Skip to content

Instantly share code, notes, and snippets.

Embed
What would you like to do?
GoogLeNet in Keras

GoogLeNet in Keras

Here is a Keras model of GoogLeNet (a.k.a Inception V1). I created it by converting the GoogLeNet model from Caffe. For more details on the conversion, see here.

GoogLeNet paper:

Going deeper with convolutions.
Szegedy, Christian, et al. 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2015.

###Contents:

Custom layers for GoogLeNet: googlenet_custom_layers.py Model and usage demo: googlenet.py

Weights: googlenet_weights.h5

from scipy.misc import imread, imresize
from keras.layers import Input, Dense, Convolution2D, MaxPooling2D, AveragePooling2D, ZeroPadding2D, Dropout, Flatten, merge, Reshape, Activation
from keras.models import Model
from keras.regularizers import l2
from keras.optimizers import SGD
from googlenet_custom_layers import PoolHelper,LRN
def create_googlenet(weights_path=None):
# creates GoogLeNet a.k.a. Inception v1 (Szegedy, 2015)
input = Input(shape=(3, 224, 224))
conv1_7x7_s2 = Convolution2D(64,7,7,subsample=(2,2),border_mode='same',activation='relu',name='conv1/7x7_s2',W_regularizer=l2(0.0002))(input)
conv1_zero_pad = ZeroPadding2D(padding=(1, 1))(conv1_7x7_s2)
pool1_helper = PoolHelper()(conv1_zero_pad)
pool1_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool1/3x3_s2')(pool1_helper)
pool1_norm1 = LRN(name='pool1/norm1')(pool1_3x3_s2)
conv2_3x3_reduce = Convolution2D(64,1,1,border_mode='same',activation='relu',name='conv2/3x3_reduce',W_regularizer=l2(0.0002))(pool1_norm1)
conv2_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='conv2/3x3',W_regularizer=l2(0.0002))(conv2_3x3_reduce)
conv2_norm2 = LRN(name='conv2/norm2')(conv2_3x3)
conv2_zero_pad = ZeroPadding2D(padding=(1, 1))(conv2_norm2)
pool2_helper = PoolHelper()(conv2_zero_pad)
pool2_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool2/3x3_s2')(pool2_helper)
inception_3a_1x1 = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3a/1x1',W_regularizer=l2(0.0002))(pool2_3x3_s2)
inception_3a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_3a/3x3_reduce',W_regularizer=l2(0.0002))(pool2_3x3_s2)
inception_3a_3x3 = Convolution2D(128,3,3,border_mode='same',activation='relu',name='inception_3a/3x3',W_regularizer=l2(0.0002))(inception_3a_3x3_reduce)
inception_3a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_3a/5x5_reduce',W_regularizer=l2(0.0002))(pool2_3x3_s2)
inception_3a_5x5 = Convolution2D(32,5,5,border_mode='same',activation='relu',name='inception_3a/5x5',W_regularizer=l2(0.0002))(inception_3a_5x5_reduce)
inception_3a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3a/pool')(pool2_3x3_s2)
inception_3a_pool_proj = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3a/pool_proj',W_regularizer=l2(0.0002))(inception_3a_pool)
inception_3a_output = merge([inception_3a_1x1,inception_3a_3x3,inception_3a_5x5,inception_3a_pool_proj],mode='concat',concat_axis=1,name='inception_3a/output')
inception_3b_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/1x1',W_regularizer=l2(0.0002))(inception_3a_output)
inception_3b_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_3b/3x3_reduce',W_regularizer=l2(0.0002))(inception_3a_output)
inception_3b_3x3 = Convolution2D(192,3,3,border_mode='same',activation='relu',name='inception_3b/3x3',W_regularizer=l2(0.0002))(inception_3b_3x3_reduce)
inception_3b_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_3b/5x5_reduce',W_regularizer=l2(0.0002))(inception_3a_output)
inception_3b_5x5 = Convolution2D(96,5,5,border_mode='same',activation='relu',name='inception_3b/5x5',W_regularizer=l2(0.0002))(inception_3b_5x5_reduce)
inception_3b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_3b/pool')(inception_3a_output)
inception_3b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_3b/pool_proj',W_regularizer=l2(0.0002))(inception_3b_pool)
inception_3b_output = merge([inception_3b_1x1,inception_3b_3x3,inception_3b_5x5,inception_3b_pool_proj],mode='concat',concat_axis=1,name='inception_3b/output')
