Created
May 24, 2023 08:25
-
-
Save sunilkumardash9/995c9ce81f96f4d242c9ac63a6c38544 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import gradio as gr | |
from langchain.embeddings.openai import OpenAIEmbeddings | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.vectorstores import Chroma | |
from langchain.chains import ConversationalRetrievalChain | |
from langchain.chat_models import ChatOpenAI | |
from langchain.document_loaders import PyPDFLoader | |
import os | |
import fitz | |
from PIL import Image | |
# Global variables | |
COUNT, N = 0, 0 | |
chat_history = [] | |
chain = '' | |
enable_box = gr.Textbox.update(value=None, placeholder='Upload your OpenAI API key', interactive=True) | |
disable_box = gr.Textbox.update(value='OpenAI API key is Set', interactive=False) | |
# Function to set the OpenAI API key | |
def set_apikey(api_key): | |
os.environ['OPENAI_API_KEY'] = api_key | |
return disable_box | |
# Function to enable the API key input box | |
def enable_api_box(): | |
return enable_box | |
# Function to add text to the chat history | |
def add_text(history, text): | |
if not text: | |
raise gr.Error('Enter text') | |
history = history + [(text, '')] | |
return history | |
# Function to process the PDF file and create a conversation chain | |
def process_file(file): | |
if 'OPENAI_API_KEY' not in os.environ: | |
raise gr.Error('Upload your OpenAI API key') | |
loader = PyPDFLoader(file.name) | |
documents = loader.load() | |
embeddings = OpenAIEmbeddings() | |
pdfsearch = Chroma.from_documents(documents, embeddings) | |
chain = ConversationalRetrievalChain.from_llm(ChatOpenAI(temperature=0.3), | |
retriever=pdfsearch.as_retriever(search_kwargs={"k": 1}), | |
return_source_documents=True) | |
return chain | |
# Function to generate a response based on the chat history and query | |
def generate_response(history, query, btn): | |
global COUNT, N, chat_history, chain | |
if not btn: | |
raise gr.Error(message='Upload a PDF') | |
if COUNT == 0: | |
chain = process_file(btn) | |
COUNT += 1 | |
result = chain({"question": query, 'chat_history': chat_history}, return_only_outputs=True) | |
chat_history += [(query, result["answer"])] | |
N = list(result['source_documents'][0])[1][1]['page'] | |
for char in result['answer']: | |
history[-1][-1] += char | |
yield history, '' | |
# Function to render a specific page of a PDF file as an image | |
def render_file(file): | |
global N | |
doc = fitz.open(file.name) | |
page = doc[N] | |
# Render the page as a PNG image with a resolution of 300 DPI | |
pix = page.get_pixmap(matrix=fitz.Matrix(300/72, 300/72)) | |
image = Image.frombytes('RGB', [pix.width, pix.height], pix.samples) | |
return image | |
# Gradio application setup | |
with gr.Blocks() as demo: | |
# Chatbot and image display sections | |
with gr.Column(): | |
with gr.Row(): | |
with gr.Column(scale=0.8): | |
api_key = gr.Textbox(placeholder='Enter OpenAI API key', show_label=False, interactive=True).style(container=False) | |
with gr.Column(scale=0.2): | |
change_api_key = gr.Button('Change Key') | |
with gr.Row(): | |
chatbot = gr.Chatbot(value=[], elem_id='chatbot').style(height=650) | |
show_img = gr.Image(label='Upload PDF', tool='select').style(height=680) | |
# Text input and PDF upload sections | |
with gr.Row(): | |
with gr.Column(scale=0.70): | |
txt = gr.Textbox( | |
show_label=False, | |
placeholder="Enter text and press enter", | |
).style(container=False) | |
with gr.Column(scale=0.15): | |
submit_btn = gr.Button('Submit') | |
with gr.Column(scale=0.15): | |
btn = gr.UploadButton("📁 Upload a PDF", file_types=[".pdf"]).style() | |
# Set the OpenAI API key and handle interactions | |
api_key.submit(fn=set_apikey, inputs=[api_key], outputs=[api_key]) | |
change_api_key.click(fn=enable_api_box, outputs=[api_key]) | |
btn.upload(fn=render_first, inputs=[btn], outputs=[show_img]) | |
# Perform actions on text input and PDF upload | |
submit_btn.click(fn=add_text, inputs=[chatbot, txt], outputs=[chatbot, ], queue=False).success(fn=generate_response, | |
inputs=[chatbot, txt, btn], | |
outputs=[chatbot, txt]).success(fn=render_file, | |
inputs=[btn], outputs=[show_img]) | |
demo.queue() | |
if __name__ == "__main__": | |
demo.launch() |
i tried running this but it gives me an error NameError: name 'render_first' is not defined. Did you mean: 'render_file'?
hii @CalebAduu, check out the repo for updated code https://github.com/sunilkumardash9/Pdf-GPT
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
i tried running this but it gives me an error
NameError: name 'render_first' is not defined. Did you mean: 'render_file'?