Created
July 9, 2017 04:08
-
-
Save szm-R/2ed23859c5320f4c88061f049179c7a1 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
name: resnet269_v2 | |
input: "data" | |
input_shape { | |
dim: 1 | |
dim: 3 | |
dim: 320 | |
dim: 320 | |
} | |
layer { | |
name: "conv1" | |
type: "Convolution" | |
bottom: "data" | |
top: "conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 3 | |
kernel_size: 7 | |
stride: 2 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "conv1_bn" | |
type: "BatchNorm" | |
bottom: "conv1" | |
top: "conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "conv1_scale" | |
type: "Scale" | |
bottom: "conv1" | |
top: "conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "conv1_relu" | |
type: "ReLU" | |
bottom: "conv1" | |
top: "conv1" | |
} | |
layer { | |
name: "pool1" | |
type: "Pooling" | |
bottom: "conv1" | |
top: "pool1" | |
pooling_param { | |
pool: MAX | |
kernel_size: 3 | |
stride: 2 | |
} | |
} | |
layer { | |
name: "res1_conv1" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "res1_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res1_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res1_conv1" | |
top: "res1_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res1_conv1_scale" | |
type: "Scale" | |
bottom: "res1_conv1" | |
top: "res1_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res1_conv1_relu" | |
type: "ReLU" | |
bottom: "res1_conv1" | |
top: "res1_conv1" | |
} | |
layer { | |
name: "res1_conv2" | |
type: "Convolution" | |
bottom: "res1_conv1" | |
top: "res1_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res1_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res1_conv2" | |
top: "res1_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res1_conv2_scale" | |
type: "Scale" | |
bottom: "res1_conv2" | |
top: "res1_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res1_conv2_relu" | |
type: "ReLU" | |
bottom: "res1_conv2" | |
top: "res1_conv2" | |
} | |
layer { | |
name: "res1_conv3" | |
type: "Convolution" | |
bottom: "res1_conv2" | |
top: "res1_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res1_match_conv" | |
type: "Convolution" | |
bottom: "pool1" | |
top: "res1_match_conv" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res1_eletwise" | |
type: "Eltwise" | |
bottom: "res1_match_conv" | |
bottom: "res1_conv3" | |
top: "res1_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res2_bn" | |
type: "BatchNorm" | |
bottom: "res1_eletwise" | |
top: "res2_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res2_scale" | |
type: "Scale" | |
bottom: "res2_bn" | |
top: "res2_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res2_relu" | |
type: "ReLU" | |
bottom: "res2_bn" | |
top: "res2_bn" | |
} | |
layer { | |
name: "res2_conv1" | |
type: "Convolution" | |
bottom: "res2_bn" | |
top: "res2_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res2_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res2_conv1" | |
top: "res2_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res2_conv1_scale" | |
type: "Scale" | |
bottom: "res2_conv1" | |
top: "res2_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res2_conv1_relu" | |
type: "ReLU" | |
bottom: "res2_conv1" | |
top: "res2_conv1" | |
} | |
layer { | |
name: "res2_conv2" | |
type: "Convolution" | |
bottom: "res2_conv1" | |
top: "res2_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res2_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res2_conv2" | |
top: "res2_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res2_conv2_scale" | |
type: "Scale" | |
bottom: "res2_conv2" | |
top: "res2_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res2_conv2_relu" | |
type: "ReLU" | |
bottom: "res2_conv2" | |
top: "res2_conv2" | |
} | |
layer { | |
name: "res2_conv3" | |
type: "Convolution" | |
bottom: "res2_conv2" | |
top: "res2_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res2_eletwise" | |
type: "Eltwise" | |
bottom: "res1_eletwise" | |
bottom: "res2_conv3" | |
top: "res2_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res3_bn" | |
type: "BatchNorm" | |
bottom: "res2_eletwise" | |
top: "res3_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res3_scale" | |
type: "Scale" | |
bottom: "res3_bn" | |
top: "res3_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res3_relu" | |
type: "ReLU" | |
bottom: "res3_bn" | |
top: "res3_bn" | |
} | |
layer { | |
name: "res3_conv1" | |
type: "Convolution" | |
bottom: "res3_bn" | |
top: "res3_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res3_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res3_conv1" | |
top: "res3_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res3_conv1_scale" | |
type: "Scale" | |
bottom: "res3_conv1" | |
top: "res3_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res3_conv1_relu" | |
type: "ReLU" | |
bottom: "res3_conv1" | |
top: "res3_conv1" | |
} | |
layer { | |
name: "res3_conv2" | |
type: "Convolution" | |
bottom: "res3_conv1" | |
top: "res3_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 64 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res3_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res3_conv2" | |
top: "res3_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res3_conv2_scale" | |
type: "Scale" | |
bottom: "res3_conv2" | |
top: "res3_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res3_conv2_relu" | |
type: "ReLU" | |
bottom: "res3_conv2" | |
top: "res3_conv2" | |
} | |
layer { | |
name: "res3_conv3" | |
type: "Convolution" | |
bottom: "res3_conv2" | |
top: "res3_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 256 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res3_eletwise" | |
type: "Eltwise" | |
bottom: "res2_eletwise" | |
bottom: "res3_conv3" | |
top: "res3_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res4_bn" | |
type: "BatchNorm" | |
bottom: "res3_eletwise" | |
top: "res4_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res4_scale" | |
type: "Scale" | |
bottom: "res4_bn" | |
top: "res4_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res4_relu" | |
type: "ReLU" | |
bottom: "res4_bn" | |
top: "res4_bn" | |
} | |
layer { | |
name: "res4_conv1" | |
type: "Convolution" | |
bottom: "res4_bn" | |
top: "res4_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res4_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res4_conv1" | |
top: "res4_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res4_conv1_scale" | |
type: "Scale" | |
bottom: "res4_conv1" | |
top: "res4_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res4_conv1_relu" | |
type: "ReLU" | |
bottom: "res4_conv1" | |
top: "res4_conv1" | |
} | |
layer { | |
name: "res4_conv2" | |
type: "Convolution" | |
bottom: "res4_conv1" | |
top: "res4_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 2 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res4_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res4_conv2" | |
top: "res4_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res4_conv2_scale" | |
type: "Scale" | |
bottom: "res4_conv2" | |
top: "res4_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res4_conv2_relu" | |
type: "ReLU" | |
bottom: "res4_conv2" | |
top: "res4_conv2" | |
} | |
layer { | |
name: "res4_conv3" | |
type: "Convolution" | |
bottom: "res4_conv2" | |
top: "res4_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res4_match_conv" | |
type: "Convolution" | |
bottom: "res4_bn" | |
top: "res4_match_conv" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 2 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res4_eletwise" | |
type: "Eltwise" | |
bottom: "res4_match_conv" | |
bottom: "res4_conv3" | |
top: "res4_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res5_bn" | |
type: "BatchNorm" | |
bottom: "res4_eletwise" | |
top: "res5_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res5_scale" | |
type: "Scale" | |
bottom: "res5_bn" | |
top: "res5_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res5_relu" | |
type: "ReLU" | |
bottom: "res5_bn" | |
top: "res5_bn" | |
} | |
layer { | |
name: "res5_conv1" | |
type: "Convolution" | |
bottom: "res5_bn" | |
top: "res5_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res5_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res5_conv1" | |
top: "res5_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res5_conv1_scale" | |
type: "Scale" | |
bottom: "res5_conv1" | |
top: "res5_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res5_conv1_relu" | |
type: "ReLU" | |
bottom: "res5_conv1" | |
top: "res5_conv1" | |
} | |
layer { | |
name: "res5_conv2" | |
type: "Convolution" | |
bottom: "res5_conv1" | |
top: "res5_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res5_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res5_conv2" | |
top: "res5_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res5_conv2_scale" | |
type: "Scale" | |
bottom: "res5_conv2" | |
top: "res5_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res5_conv2_relu" | |
type: "ReLU" | |
bottom: "res5_conv2" | |
top: "res5_conv2" | |
} | |
layer { | |
name: "res5_conv3" | |
type: "Convolution" | |
bottom: "res5_conv2" | |
top: "res5_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res5_eletwise" | |
type: "Eltwise" | |
bottom: "res4_eletwise" | |
bottom: "res5_conv3" | |
top: "res5_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res6_bn" | |
type: "BatchNorm" | |
bottom: "res5_eletwise" | |
top: "res6_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res6_scale" | |
type: "Scale" | |
bottom: "res6_bn" | |
top: "res6_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res6_relu" | |
type: "ReLU" | |
bottom: "res6_bn" | |
top: "res6_bn" | |
} | |
layer { | |
name: "res6_conv1" | |
type: "Convolution" | |
bottom: "res6_bn" | |
top: "res6_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res6_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res6_conv1" | |
top: "res6_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res6_conv1_scale" | |
type: "Scale" | |
bottom: "res6_conv1" | |
top: "res6_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res6_conv1_relu" | |
type: "ReLU" | |
bottom: "res6_conv1" | |
top: "res6_conv1" | |
} | |
layer { | |
name: "res6_conv2" | |
type: "Convolution" | |
bottom: "res6_conv1" | |
top: "res6_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res6_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res6_conv2" | |
top: "res6_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res6_conv2_scale" | |
type: "Scale" | |
bottom: "res6_conv2" | |
top: "res6_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res6_conv2_relu" | |
type: "ReLU" | |
bottom: "res6_conv2" | |
top: "res6_conv2" | |
} | |
layer { | |
name: "res6_conv3" | |
type: "Convolution" | |
bottom: "res6_conv2" | |
top: "res6_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res6_eletwise" | |
type: "Eltwise" | |
bottom: "res5_eletwise" | |
bottom: "res6_conv3" | |
top: "res6_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res7_bn" | |
type: "BatchNorm" | |
bottom: "res6_eletwise" | |
top: "res7_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res7_scale" | |
type: "Scale" | |
bottom: "res7_bn" | |
top: "res7_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res7_relu" | |
type: "ReLU" | |
bottom: "res7_bn" | |
top: "res7_bn" | |
} | |
layer { | |
name: "res7_conv1" | |
type: "Convolution" | |
bottom: "res7_bn" | |
top: "res7_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res7_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res7_conv1" | |
top: "res7_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res7_conv1_scale" | |
type: "Scale" | |
bottom: "res7_conv1" | |
top: "res7_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res7_conv1_relu" | |
type: "ReLU" | |
bottom: "res7_conv1" | |
top: "res7_conv1" | |
} | |
layer { | |
name: "res7_conv2" | |
type: "Convolution" | |
bottom: "res7_conv1" | |
top: "res7_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res7_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res7_conv2" | |
top: "res7_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res7_conv2_scale" | |
type: "Scale" | |
bottom: "res7_conv2" | |
top: "res7_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res7_conv2_relu" | |
type: "ReLU" | |
bottom: "res7_conv2" | |
top: "res7_conv2" | |
} | |
layer { | |
name: "res7_conv3" | |
type: "Convolution" | |
bottom: "res7_conv2" | |
top: "res7_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res7_eletwise" | |
type: "Eltwise" | |
bottom: "res6_eletwise" | |
bottom: "res7_conv3" | |
top: "res7_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res8_bn" | |
type: "BatchNorm" | |
bottom: "res7_eletwise" | |
top: "res8_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res8_scale" | |
type: "Scale" | |
bottom: "res8_bn" | |
top: "res8_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res8_relu" | |
type: "ReLU" | |
bottom: "res8_bn" | |
top: "res8_bn" | |
} | |
layer { | |
name: "res8_conv1" | |
type: "Convolution" | |
bottom: "res8_bn" | |
top: "res8_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res8_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res8_conv1" | |
top: "res8_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res8_conv1_scale" | |
type: "Scale" | |
bottom: "res8_conv1" | |
top: "res8_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res8_conv1_relu" | |
type: "ReLU" | |
bottom: "res8_conv1" | |
top: "res8_conv1" | |
} | |
layer { | |
name: "res8_conv2" | |
type: "Convolution" | |
bottom: "res8_conv1" | |
top: "res8_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res8_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res8_conv2" | |
top: "res8_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res8_conv2_scale" | |
type: "Scale" | |
bottom: "res8_conv2" | |
top: "res8_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res8_conv2_relu" | |
type: "ReLU" | |
bottom: "res8_conv2" | |
top: "res8_conv2" | |
} | |
layer { | |
name: "res8_conv3" | |
type: "Convolution" | |
bottom: "res8_conv2" | |
top: "res8_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res8_eletwise" | |
type: "Eltwise" | |
bottom: "res7_eletwise" | |
bottom: "res8_conv3" | |
top: "res8_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res9_bn" | |
type: "BatchNorm" | |
bottom: "res8_eletwise" | |
top: "res9_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res9_scale" | |
type: "Scale" | |
bottom: "res9_bn" | |
top: "res9_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res9_relu" | |
type: "ReLU" | |
bottom: "res9_bn" | |
top: "res9_bn" | |
} | |
layer { | |
name: "res9_conv1" | |
type: "Convolution" | |
bottom: "res9_bn" | |
top: "res9_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res9_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res9_conv1" | |
top: "res9_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res9_conv1_scale" | |
type: "Scale" | |
bottom: "res9_conv1" | |
top: "res9_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res9_conv1_relu" | |
type: "ReLU" | |
bottom: "res9_conv1" | |
top: "res9_conv1" | |
} | |
layer { | |
name: "res9_conv2" | |
type: "Convolution" | |
bottom: "res9_conv1" | |
top: "res9_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res9_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res9_conv2" | |
top: "res9_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res9_conv2_scale" | |
type: "Scale" | |
bottom: "res9_conv2" | |
top: "res9_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res9_conv2_relu" | |
type: "ReLU" | |
bottom: "res9_conv2" | |
top: "res9_conv2" | |
} | |
layer { | |
name: "res9_conv3" | |
type: "Convolution" | |
bottom: "res9_conv2" | |
top: "res9_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res9_eletwise" | |
type: "Eltwise" | |
bottom: "res8_eletwise" | |
bottom: "res9_conv3" | |
top: "res9_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res10_bn" | |
type: "BatchNorm" | |
bottom: "res9_eletwise" | |
top: "res10_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res10_scale" | |
type: "Scale" | |
bottom: "res10_bn" | |
top: "res10_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res10_relu" | |
type: "ReLU" | |
bottom: "res10_bn" | |
top: "res10_bn" | |
} | |
layer { | |
name: "res10_conv1" | |
type: "Convolution" | |
bottom: "res10_bn" | |
top: "res10_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res10_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res10_conv1" | |
top: "res10_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res10_conv1_scale" | |
type: "Scale" | |
bottom: "res10_conv1" | |
top: "res10_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res10_conv1_relu" | |
type: "ReLU" | |
bottom: "res10_conv1" | |
top: "res10_conv1" | |
} | |
layer { | |
name: "res10_conv2" | |
type: "Convolution" | |
bottom: "res10_conv1" | |
top: "res10_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res10_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res10_conv2" | |
top: "res10_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res10_conv2_scale" | |
type: "Scale" | |
bottom: "res10_conv2" | |
top: "res10_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res10_conv2_relu" | |
type: "ReLU" | |
bottom: "res10_conv2" | |
top: "res10_conv2" | |
} | |
layer { | |
name: "res10_conv3" | |
type: "Convolution" | |
bottom: "res10_conv2" | |
top: "res10_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res10_eletwise" | |
type: "Eltwise" | |
bottom: "res9_eletwise" | |
bottom: "res10_conv3" | |
top: "res10_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res11_bn" | |
type: "BatchNorm" | |
bottom: "res10_eletwise" | |
top: "res11_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res11_scale" | |
type: "Scale" | |
bottom: "res11_bn" | |
top: "res11_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res11_relu" | |
type: "ReLU" | |
bottom: "res11_bn" | |
top: "res11_bn" | |
} | |
layer { | |
name: "res11_conv1" | |
type: "Convolution" | |
bottom: "res11_bn" | |
top: "res11_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res11_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res11_conv1" | |
top: "res11_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res11_conv1_scale" | |
type: "Scale" | |
bottom: "res11_conv1" | |
top: "res11_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res11_conv1_relu" | |
type: "ReLU" | |
bottom: "res11_conv1" | |
top: "res11_conv1" | |
} | |
layer { | |
name: "res11_conv2" | |
type: "Convolution" | |
bottom: "res11_conv1" | |
top: "res11_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res11_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res11_conv2" | |
top: "res11_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res11_conv2_scale" | |
type: "Scale" | |
bottom: "res11_conv2" | |
top: "res11_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res11_conv2_relu" | |
type: "ReLU" | |
bottom: "res11_conv2" | |
top: "res11_conv2" | |
} | |
layer { | |
name: "res11_conv3" | |
type: "Convolution" | |
bottom: "res11_conv2" | |
top: "res11_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res11_eletwise" | |
type: "Eltwise" | |
bottom: "res10_eletwise" | |
bottom: "res11_conv3" | |
top: "res11_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res12_bn" | |
type: "BatchNorm" | |
bottom: "res11_eletwise" | |
top: "res12_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res12_scale" | |
type: "Scale" | |
bottom: "res12_bn" | |
top: "res12_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res12_relu" | |
type: "ReLU" | |
bottom: "res12_bn" | |
top: "res12_bn" | |
} | |
layer { | |
name: "res12_conv1" | |
type: "Convolution" | |
bottom: "res12_bn" | |
top: "res12_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res12_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res12_conv1" | |
top: "res12_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res12_conv1_scale" | |
type: "Scale" | |
bottom: "res12_conv1" | |
top: "res12_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res12_conv1_relu" | |
type: "ReLU" | |
bottom: "res12_conv1" | |
top: "res12_conv1" | |
} | |
layer { | |
name: "res12_conv2" | |
type: "Convolution" | |
bottom: "res12_conv1" | |
top: "res12_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res12_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res12_conv2" | |
top: "res12_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res12_conv2_scale" | |
type: "Scale" | |
bottom: "res12_conv2" | |
top: "res12_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res12_conv2_relu" | |
type: "ReLU" | |
bottom: "res12_conv2" | |
top: "res12_conv2" | |
} | |
layer { | |
name: "res12_conv3" | |
type: "Convolution" | |
bottom: "res12_conv2" | |
top: "res12_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res12_eletwise" | |
type: "Eltwise" | |
bottom: "res11_eletwise" | |
bottom: "res12_conv3" | |
top: "res12_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res13_bn" | |
type: "BatchNorm" | |
bottom: "res12_eletwise" | |
top: "res13_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res13_scale" | |
type: "Scale" | |
bottom: "res13_bn" | |
top: "res13_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res13_relu" | |
type: "ReLU" | |
bottom: "res13_bn" | |
top: "res13_bn" | |
} | |
layer { | |
name: "res13_conv1" | |
type: "Convolution" | |
bottom: "res13_bn" | |
top: "res13_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res13_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res13_conv1" | |
top: "res13_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res13_conv1_scale" | |
type: "Scale" | |
bottom: "res13_conv1" | |
top: "res13_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res13_conv1_relu" | |
type: "ReLU" | |
bottom: "res13_conv1" | |
top: "res13_conv1" | |
} | |
layer { | |
name: "res13_conv2" | |
type: "Convolution" | |
bottom: "res13_conv1" | |
top: "res13_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res13_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res13_conv2" | |
top: "res13_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res13_conv2_scale" | |
type: "Scale" | |
bottom: "res13_conv2" | |
top: "res13_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res13_conv2_relu" | |
type: "ReLU" | |
bottom: "res13_conv2" | |
top: "res13_conv2" | |
} | |
layer { | |
name: "res13_conv3" | |
type: "Convolution" | |
bottom: "res13_conv2" | |
top: "res13_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res13_eletwise" | |
type: "Eltwise" | |
bottom: "res12_eletwise" | |
bottom: "res13_conv3" | |
top: "res13_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res14_bn" | |
type: "BatchNorm" | |
bottom: "res13_eletwise" | |
top: "res14_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res14_scale" | |
type: "Scale" | |
bottom: "res14_bn" | |
top: "res14_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res14_relu" | |
type: "ReLU" | |
bottom: "res14_bn" | |
top: "res14_bn" | |
} | |
layer { | |
name: "res14_conv1" | |
type: "Convolution" | |
bottom: "res14_bn" | |
top: "res14_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res14_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res14_conv1" | |
top: "res14_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res14_conv1_scale" | |
type: "Scale" | |
bottom: "res14_conv1" | |
top: "res14_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res14_conv1_relu" | |
type: "ReLU" | |
bottom: "res14_conv1" | |
top: "res14_conv1" | |
} | |
layer { | |
name: "res14_conv2" | |
type: "Convolution" | |
bottom: "res14_conv1" | |
top: "res14_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res14_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res14_conv2" | |
top: "res14_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res14_conv2_scale" | |
type: "Scale" | |
bottom: "res14_conv2" | |
top: "res14_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res14_conv2_relu" | |
type: "ReLU" | |
bottom: "res14_conv2" | |
top: "res14_conv2" | |
} | |
layer { | |
name: "res14_conv3" | |
type: "Convolution" | |
bottom: "res14_conv2" | |
top: "res14_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res14_eletwise" | |
type: "Eltwise" | |
bottom: "res13_eletwise" | |
bottom: "res14_conv3" | |
top: "res14_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res15_bn" | |
type: "BatchNorm" | |
bottom: "res14_eletwise" | |
top: "res15_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res15_scale" | |
type: "Scale" | |
bottom: "res15_bn" | |
top: "res15_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res15_relu" | |
type: "ReLU" | |
bottom: "res15_bn" | |
top: "res15_bn" | |
} | |
layer { | |
name: "res15_conv1" | |
type: "Convolution" | |
bottom: "res15_bn" | |
top: "res15_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res15_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res15_conv1" | |
top: "res15_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res15_conv1_scale" | |
type: "Scale" | |
bottom: "res15_conv1" | |
top: "res15_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res15_conv1_relu" | |
type: "ReLU" | |
bottom: "res15_conv1" | |
top: "res15_conv1" | |
} | |
layer { | |
name: "res15_conv2" | |
type: "Convolution" | |
bottom: "res15_conv1" | |
top: "res15_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res15_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res15_conv2" | |
top: "res15_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res15_conv2_scale" | |
type: "Scale" | |
bottom: "res15_conv2" | |
top: "res15_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res15_conv2_relu" | |
type: "ReLU" | |
bottom: "res15_conv2" | |
top: "res15_conv2" | |
} | |
layer { | |
name: "res15_conv3" | |
type: "Convolution" | |
bottom: "res15_conv2" | |
top: "res15_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res15_eletwise" | |
type: "Eltwise" | |
bottom: "res14_eletwise" | |
bottom: "res15_conv3" | |
top: "res15_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res16_bn" | |
type: "BatchNorm" | |
bottom: "res15_eletwise" | |
top: "res16_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res16_scale" | |
type: "Scale" | |
bottom: "res16_bn" | |
top: "res16_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res16_relu" | |
type: "ReLU" | |
bottom: "res16_bn" | |
top: "res16_bn" | |
} | |
layer { | |
name: "res16_conv1" | |
type: "Convolution" | |
bottom: "res16_bn" | |
top: "res16_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res16_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res16_conv1" | |
top: "res16_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res16_conv1_scale" | |
type: "Scale" | |
bottom: "res16_conv1" | |
top: "res16_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res16_conv1_relu" | |
type: "ReLU" | |
bottom: "res16_conv1" | |
top: "res16_conv1" | |
} | |
layer { | |
name: "res16_conv2" | |
type: "Convolution" | |
bottom: "res16_conv1" | |
top: "res16_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res16_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res16_conv2" | |
top: "res16_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res16_conv2_scale" | |
type: "Scale" | |
bottom: "res16_conv2" | |
top: "res16_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res16_conv2_relu" | |
type: "ReLU" | |
bottom: "res16_conv2" | |
top: "res16_conv2" | |
} | |
layer { | |
name: "res16_conv3" | |
type: "Convolution" | |
bottom: "res16_conv2" | |
top: "res16_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res16_eletwise" | |
type: "Eltwise" | |
bottom: "res15_eletwise" | |
bottom: "res16_conv3" | |
top: "res16_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res17_bn" | |
type: "BatchNorm" | |
bottom: "res16_eletwise" | |
top: "res17_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res17_scale" | |
type: "Scale" | |
bottom: "res17_bn" | |
top: "res17_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res17_relu" | |
type: "ReLU" | |
bottom: "res17_bn" | |
top: "res17_bn" | |
} | |
layer { | |
name: "res17_conv1" | |
type: "Convolution" | |
bottom: "res17_bn" | |
top: "res17_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res17_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res17_conv1" | |
top: "res17_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res17_conv1_scale" | |
type: "Scale" | |
bottom: "res17_conv1" | |
top: "res17_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res17_conv1_relu" | |
type: "ReLU" | |
bottom: "res17_conv1" | |
top: "res17_conv1" | |
} | |
layer { | |
name: "res17_conv2" | |
type: "Convolution" | |
bottom: "res17_conv1" | |
top: "res17_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res17_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res17_conv2" | |
top: "res17_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res17_conv2_scale" | |
type: "Scale" | |
bottom: "res17_conv2" | |
top: "res17_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res17_conv2_relu" | |
type: "ReLU" | |
bottom: "res17_conv2" | |
top: "res17_conv2" | |
} | |
layer { | |
name: "res17_conv3" | |
type: "Convolution" | |
bottom: "res17_conv2" | |
top: "res17_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res17_eletwise" | |
type: "Eltwise" | |
bottom: "res16_eletwise" | |
bottom: "res17_conv3" | |
top: "res17_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res18_bn" | |
type: "BatchNorm" | |
bottom: "res17_eletwise" | |
top: "res18_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res18_scale" | |
type: "Scale" | |
bottom: "res18_bn" | |
top: "res18_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res18_relu" | |
type: "ReLU" | |
bottom: "res18_bn" | |
top: "res18_bn" | |
} | |
layer { | |
name: "res18_conv1" | |
type: "Convolution" | |
bottom: "res18_bn" | |
top: "res18_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res18_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res18_conv1" | |
top: "res18_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res18_conv1_scale" | |
type: "Scale" | |
bottom: "res18_conv1" | |
top: "res18_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res18_conv1_relu" | |
type: "ReLU" | |
bottom: "res18_conv1" | |
top: "res18_conv1" | |
} | |
layer { | |
name: "res18_conv2" | |
type: "Convolution" | |
bottom: "res18_conv1" | |
top: "res18_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res18_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res18_conv2" | |
top: "res18_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res18_conv2_scale" | |
type: "Scale" | |
bottom: "res18_conv2" | |
top: "res18_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res18_conv2_relu" | |
type: "ReLU" | |
bottom: "res18_conv2" | |
top: "res18_conv2" | |
} | |
layer { | |
name: "res18_conv3" | |
type: "Convolution" | |
bottom: "res18_conv2" | |
top: "res18_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res18_eletwise" | |
type: "Eltwise" | |
bottom: "res17_eletwise" | |
bottom: "res18_conv3" | |
top: "res18_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res19_bn" | |
type: "BatchNorm" | |
bottom: "res18_eletwise" | |
top: "res19_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res19_scale" | |
type: "Scale" | |
bottom: "res19_bn" | |
top: "res19_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res19_relu" | |
type: "ReLU" | |
bottom: "res19_bn" | |
top: "res19_bn" | |
} | |
layer { | |
name: "res19_conv1" | |
type: "Convolution" | |
bottom: "res19_bn" | |
top: "res19_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res19_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res19_conv1" | |
top: "res19_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res19_conv1_scale" | |
type: "Scale" | |
bottom: "res19_conv1" | |
top: "res19_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res19_conv1_relu" | |
type: "ReLU" | |
bottom: "res19_conv1" | |
top: "res19_conv1" | |
} | |
layer { | |
name: "res19_conv2" | |
type: "Convolution" | |
bottom: "res19_conv1" | |
top: "res19_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res19_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res19_conv2" | |
top: "res19_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res19_conv2_scale" | |
type: "Scale" | |
bottom: "res19_conv2" | |
top: "res19_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res19_conv2_relu" | |
type: "ReLU" | |
bottom: "res19_conv2" | |
top: "res19_conv2" | |
} | |
layer { | |
name: "res19_conv3" | |
type: "Convolution" | |
bottom: "res19_conv2" | |
top: "res19_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res19_eletwise" | |
type: "Eltwise" | |
bottom: "res18_eletwise" | |
bottom: "res19_conv3" | |
top: "res19_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res20_bn" | |
type: "BatchNorm" | |
bottom: "res19_eletwise" | |
top: "res20_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res20_scale" | |
type: "Scale" | |
bottom: "res20_bn" | |
top: "res20_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res20_relu" | |
type: "ReLU" | |
bottom: "res20_bn" | |
top: "res20_bn" | |
} | |
layer { | |
name: "res20_conv1" | |
type: "Convolution" | |
bottom: "res20_bn" | |
top: "res20_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res20_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res20_conv1" | |
top: "res20_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res20_conv1_scale" | |
type: "Scale" | |
bottom: "res20_conv1" | |
top: "res20_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res20_conv1_relu" | |
type: "ReLU" | |
bottom: "res20_conv1" | |
top: "res20_conv1" | |
} | |
layer { | |
name: "res20_conv2" | |
type: "Convolution" | |
bottom: "res20_conv1" | |
top: "res20_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 1 | |
kernel_size: 3 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res20_conv2_bn" | |
type: "BatchNorm" | |
bottom: "res20_conv2" | |
top: "res20_conv2" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res20_conv2_scale" | |
type: "Scale" | |
bottom: "res20_conv2" | |
top: "res20_conv2" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res20_conv2_relu" | |
type: "ReLU" | |
bottom: "res20_conv2" | |
top: "res20_conv2" | |
} | |
layer { | |
name: "res20_conv3" | |
type: "Convolution" | |
bottom: "res20_conv2" | |
top: "res20_conv3" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 512 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res20_eletwise" | |
type: "Eltwise" | |
bottom: "res19_eletwise" | |
bottom: "res20_conv3" | |
top: "res20_eletwise" | |
eltwise_param { | |
operation: SUM | |
} | |
} | |
layer { | |
name: "res21_bn" | |
type: "BatchNorm" | |
bottom: "res20_eletwise" | |
top: "res21_bn" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res21_scale" | |
type: "Scale" | |
bottom: "res21_bn" | |
top: "res21_bn" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res21_relu" | |
type: "ReLU" | |
bottom: "res21_bn" | |
top: "res21_bn" | |
} | |
layer { | |
name: "res21_conv1" | |
type: "Convolution" | |
bottom: "res21_bn" | |
top: "res21_conv1" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |
} | |
convolution_param { | |
bias_term: false | |
num_output: 128 | |
pad: 0 | |
kernel_size: 1 | |
stride: 1 | |
weight_filler { | |
type: "xavier" | |
std: 0.01 | |
} | |
} | |
} | |
layer { | |
name: "res21_conv1_bn" | |
type: "BatchNorm" | |
bottom: "res21_conv1" | |
top: "res21_conv1" | |
batch_norm_param { | |
use_global_stats: true | |
} | |
} | |
layer { | |
name: "res21_conv1_scale" | |
type: "Scale" | |
bottom: "res21_conv1" | |
top: "res21_conv1" | |
scale_param { | |
bias_term: true | |
} | |
} | |
layer { | |
name: "res21_conv1_relu" | |
type: "ReLU" | |
bottom: "res21_conv1" | |
top: "res21_conv1" | |
} | |
layer { | |
name: "res21_conv2" | |
type: "Convolution" | |
bottom: "res21_conv1" | |
top: "res21_conv2" | |
param { | |
lr_mult: 1 | |
decay_mult: 1 | |