inception_3b_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_3b_output)
pool3_helper = PoolHelper()(inception_3b_output_zero_pad)
pool3_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool3/3x3_s2')(pool3_helper)
inception_4a_1x1 = Convolution2D(192,1,1,border_mode='same',activation='relu',name='inception_4a/1x1',W_regularizer=l2(0.0002))(pool3_3x3_s2)
inception_4a_3x3_reduce = Convolution2D(96,1,1,border_mode='same',activation='relu',name='inception_4a/3x3_reduce',W_regularizer=l2(0.0002))(pool3_3x3_s2)
inception_4a_3x3 = Convolution2D(208,3,3,border_mode='same',activation='relu',name='inception_4a/3x3',W_regularizer=l2(0.0002))(inception_4a_3x3_reduce)
inception_4a_5x5_reduce = Convolution2D(16,1,1,border_mode='same',activation='relu',name='inception_4a/5x5_reduce',W_regularizer=l2(0.0002))(pool3_3x3_s2)
inception_4a_5x5 = Convolution2D(48,5,5,border_mode='same',activation='relu',name='inception_4a/5x5',W_regularizer=l2(0.0002))(inception_4a_5x5_reduce)
inception_4a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4a/pool')(pool3_3x3_s2)
inception_4a_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4a/pool_proj',W_regularizer=l2(0.0002))(inception_4a_pool)
inception_4a_output = merge([inception_4a_1x1,inception_4a_3x3,inception_4a_5x5,inception_4a_pool_proj],mode='concat',concat_axis=1,name='inception_4a/output')
loss1_ave_pool = AveragePooling2D(pool_size=(5,5),strides=(3,3),name='loss1/ave_pool')(inception_4a_output)
loss1_conv = Convolution2D(128,1,1,border_mode='same',activation='relu',name='loss1/conv',W_regularizer=l2(0.0002))(loss1_ave_pool)
loss1_flat = Flatten()(loss1_conv)
loss1_fc = Dense(1024,activation='relu',name='loss1/fc',W_regularizer=l2(0.0002))(loss1_flat)
loss1_drop_fc = Dropout(0.7)(loss1_fc)
loss1_classifier = Dense(1000,name='loss1/classifier',W_regularizer=l2(0.0002))(loss1_drop_fc)
loss1_classifier_act = Activation('softmax')(loss1_classifier)
inception_4b_1x1 = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4b/1x1',W_regularizer=l2(0.0002))(inception_4a_output)
inception_4b_3x3_reduce = Convolution2D(112,1,1,border_mode='same',activation='relu',name='inception_4b/3x3_reduce',W_regularizer=l2(0.0002))(inception_4a_output)
inception_4b_3x3 = Convolution2D(224,3,3,border_mode='same',activation='relu',name='inception_4b/3x3',W_regularizer=l2(0.0002))(inception_4b_3x3_reduce)
inception_4b_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='inception_4b/5x5_reduce',W_regularizer=l2(0.0002))(inception_4a_output)
inception_4b_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4b/5x5',W_regularizer=l2(0.0002))(inception_4b_5x5_reduce)
inception_4b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4b/pool')(inception_4a_output)
inception_4b_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4b/pool_proj',W_regularizer=l2(0.0002))(inception_4b_pool)
inception_4b_output = merge([inception_4b_1x1,inception_4b_3x3,inception_4b_5x5,inception_4b_pool_proj],mode='concat',concat_axis=1,name='inception_4b_output')
inception_4c_1x1 = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4c/1x1',W_regularizer=l2(0.0002))(inception_4b_output)
inception_4c_3x3_reduce = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4c/3x3_reduce',W_regularizer=l2(0.0002))(inception_4b_output)
inception_4c_3x3 = Convolution2D(256,3,3,border_mode='same',activation='relu',name='inception_4c/3x3',W_regularizer=l2(0.0002))(inception_4c_3x3_reduce)
inception_4c_5x5_reduce = Convolution2D(24,1,1,border_mode='same',activation='relu',name='inception_4c/5x5_reduce',W_regularizer=l2(0.0002))(inception_4b_output)
inception_4c_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4c/5x5',W_regularizer=l2(0.0002))(inception_4c_5x5_reduce)
inception_4c_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4c/pool')(inception_4b_output)
inception_4c_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4c/pool_proj',W_regularizer=l2(0.0002))(inception_4c_pool)
inception_4c_output = merge([inception_4c_1x1,inception_4c_3x3,inception_4c_5x5,inception_4c_pool_proj],mode='concat',concat_axis=1,name='inception_4c/output')
inception_4d_1x1 = Convolution2D(112,1,1,border_mode='same',activation='relu',name='inception_4d/1x1',W_regularizer=l2(0.0002))(inception_4c_output)
inception_4d_3x3_reduce = Convolution2D(144,1,1,border_mode='same',activation='relu',name='inception_4d/3x3_reduce',W_regularizer=l2(0.0002))(inception_4c_output)
inception_4d_3x3 = Convolution2D(288,3,3,border_mode='same',activation='relu',name='inception_4d/3x3',W_regularizer=l2(0.0002))(inception_4d_3x3_reduce)
inception_4d_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4d/5x5_reduce',W_regularizer=l2(0.0002))(inception_4c_output)
inception_4d_5x5 = Convolution2D(64,5,5,border_mode='same',activation='relu',name='inception_4d/5x5',W_regularizer=l2(0.0002))(inception_4d_5x5_reduce)
inception_4d_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4d/pool')(inception_4c_output)
inception_4d_pool_proj = Convolution2D(64,1,1,border_mode='same',activation='relu',name='inception_4d/pool_proj',W_regularizer=l2(0.0002))(inception_4d_pool)
inception_4d_output = merge([inception_4d_1x1,inception_4d_3x3,inception_4d_5x5,inception_4d_pool_proj],mode='concat',concat_axis=1,name='inception_4d/output')
loss2_ave_pool = AveragePooling2D(pool_size=(5,5),strides=(3,3),name='loss2/ave_pool')(inception_4d_output)
loss2_conv = Convolution2D(128,1,1,border_mode='same',activation='relu',name='loss2/conv',W_regularizer=l2(0.0002))(loss2_ave_pool)
loss2_flat = Flatten()(loss2_conv)
loss2_fc = Dense(1024,activation='relu',name='loss2/fc',W_regularizer=l2(0.0002))(loss2_flat)
loss2_drop_fc = Dropout(0.7)(loss2_fc)
loss2_classifier = Dense(1000,name='loss2/classifier',W_regularizer=l2(0.0002))(loss2_drop_fc)
loss2_classifier_act = Activation('softmax')(loss2_classifier)
inception_4e_1x1 = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_4e/1x1',W_regularizer=l2(0.0002))(inception_4d_output)
inception_4e_3x3_reduce = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_4e/3x3_reduce',W_regularizer=l2(0.0002))(inception_4d_output)
inception_4e_3x3 = Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_4e/3x3',W_regularizer=l2(0.0002))(inception_4e_3x3_reduce)
inception_4e_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_4e/5x5_reduce',W_regularizer=l2(0.0002))(inception_4d_output)
inception_4e_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_4e/5x5',W_regularizer=l2(0.0002))(inception_4e_5x5_reduce)
inception_4e_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_4e/pool')(inception_4d_output)
inception_4e_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_4e/pool_proj',W_regularizer=l2(0.0002))(inception_4e_pool)
inception_4e_output = merge([inception_4e_1x1,inception_4e_3x3,inception_4e_5x5,inception_4e_pool_proj],mode='concat',concat_axis=1,name='inception_4e/output')
inception_4e_output_zero_pad = ZeroPadding2D(padding=(1, 1))(inception_4e_output)
pool4_helper = PoolHelper()(inception_4e_output_zero_pad)
pool4_3x3_s2 = MaxPooling2D(pool_size=(3,3),strides=(2,2),border_mode='valid',name='pool4/3x3_s2')(pool4_helper)
inception_5a_1x1 = Convolution2D(256,1,1,border_mode='same',activation='relu',name='inception_5a/1x1',W_regularizer=l2(0.0002))(pool4_3x3_s2)
inception_5a_3x3_reduce = Convolution2D(160,1,1,border_mode='same',activation='relu',name='inception_5a/3x3_reduce',W_regularizer=l2(0.0002))(pool4_3x3_s2)
inception_5a_3x3 = Convolution2D(320,3,3,border_mode='same',activation='relu',name='inception_5a/3x3',W_regularizer=l2(0.0002))(inception_5a_3x3_reduce)
inception_5a_5x5_reduce = Convolution2D(32,1,1,border_mode='same',activation='relu',name='inception_5a/5x5_reduce',W_regularizer=l2(0.0002))(pool4_3x3_s2)
inception_5a_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_5a/5x5',W_regularizer=l2(0.0002))(inception_5a_5x5_reduce)
inception_5a_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_5a/pool')(pool4_3x3_s2)
inception_5a_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_5a/pool_proj',W_regularizer=l2(0.0002))(inception_5a_pool)
inception_5a_output = merge([inception_5a_1x1,inception_5a_3x3,inception_5a_5x5,inception_5a_pool_proj],mode='concat',concat_axis=1,name='inception_5a/output')
inception_5b_1x1 = Convolution2D(384,1,1,border_mode='same',activation='relu',name='inception_5b/1x1',W_regularizer=l2(0.0002))(inception_5a_output)
inception_5b_3x3_reduce = Convolution2D(192,1,1,border_mode='same',activation='relu',name='inception_5b/3x3_reduce',W_regularizer=l2(0.0002))(inception_5a_output)
inception_5b_3x3 = Convolution2D(384,3,3,border_mode='same',activation='relu',name='inception_5b/3x3',W_regularizer=l2(0.0002))(inception_5b_3x3_reduce)
inception_5b_5x5_reduce = Convolution2D(48,1,1,border_mode='same',activation='relu',name='inception_5b/5x5_reduce',W_regularizer=l2(0.0002))(inception_5a_output)
inception_5b_5x5 = Convolution2D(128,5,5,border_mode='same',activation='relu',name='inception_5b/5x5',W_regularizer=l2(0.0002))(inception_5b_5x5_reduce)
inception_5b_pool = MaxPooling2D(pool_size=(3,3),strides=(1,1),border_mode='same',name='inception_5b/pool')(inception_5a_output)
inception_5b_pool_proj = Convolution2D(128,1,1,border_mode='same',activation='relu',name='inception_5b/pool_proj',W_regularizer=l2(0.0002))(inception_5b_pool)
inception_5b_output = merge([inception_5b_1x1,inception_5b_3x3,inception_5b_5x5,inception_5b_pool_proj],mode='concat',concat_axis=1,name='inception_5b/output')
pool5_7x7_s1 = AveragePooling2D(pool_size=(7,7),strides=(1,1),name='pool5/7x7_s2')(inception_5b_output)
loss3_flat = Flatten()(pool5_7x7_s1)
pool5_drop_7x7_s1 = Dropout(0.4)(loss3_flat)
loss3_classifier = Dense(1000,name='loss3/classifier',W_regularizer=l2(0.0002))(pool5_drop_7x7_s1)
loss3_classifier_act = Activation('softmax',name='prob')(loss3_classifier)
googlenet = Model(input=input, output=[loss1_classifier_act,loss2_classifier_act,loss3_classifier_act])
if weights_path:
googlenet.load_weights(weights_path)
return googlenet
if __name__ == "__main__":
img = imresize(imread('cat.jpg', mode='RGB'), (224, 224)).astype(np.float32)
img[:, :, 0] -= 123.68
img[:, :, 1] -= 116.779
img[:, :, 2] -= 103.939
img[:,:,[0,1,2]] = img[:,:,[2,1,0]]
img = img.transpose((2, 0, 1))
img = np.expand_dims(img, axis=0)
# Test pretrained model
model = create_googlenet('googlenet_weights.h5')
sgd = SGD(lr=0.1, decay=1e-6, momentum=0.9, nesterov=True)
model.compile(optimizer=sgd, loss='categorical_crossentropy')
out = model.predict(img) # note: the model has three outputs
print np.argmax(out[2])
from keras.layers.core import Layer
import theano.tensor as T
class LRN(Layer):
def __init__(self, alpha=0.0001,k=1,beta=0.75,n=5, **kwargs):
self.alpha = alpha
self.k = k
self.beta = beta
self.n = n
super(LRN, self).__init__(**kwargs)
def call(self, x, mask=None):
b, ch, r, c = x.shape
half_n = self.n // 2 # half the local region
input_sqr = T.sqr(x) # square the input
extra_channels = T.alloc(0., b, ch + 2*half_n, r, c) # make an empty tensor with zero pads along channel dimension
input_sqr = T.set_subtensor(extra_channels[:, half_n:half_n+ch, :, :],input_sqr) # set the center to be the squared input
scale = self.k # offset for the scale
norm_alpha = self.alpha / self.n # normalized alpha
for i in range(self.n):
scale += norm_alpha * input_sqr[:, i:i+ch, :, :]
scale = scale ** self.beta
x = x / scale
return x
def get_config(self):
config = {"alpha": self.alpha,
"k": self.k,
"beta": self.beta,
"n": self.n}
base_config = super(LRN, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
class PoolHelper(Layer):
def __init__(self, **kwargs):
super(PoolHelper, self).__init__(**kwargs)
def call(self, x, mask=None):
return x[:,:,1:,1:]
def get_config(self):
config = {}
base_config = super(PoolHelper, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.