Skip to content

Instantly share code, notes, and snippets.

View sunprinceS's full-sized avatar
☀️
sunny

Tony Hsu sunprinceS

☀️
sunny
View GitHub Profile
@sunprinceS
sunprinceS / check_marathon.py
Last active March 24, 2025 14:55
Used to track the marathon status.
import datetime
import os
import smtplib
import time
from email.mime import multipart, text
from email.mime.image import MIMEImage
import yaml
from selenium import webdriver
from selenium.webdriver.chrome.options import Options
#!/usr/bin/env python3
import argparse
import re
import yaml
import json
from pathlib import Path
from comet_ml import ExistingExperiment
from src.marcos import *
from src.utils import run_cmd
#!/usr/bin/env python3
from pathlib import Path
import json
import time
import re
from numpy.lib.format import open_memmap
import numpy as np
import kaldiio
import pickle
GAMMA =1.0/10 # (1/D)
### Model ###
def sir_diff_eq(y, t, r0, gamma, N, t_y_interpolated):
S, I, R = y
def beta(t):
try:
return t_y_interpolated[int(t)] * r0 * gamma
except:
# for mathjax and katex usage
snippet $$
<span>$${1}$</span>${0}
snippet \[
<div>
\[
${1}
\]
</div>
snippet my_template
#pragma GCC optimize ("O2")
#include<bits/stdc++.h>
#include<unistd.h>
using namespace std;
#define ALL(x) begin(x),end(x)
#define IOS ios_base::sync_with_stdio(0); cin.tie(0)
//freopen(name".in", "r", stdin);
//freopen(name".out", "w", stdout);
template<typename A, typename B>
{{ $ := .root }}
{{ $page := .page }}
<!-- Accomplishments widget -->
<div class="row">
<div class="col-12 col-lg-4 section-heading">
<h1>{{ with $page.Title }}{{ . | markdownify }}{{ end }}</h1>
{{ with $page.Params.subtitle }}<p>{{ . | markdownify }}</p>{{ end }}
</div>
<div class="col-12 col-lg-8">
@sunprinceS
sunprinceS / dashboard.py
Last active December 28, 2019 01:57
Wrapper for comet logging
import os
from pathlib import Path
from comet_ml import Experiment, ExistingExperiment
from src.marcos import *
import src.monitor.logger as logger
class Dashboard:
"""Record training/evaluation statistics to comet
:params config: dict
import torch
import numpy as np
from pathlib import Path
from torch.utils.data import Dataset, DataLoader, Sampler
from torch.nn.utils.rnn import pad_sequence
import src.monitor.logger as logger
import random
# from numpy.lib.format import open_memmap
class DataContainer:
def __init__(self, data_dirs, batch_size, dev_batch_size, is_memmap,
is_bucket, num_workers=0, min_ilen=None, max_ilen=None,
half_batch_ilen=None, bucket_reverse=False, shuffle=True,
read_file=False, drop_last=False, pin_memory=True):
self.data_dirs = data_dirs
self.num_datasets = len(self.data_dirs)
self.batch_size = batch_size
self.is_memmap = is_memmap