#feature_range: 定义归一化范围,注用()括起来
# 3. 正则化 L2(Ridge) L1(Lasso)
X_normalized = preprocessing.normalize(X, norm='l2')
# one_hot 离散化
data = [[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]]
encoder = preprocessing.OneHotEncoder().fit(data)
enc.transform(data).toarray()
import pickle
# 保存模型
with open('model.pickle', 'wb') as f:
pickle.dump(model, f)
# 读取模型
with open('model.pickle', 'rb') as f:
model = pickle.load(f)
model.predict(X_test)
from sklearn.externals import joblib
# 保存模型
joblib.dump(model, 'model.pickle')
#载入模型
model = joblib.load('model.pickle')
from sklearn.model_selection import cross_val_score
cross_val_score(model, X, y=None, scoring=None, cv=None, n_jobs=1)
"""参数
---
model:拟合数据的模型
cv : k-fold
scoring: 打分参数-‘accuracy’、‘f1’、‘precision’、‘recall’ 、‘roc_auc’、'neg_log_loss'等等
"""
# 检验曲线
from sklearn.model_selection import validation_curve
train_score, test_score = validation_curve(model, X, y, param_name, param_range, cv=None, scoring=None, n_jobs=1)
"""参数
---
model:用于fit和predict的对象
X, y: 训练集的特征和标签
param_name:将被改变的参数的名字
param_range: 参数的改变范围
cv:k-fold
返回值
---
train_score: 训练集得分(array)
test_score: 验证集得分(array)
"""
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment