Skip to content

Instantly share code, notes, and snippets.

@t04glovern
Last active September 16, 2024 08:46
Show Gist options
  • Save t04glovern/04f6f2934353eb1d0fffd487e9b9b6a3 to your computer and use it in GitHub Desktop.
Save t04glovern/04f6f2934353eb1d0fffd487e9b9b6a3 to your computer and use it in GitHub Desktop.
Creates a sample Iceberg table in Athena allowing you to try out Iceberg easily. This script is geared towards people who are new to the AWS variety of Iceberg and keen to try some of the unique features of Iceberg.
#!/usr/bin/env python3
"""
This script generates sample data, uploads it to an S3 bucket, and creates Iceberg and Athena tables.
It also creates IAM roles and policies for optimization and statistics generation if specified.
There is also an option to create a Firehose delivery stream and insert random records into it.
Install:
python3 -m venv .venv
source .venv/bin/activate
pip3 install boto3
curl https://gist.githubusercontent.com/t04glovern/04f6f2934353eb1d0fffd487e9b9b6a3/raw \
> lets-try-iceberg.py \
&& chmod +x lets-try-iceberg.py
Usage:
./lets-try-iceberg.py \
[--table <table-name>] \
[--bucket <bucket-name>] \
[--delete] \
[--run-queries] \
[--optimization] \
[--statistics] \
[--firehose] \
[--firehose-load]
Output Files:
1-athena-iceberg-create-table.sql - CREATE TABLE statement
2-athena-create-temp-table.sql - CREATE EXTERNAL TABLE statement
3-insert-into-iceberg-from-temp-table.sql - INSERT INTO statement
4-cleanup-temp-table.sql - DROP TABLE statement
5-cleanup-iceberg-table.sql - DROP TABLE statement
"""
import argparse
import logging
import random
import os
import configparser
from datetime import datetime
from typing import Dict, Tuple, Union
import gzip
import json
import time
import boto3
from botocore.exceptions import ClientError
logging.basicConfig(level=logging.INFO)
aws_region: str = "us-west-2"
s3 = boto3.client("s3", region_name=aws_region)
firehose = boto3.client('firehose', region_name=aws_region)
logs = boto3.client('logs', region_name=aws_region)
athena = boto3.client('athena', region_name=aws_region)
iam = boto3.client("iam")
sts = boto3.client("sts")
account_id = sts.get_caller_identity()["Account"]
CONFIG_FILE = ".lets-try-iceberg.conf"
def load_config():
config = configparser.ConfigParser()
if os.path.exists(CONFIG_FILE):
config.read(CONFIG_FILE)
return config
def save_config(bucket_name: str, table_name: str):
config = configparser.ConfigParser()
config['DEFAULT'] = {
'bucket': bucket_name,
'table': table_name
}
with open(CONFIG_FILE, 'w') as configfile:
config.write(configfile)
def delete_config():
if os.path.exists(CONFIG_FILE):
os.remove(CONFIG_FILE)
def run_athena_query(query, query_output_bucket=None):
athena_database = "default"
athena_workgroup = "primary"
try:
logging.debug(f"Executing query: {query}")
if query_output_bucket:
query_start_response = athena.start_query_execution(
QueryString=query,
QueryExecutionContext={"Database": athena_database},
ResultConfiguration={
"OutputLocation": f"s3://{query_output_bucket}/athena-query-results/",
},
WorkGroup=athena_workgroup,
)
else:
query_start_response = athena.start_query_execution(
QueryString=query,
QueryExecutionContext={"Database": athena_database},
WorkGroup=athena_workgroup,
)
query_execution_id = query_start_response["QueryExecutionId"]
while True:
query_status_response = athena.get_query_execution(
QueryExecutionId=query_execution_id
)
query_execution_status = query_status_response["QueryExecution"]["Status"]["State"]
if query_execution_status in ["SUCCEEDED"]:
logging.debug(f"Query executed successfully.")
return
elif query_execution_status in ["FAILED", "CANCELLED"]:
logging.error(
f"Query execution failed. Status: {query_execution_status}")
raise Exception(
f"Query execution failed. Status: {query_execution_status}")
else:
logging.debug(
f"Query execution in progress. Current status: {query_execution_status}")
time.sleep(5)
except Exception as err:
logging.exception(f"Error during query execution: {err}")
raise err
def generate_random_json(
id: str,
timestamp: datetime,
speed: float,
temperature: float,
location: Dict[str, float],
) -> Tuple[
Dict[str, Union[str, float, Dict[str, float]]], float, float, Dict[str, float]
]:
speed += random.randint(-5, 5)
temperature = round(temperature + random.uniform(-0.5, 0.5), 2)
location["lat"] += random.uniform(-0.0001, 0.0001)
location["lng"] += random.uniform(-0.0001, 0.0001)
return (
{
"id": id,
"timestamp": timestamp.isoformat(),
"speed": speed,
"temperature": temperature,
"location": location,
},
speed,
temperature,
location,
)
def generate_and_upload_jsonl(bucket_name: str, sample_count: int = 1000000):
gzip_filename = "samples.jsonl.gz"
s3_path = f"{bucket_name}/sample-data/{gzip_filename}"
with gzip.open(gzip_filename, "wt", encoding="UTF-8") as f:
for i in range(sample_count):
sample_data, _, _, _ = generate_random_json(
id=str(i % 5 + 1), # Cycling through IDs 1-5
timestamp=datetime.now(),
speed=random.randint(0, 100),
temperature=random.uniform(-20, 40),
location={
"lat": random.uniform(-90, 90),
"lng": random.uniform(-180, 180),
},
)
f.write(json.dumps(sample_data) + "\n")
with open(gzip_filename, "rb") as f:
s3.upload_fileobj(f, bucket_name, f"sample-data/{gzip_filename}")
logging.info(f"Uploaded {gzip_filename} to s3://{s3_path}")
def create_bucket(bucket_name: str):
try:
s3.head_bucket(Bucket=bucket_name)
except Exception as e:
logging.info(f"Bucket {bucket_name} does not exist, creating it...")
s3.create_bucket(
Bucket=bucket_name,
CreateBucketConfiguration={"LocationConstraint": aws_region},
)
else:
logging.info(f"Bucket {bucket_name} already exists, using it...")
def create_iceberg_query(bucket_name: str, table_name: str, run_query: bool = False):
sql_content = f"""CREATE TABLE IF NOT EXISTS {table_name} (
`id` string,
`timestamp` timestamp,
`speed` int,
`temperature` float,
`location` struct < lat: float, lng: float >
)
PARTITIONED BY (
id
)
LOCATION 's3://{bucket_name}/'
TBLPROPERTIES (
'table_type'='ICEBERG',
'vacuum_max_snapshot_age_seconds'='60',
'vacuum_max_metadata_files_to_keep'='5'
);
"""
with open("1-athena-iceberg-create-table.sql", "w") as sql_file:
sql_file.write(sql_content)
if run_query:
logging.info("Running Iceberg table creation query...")
run_athena_query(sql_content, bucket_name)
def create_athena_temp_table_sql(bucket_name: str, table_name: str, run_query: bool = False):
sql_content = f"""CREATE EXTERNAL TABLE IF NOT EXISTS {table_name}_sample_data (
`id` string,
`timestamp` timestamp,
`speed` int,
`temperature` float,
`location` struct<lat:float, lng:float>
)
ROW FORMAT SERDE 'org.apache.hive.hcatalog.data.JsonSerDe'
WITH SERDEPROPERTIES ( "timestamp.formats"="yyyy-MM-dd'T'HH:mm:ss.SSSSSSZZ" )
LOCATION 's3://{bucket_name}/sample-data/'
"""
with open("2-athena-create-temp-table.sql", "w") as sql_file:
sql_file.write(sql_content)
if run_query:
logging.info("Running temporary table creation query...")
run_athena_query(sql_content, bucket_name)
def create_insert_from_temp_to_iceberg_sql(bucket_name: str, table_name: str, run_query: bool = False):
sql_content = f"""INSERT INTO {table_name}
SELECT * FROM {table_name}_sample_data
"""
with open("3-insert-into-iceberg-from-temp-table.sql", "w") as sql_file:
sql_file.write(sql_content)
if run_query:
logging.info("Running INSERT INTO Iceberg table query...")
run_athena_query(sql_content, bucket_name)
def create_cleanup_table_sql(bucket_name: str, table_name: str, run_query: bool = False):
sql_content = f"""DROP TABLE IF EXISTS {table_name}_sample_data;
"""
with open("4-cleanup-temp-table.sql", "w") as sql_file:
sql_file.write(sql_content)
if run_query:
logging.info("Running temporary table cleanup query...")
run_athena_query(sql_content, bucket_name)
sql_content = f"""DROP TABLE IF EXISTS {table_name};
"""
with open("5-cleanup-iceberg-table.sql", "w") as sql_file:
sql_file.write(sql_content)
if run_query:
logging.info("Running Iceberg table cleanup query...")
run_athena_query(sql_content, bucket_name)
def wait_for_role_to_propagate(role_arn, retries=6, delay=5):
for attempt in range(retries):
try:
iam.get_role(RoleName=role_arn.split('/')[-1])
logging.info(f"Role {role_arn} is now available.")
return
except iam.exceptions.NoSuchEntityException:
logging.warning(f"Role {role_arn} not available yet, retrying...")
time.sleep(delay)
def create_iam_role_and_policy(role_name: str, policy_name: str, assume_role_policy_document: dict, policy_document: dict):
# Check for existing role
try:
iam.get_role(RoleName=role_name)
logging.info(f"IAM role {role_name} already exists")
except iam.exceptions.NoSuchEntityException:
# Create the role if it does not exist
iam.create_role(
RoleName=role_name, AssumeRolePolicyDocument=json.dumps(assume_role_policy_document)
)
logging.info(f"Created IAM role {role_name}")
# Check for existing policy
try:
policy = iam.get_policy(PolicyArn=f"arn:aws:iam::{account_id}:policy/{policy_name}")
logging.info(f"IAM policy {policy_name} already exists, updating it...")
# Create a new version of the policy
iam.create_policy_version(
PolicyArn=policy["Policy"]["Arn"],
PolicyDocument=json.dumps(policy_document),
SetAsDefault=True
)
# Optionally, clean up non-default versions of the policy
policy_versions = iam.list_policy_versions(PolicyArn=policy["Policy"]["Arn"])
for version in policy_versions["Versions"]:
if not version["IsDefaultVersion"]:
iam.delete_policy_version(
PolicyArn=policy["Policy"]["Arn"],
VersionId=version["VersionId"]
)
except iam.exceptions.NoSuchEntityException:
# Create the policy if it does not exist
policy = iam.create_policy(
PolicyName=policy_name, PolicyDocument=json.dumps(policy_document)
)
logging.info(f"Created IAM policy {policy_name}")
# Attach the policy to the role
iam.attach_role_policy(
RoleName=role_name, PolicyArn=policy["Policy"]["Arn"]
)
def create_iam_role_and_policy_iceberg_optimization(bucket_name: str, table_name: str):
role_name = "lets-try-iceberg-optimization-role"
policy_name = "lets-try-iceberg-optimization-policy"
assume_role_policy_document = {
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {"Service": "glue.amazonaws.com"},
"Action": "sts:AssumeRole",
}]
}
# Define the policy document
policy_document = {
"Version": "2012-10-17",
"Statement": [
# S3 permissions
{
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject", "s3:DeleteObject"],
"Resource": [f"arn:aws:s3:::{bucket_name}/*"],
},
{
"Effect": "Allow",
"Action": ["s3:ListBucket"],
"Resource": [f"arn:aws:s3:::{bucket_name}"],
},
# Glue permissions
{
"Effect": "Allow",
"Action": ["glue:UpdateTable", "glue:GetTable"],
"Resource": [
f"arn:aws:glue:{aws_region}:{account_id}:table/default/{table_name}",
f"arn:aws:glue:{aws_region}:{account_id}:database/default",
f"arn:aws:glue:{aws_region}:{account_id}:catalog",
],
},
# Logs permissions
{
"Effect": "Allow",
"Action": [
"logs:CreateLogGroup",
"logs:CreateLogStream",
"logs:PutLogEvents",
],
"Resource": [
f"arn:aws:logs:{aws_region}:{account_id}:log-group:/aws-glue/iceberg-compaction/logs:*",
f"arn:aws:logs:{aws_region}:{account_id}:log-group:/aws-glue/iceberg-retention/logs:*",
f"arn:aws:logs:{aws_region}:{account_id}:log-group:/aws-glue/iceberg-orphan-file-deletion/logs:*"
]
},
# IAM permissions
{
"Effect": "Allow",
"Action": ["iam:PassRole"],
"Resource": [f"arn:aws:iam::{account_id}:role/{role_name}"]
},
],
}
create_iam_role_and_policy(role_name, policy_name, assume_role_policy_document, policy_document)
def create_iam_role_and_policy_statistics(bucket_name: str, table_name: str):
role_name = "lets-try-iceberg-statistics-role"
policy_name = "lets-try-iceberg-statistics-policy"
assume_role_policy_document = {
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {"Service": "glue.amazonaws.com"},
"Action": "sts:AssumeRole",
}]
}
# Define the policy document
policy_document = {
"Version": "2012-10-17",
"Statement": [
# S3 permissions
{
"Effect": "Allow",
"Action": ["s3:PutObject", "s3:GetObject", "s3:DeleteObject"],
"Resource": [f"arn:aws:s3:::{bucket_name}/*"],
},
{
"Effect": "Allow",
"Action": ["s3:ListBucket"],
"Resource": [f"arn:aws:s3:::{bucket_name}"],
},
# Glue permissions
{
"Effect": "Allow",
"Action": ["glue:UpdateTable", "glue:GetTable"],
"Resource": [
f"arn:aws:glue:{aws_region}:{account_id}:table/default/{table_name}",
f"arn:aws:glue:{aws_region}:{account_id}:database/default",
f"arn:aws:glue:{aws_region}:{account_id}:catalog",
],
},
# Logs permissions
{
"Effect": "Allow",
"Action": ["logs:CreateLogGroup", "logs:CreateLogStream", "logs:PutLogEvents"],
"Resource": [f"arn:aws:logs:{aws_region}:{account_id}:log-group:/aws-glue:*"]
},
# IAM permissions
{
"Effect": "Allow",
"Action": ["iam:PassRole"],
"Resource": [f"arn:aws:iam::{account_id}:role/{role_name}"]
}
],
}
create_iam_role_and_policy(role_name, policy_name, assume_role_policy_document, policy_document)
# Attach the AWSGlueServiceRole managed policy
iam.attach_role_policy(
RoleName=role_name, PolicyArn="arn:aws:iam::aws:policy/service-role/AWSGlueServiceRole"
)
def create_iam_role_and_policy_firehose(bucket_name: str, table_name: str) -> str:
role_name = "lets-try-iceberg-firehose-role"
policy_name = "lets-try-iceberg-firehose-policy"
firehose_stream_name = "lets-try-iceberg-stream"
log_group_name = "lets-try-iceberg-log-group"
assume_role_policy_document = {
"Version": "2012-10-17",
"Statement": [{
"Effect": "Allow",
"Principal": {"Service": "firehose.amazonaws.com"},
"Action": "sts:AssumeRole",
}]
}
policy_document = {
"Version": "2012-10-17",
"Statement": [
# S3 permissions
{
"Effect": "Allow",
"Action": [
"s3:AbortMultipartUpload",
"s3:GetBucketLocation",
"s3:GetObject",
"s3:ListBucket",
"s3:ListBucketMultipartUploads",
"s3:PutObject",
"s3:DeleteObject"
],
"Resource": [
f"arn:aws:s3:::{bucket_name}",
f"arn:aws:s3:::{bucket_name}/*"
]
},
# Glue permissions
{
"Effect": "Allow",
"Action": ["glue:UpdateTable", "glue:GetTable", "glue:GetDatabase"],
"Resource": [
f"arn:aws:glue:{aws_region}:{account_id}:table/default/{table_name}",
f"arn:aws:glue:{aws_region}:{account_id}:database/default",
f"arn:aws:glue:{aws_region}:{account_id}:catalog",
],
},
# Kinesis permissions
{
"Effect": "Allow",
"Action": ["kinesis:DescribeStream", "kinesis:GetShardIterator", "kinesis:GetRecords", "kinesis:ListShards"],
"Resource": f"arn:aws:kinesis:{aws_region}:{account_id}:stream/{firehose_stream_name}"
},
# Logs permissions
{
"Effect": "Allow",
"Action": ["logs:PutLogEvents"],
"Resource": [
f"arn:aws:logs:{aws_region}:{account_id}:log-group:/aws/kinesisfirehose/{firehose_stream_name}:*",
f"arn:aws:logs:{aws_region}:{account_id}:log-group:{log_group_name}:*"
]
}
]
}
create_iam_role_and_policy(role_name, policy_name, assume_role_policy_document, policy_document)
# Wait for the role to propagate
time.sleep(5)
role_arn = f"arn:aws:iam::{account_id}:role/{role_name}"
return role_arn
def create_log_group_and_stream(log_group_name: str, log_stream_name: str):
try:
response = logs.create_log_group(logGroupName=log_group_name)
logging.info(f'Created log group: {log_group_name}')
except logs.exceptions.ResourceAlreadyExistsException:
logging.info(f'Log group {log_group_name} already exists')
try:
response = logs.create_log_stream(logGroupName=log_group_name, logStreamName=log_stream_name)
logging.info(f'Created log stream: {log_stream_name}')
except logs.exceptions.ResourceAlreadyExistsException:
logging.info(f'Log stream {log_stream_name} already exists')
def create_firehose_delivery_stream(bucket_name: str, table_name: str, role_arn: str):
firehose_stream_name = "lets-try-iceberg-stream"
log_group_name = "lets-try-iceberg-log-group"
log_stream_name = "iceberg"
# Create the log group and stream
create_log_group_and_stream(log_group_name, log_stream_name)
# Check if the delivery stream already exists
try:
response = firehose.describe_delivery_stream(DeliveryStreamName=firehose_stream_name)
logging.info(f'Firehose delivery stream {firehose_stream_name} already exists: {response["DeliveryStreamDescription"]["DeliveryStreamARN"]}')
return
except firehose.exceptions.ResourceNotFoundException:
pass
# Check the role has propagated
wait_for_role_to_propagate(role_arn)
try:
response = firehose.create_delivery_stream(
DeliveryStreamName=firehose_stream_name,
DeliveryStreamType='DirectPut',
IcebergDestinationConfiguration={
'DestinationTableConfigurationList': [
{
'DestinationTableName': f'{table_name}',
'DestinationDatabaseName': 'default',
}
],
'CloudWatchLoggingOptions': {
'Enabled': True,
'LogGroupName': f'{log_group_name}',
'LogStreamName': f'{log_stream_name}'
},
'ProcessingConfiguration': {
'Enabled': False
},
'BufferingHints': {
'IntervalInSeconds': 5
},
'RoleARN': role_arn,
'CatalogConfiguration': {
'CatalogARN': f'arn:aws:glue:{aws_region}:{account_id}:catalog',
},
'S3Configuration': {
'RoleARN': role_arn,
'BucketARN': f'arn:aws:s3:::{bucket_name}'
}
}
)
logging.info(f'Created Firehose delivery stream: {response["DeliveryStreamARN"]}')
except Exception as e:
logging.error(f'Failed to create Firehose delivery stream: {e}')
def random_insert_to_firehose(table_name: str, sample_count: int = 1000):
delivery_stream_name = "lets-try-iceberg-stream"
for i in range(sample_count):
sample_data, _, _, _ = generate_random_json(
id=str(i % 5 + 1), # Cycling through IDs 1-5
timestamp=datetime.now(),
speed=random.randint(0, 100),
temperature=random.uniform(-20, 40),
location={
"lat": random.uniform(-90, 90),
"lng": random.uniform(-180, 180),
},
)
metadata = {
"ADF_Metadata": {
"OTF_Metadata": {
"DestinationTableName": table_name,
"DestinationDatabaseName": "default",
"Operation": "INSERT"
}
}
}
iceberg_data = {
"ADF_Record": sample_data,
**metadata
}
json_string = json.dumps(iceberg_data)
record = {'Data': json_string}
try:
response = firehose.put_record(
DeliveryStreamName=delivery_stream_name,
Record=record
)
logging.info(f'Successfully put record to Firehose: {response["RecordId"]}')
except Exception as e:
logging.error(f"Failed to put record to Firehose: {e}")
def delete_resources(bucket_name, table_name):
try:
# 1. Delete Firehose stream
firehose_stream_name = "lets-try-iceberg-stream"
try:
firehose.delete_delivery_stream(DeliveryStreamName=firehose_stream_name, AllowForceDelete=True)
logging.info(f"Deleted Firehose stream: {firehose_stream_name}")
except ClientError as e:
if e.response["Error"]["Code"] == "ResourceNotFoundException":
logging.info(f"Firehose stream {firehose_stream_name} does not exist.")
else:
raise e
# 2. Delete Log group and stream
log_group_name = "lets-try-iceberg-log-group"
log_stream_name = "iceberg"
try:
logs.delete_log_stream(logGroupName=log_group_name, logStreamName=log_stream_name)
logging.info(f"Deleted Log stream: {log_stream_name}")
except ClientError as e:
if e.response["Error"]["Code"] == "ResourceNotFoundException":
logging.info(f"Log stream {log_stream_name} does not exist.")
else:
raise e
try:
logs.delete_log_group(logGroupName=log_group_name)
logging.info(f"Deleted Log group: {log_group_name}")
except ClientError as e:
if e.response["Error"]["Code"] == "ResourceNotFoundException":
logging.info(f"Log group {log_group_name} does not exist.")
else:
raise e
# 3. Delete Iceberg table and sample table
try:
create_cleanup_table_sql(bucket_name, table_name, run_query=True)
except Exception as e:
logging.error(f"Tables either do not exist or could not be deleted: {e}")
# 4. Delete IAM roles and policies
role_policies = [
{"role_name": "lets-try-iceberg-optimization-role", "policy_name": "lets-try-iceberg-optimization-policy"},
{"role_name": "lets-try-iceberg-statistics-role", "policy_name": "lets-try-iceberg-statistics-policy"},
{"role_name": "lets-try-iceberg-firehose-role", "policy_name": "lets-try-iceberg-firehose-policy"},
]
for item in role_policies:
try:
# Detach the policy from the role
policy_arn = f"arn:aws:iam::{account_id}:policy/{item['policy_name']}"
iam.detach_role_policy(RoleName=item["role_name"], PolicyArn=policy_arn)
logging.info(f"Detached policy {item['policy_name']} from role {item['role_name']}")
# Delete the role
iam.delete_role(RoleName=item["role_name"])
logging.info(f"Deleted IAM role: {item['role_name']}")
# Delete the policy
iam.delete_policy(PolicyArn=policy_arn)
logging.info(f"Deleted IAM policy: {item['policy_name']}")
except ClientError as e:
if e.response["Error"]["Code"] == "NoSuchEntity":
logging.info(f"IAM role or policy does not exist: {item['role_name']} / {item['policy_name']}")
else:
raise e
# 5. Empty the S3 bucket, then delete it
try:
bucket_objects = s3.list_objects_v2(Bucket=bucket_name)
if "Contents" in bucket_objects:
objects = [{'Key': obj['Key']} for obj in bucket_objects['Contents']]
s3.delete_objects(Bucket=bucket_name, Delete={'Objects': objects})
logging.info(f"Emptied bucket: {bucket_name}")
s3.delete_bucket(Bucket=bucket_name)
logging.info(f"Deleted bucket: {bucket_name}")
except ClientError as e:
if e.response["Error"]["Code"] == "NoSuchBucket":
logging.info(f"S3 bucket {bucket_name} does not exist.")
else:
raise e
# 6. Delete the config file
delete_config()
except Exception as e:
logging.error(f"Error while deleting resources: {e}")
raise
def main():
config = load_config()
parser = argparse.ArgumentParser(description="Iceberg - Sample Table Creation")
parser.add_argument(
"--table",
type=str,
help="The table name to use. If not provided, it will be loaded from the config or default to 'lets_try_iceberg'.",
default=config.get('DEFAULT', 'table', fallback="lets_try_iceberg"),
)
parser.add_argument(
"--bucket",
type=str,
help="The S3 bucket name to store generated data. If not provided, it will be loaded from the config or a random one will be generated.",
default=config.get('DEFAULT', 'bucket', fallback=None),
)
parser.add_argument(
"--delete",
action="store_true",
help="Delete all resources (Firehose stream, Log group/stream, Iceberg table, IAM roles, S3 bucket)",
)
parser.add_argument(
"--run-queries",
action="store_true",
help="If provided, runs the Athena queries.",
)
parser.add_argument(
"--optimization",
action="store_true",
help="If provided, creates the optimization IAM role and policy.",
)
parser.add_argument(
"--statistics",
action="store_true",
help="If provided, creates the statistics IAM role and policy.",
)
parser.add_argument(
"--firehose",
action="store_true",
help="If provided, creates the firehose IAM role and policy and sets up a delivery stream.",
)
parser.add_argument(
"--firehose-load",
action="store_true",
help="If provided, inserts random data into the Firehose delivery stream.",
)
args = parser.parse_args()
bucket_name = args.bucket
table_name = args.table
if not bucket_name:
bucket_name = f"iceberg-sample-data-{random.randint(100000, 999999)}"
create_bucket(bucket_name)
if args.delete:
delete_resources(bucket_name, table_name)
else:
save_config(bucket_name, table_name)
create_iceberg_query(bucket_name, table_name, args.run_queries)
create_cleanup_table_sql(bucket_name, table_name)
if args.optimization:
generate_and_upload_jsonl(bucket_name)
create_athena_temp_table_sql(bucket_name, table_name, args.run_queries)
create_insert_from_temp_to_iceberg_sql(bucket_name, table_name, args.run_queries)
create_iam_role_and_policy_iceberg_optimization(bucket_name, table_name)
if args.statistics:
generate_and_upload_jsonl(bucket_name)
create_athena_temp_table_sql(bucket_name, table_name, args.run_queries)
create_insert_from_temp_to_iceberg_sql(bucket_name, table_name, args.run_queries)
create_iam_role_and_policy_statistics(bucket_name, table_name)
if args.firehose:
role_arn = create_iam_role_and_policy_firehose(bucket_name, table_name)
create_firehose_delivery_stream(bucket_name, table_name, role_arn)
if args.firehose_load:
random_insert_to_firehose(table_name)
if __name__ == "__main__":
main()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment