Skip to content

Instantly share code, notes, and snippets.

@tam17aki
Last active May 22, 2020 05:32
Show Gist options
  • Save tam17aki/4dc145b3f7d128fdb15ebf0e9137cd9b to your computer and use it in GitHub Desktop.
Save tam17aki/4dc145b3f7d128fdb15ebf0e9137cd9b to your computer and use it in GitHub Desktop.
#!/usr/bin/env python
""" A Python script to produce fourier series animation of sawtooth wave."""
# Copyright (C) 2020 by Akira TAMAMORI
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
# Commentary:
# You can see the original video from:
# https://twitter.com/i/status/1256034260848238594
# You can also find the original MATLAB script from:
# https://github.com/sh01k/teaching/blob/master/fourier_series_mov.m
# Code:
import math
import numpy
import numpy.matlib
import matplotlib.pyplot as plt
import matplotlib.animation as animation
# Period [s]
PERIOD = 1
# Sampling frequency for plot
SAMP_FREQ = 100
# Duration[s]
TIME_LEN = 4 * PERIOD #
TIME_NUM = math.floor(TIME_LEN * SAMP_FREQ) # 400
# Angle [rad]
ANGLE = numpy.linspace(0, 2 * math.pi, SAMP_FREQ) # (100, 1)
# Order of Fourier Series
ORDER = numpy.array([1, 2, 3, 4])
ORDER_MAT = numpy.matlib.repmat(ORDER, TIME_NUM, 1) # (400, 4)
fig = plt.figure(figsize=[8.0, 8.0]) # 800 x 800
ax1 = fig.add_axes([0.04, 0.85, 0.14, 0.14])
ax1.set_xlim(-0.6, 0.6)
ax1.set_ylim(-0.6, 0.6)
ax2 = fig.add_axes([0.24, 0.85, 0.74, 0.14])
ax2.set_ylim(-0.6, 0.6)
ax3 = fig.add_axes([0.04, 0.65, 0.14, 0.14])
ax3.set_xlim(-0.6, 0.6)
ax3.set_ylim(-0.6, 0.6)
ax4 = fig.add_axes([0.24, 0.65, 0.74, 0.14])
ax4.set_ylim(-0.6, 0.6)
ax5 = fig.add_axes([0.04, 0.45, 0.14, 0.14])
ax5.set_xlim(-0.6, 0.6)
ax5.set_ylim(-0.6, 0.6)
ax6 = fig.add_axes([0.24, 0.45, 0.74, 0.14])
ax6.set_ylim(-0.6, 0.6)
ax7 = fig.add_axes([0.04, 0.25, 0.14, 0.14])
ax7.set_xlim(-0.6, 0.6)
ax7.set_ylim(-0.6, 0.6)
ax8 = fig.add_axes([0.24, 0.25, 0.74, 0.14])
ax8.set_ylim(-0.6, 0.6)
ax9 = fig.add_axes([0.04, 0.05, 0.14, 0.14])
ax9.set_xlim(-0.6, 0.6)
ax9.set_ylim(-0.6, 0.6)
ax10 = fig.add_axes([0.24, 0.05, 0.74, 0.14])
ax10.set_ylim(-0.6, 0.6)
images = []
for t0 in range(TIME_NUM):
# Time [s]
time_axis = numpy.arange(0, TIME_NUM).T / SAMP_FREQ # (400, )
time_axis = time_axis[::-1]
t = numpy.arange(t0, t0 + TIME_NUM).T / SAMP_FREQ # (400, )
t = numpy.expand_dims(t, axis=1) # (400, 1)
t_mat = numpy.matlib.repmat(t, 1, len(ORDER)) # (400, 4)
# Fourier coefficients
coef = -PERIOD / (math.pi * ORDER) * numpy.cos(math.pi * ORDER) # Saw wave
# Fourier bases
phi = 2 * math.pi * ORDER_MAT * t_mat / PERIOD # (400, 4)
circ = numpy.array([coef * numpy.cos(phi[TIME_NUM-1, :]),
coef * numpy.sin(phi[TIME_NUM-1, :])]) # (2, 4, 4)
sig = numpy.sum(numpy.matlib.repmat(
coef, TIME_NUM, 1) * numpy.sin(phi), axis=1)
# plot complex plane
im = ax1.plot(coef[0] * numpy.cos(ANGLE),
coef[0] * numpy.sin(ANGLE),
color="k", linewidth=1.5)
im += ax1.plot(coef[1] * numpy.cos(ANGLE) + circ[0, 0],
coef[1] * numpy.sin(ANGLE) + circ[1, 0],
color="k", linewidth=1.5)
im += ax1.plot(coef[2] * numpy.cos(ANGLE) + circ[0, 0] + circ[0, 1],
coef[2] * numpy.sin(ANGLE) + circ[1, 0] + circ[1, 1],
color="k", linewidth=1.5)
im += ax1.plot(coef[3] * numpy.cos(ANGLE) + circ[0, 0] + circ[0, 1] + circ[0, 2],
coef[3] * numpy.sin(ANGLE) + circ[1, 0] +
circ[1, 1] + circ[1, 2],
color="k", linewidth=1.5)
im += ax1.plot([0, circ[0, 0]],
[0, circ[1, 0]],
color="b", linestyle="-", marker="o",
markerfacecolor="b", markersize=4)
im += ax1.plot([circ[0, 0],
circ[0, 1] + circ[0, 0]],
[circ[1, 0],
circ[1, 1] + circ[1, 0]],
color="b", linestyle="-", marker="o",
markerfacecolor="b", markersize=4)
im += ax1.plot([circ[0, 1] + circ[0, 0],
circ[0, 2] + circ[0, 1] + circ[0, 0]],
[circ[1, 1] + circ[1, 0],
circ[1, 2] + circ[1, 1] + circ[1, 0]],
color="b", linestyle="-", marker="o",
markerfacecolor="b", markersize=4)
im += ax1.plot([circ[0, 2] + circ[0, 1] + circ[0, 0],
circ[0, 3] + circ[0, 2] + circ[0, 1] + circ[0, 0]],
[circ[1, 2] + circ[1, 1] + circ[1, 0],
circ[1, 3] + circ[1, 2] + circ[1, 1] + circ[1, 0]],
color="b", linestyle="-", marker="o",
markerfacecolor="b", markersize=4)
im += ax1.plot([circ[0, 3] + circ[0, 2] + circ[0, 1] + circ[0, 0],
0.6],
[circ[1, 3] + circ[1, 2] + circ[1, 1] + circ[1, 0],
circ[1, 3] + circ[1, 2] + circ[1, 1] + circ[1, 0]],
color="b", linestyle=":", marker="o", markerfacecolor="b",
linewidth=1, markersize=4)
# plot signal
im += ax2.plot(time_axis, sig, linestyle="-", color="b", linewidth=1.5)
# plot complex plane k=1
im += ax3.plot(coef[0] * numpy.cos(ANGLE), coef[0] * numpy.sin(ANGLE),
color="k", linewidth=1.5)
im += ax3.plot([0, circ[0, 0]], [0, circ[1, 0]],
linestyle="-", color="b", marker="o",
markerfacecolor="b", markersize=4)
im += ax3.plot([circ[0, 0], 0.6], [circ[1, 0], circ[1, 0]],
linestyle=":", color="b", marker="o", markersize=4,
markerfacecolor="b", linewidth=1)
# plot signal k=1
im += ax4.plot(time_axis, coef[0] * numpy.sin(phi[:, 0]),
linestyle="-", color="b", linewidth=1.5)
# plot complex plane k=2
im += ax5.plot(coef[1] * numpy.cos(ANGLE), coef[1] * numpy.sin(ANGLE),
color="k", linewidth=1.5)
im += ax5.plot([0, circ[0, 1]], [0, circ[1, 1]],
linestyle="-", color="b", marker="o",
markerfacecolor="b", markersize=4)
im += ax5.plot([circ[0, 1], 0.6], [circ[1, 1], circ[1, 1]],
linestyle=":", color="b", marker="o", markersize=4,
markerfacecolor="b", linewidth=1)
# plot signal k=2
im += ax6.plot(time_axis, coef[1] * numpy.sin(phi[:, 1]),
linestyle="-", color="b", linewidth=1.5)
# plot complex plane k=3
im += ax7.plot(coef[2] * numpy.cos(ANGLE), coef[2] * numpy.sin(ANGLE),
color="k", linewidth=1.5)
im += ax7.plot([0, circ[0, 2]], [0, circ[1, 2]],
linestyle="-", color="b", marker="o",
markerfacecolor="b", markersize=4)
im += ax7.plot([circ[0, 2], 0.6], [circ[1, 2], circ[1, 2]],
linestyle=":", color="b", marker="o", markersize=4,
markerfacecolor="b", linewidth=1)
# plot signal k=3
im += ax8.plot(time_axis, coef[2] * numpy.sin(phi[:, 2]),
linestyle="-", color="b", linewidth=1.5)
# plot complex plane k=4
im += ax9.plot(coef[3] * numpy.cos(ANGLE), coef[3] * numpy.sin(ANGLE),
color="k", linewidth=1.5)
im += ax9.plot([0, circ[0, 3]], [0, circ[1, 3]],
linestyle="-", color="b", marker="o",
markerfacecolor="b", markersize=4)
im += ax9.plot([circ[0, 3], 0.6], [circ[1, 3], circ[1, 3]],
linestyle=":", color="b", marker="o", markersize=4,
markerfacecolor="b", linewidth=1)
# plot signal k=4
im += ax10.plot(time_axis, coef[3] * numpy.sin(phi[:, 3]),
linestyle="-", color="b", linewidth=1.5)
images.append(im)
ANIME = animation.ArtistAnimation(fig, images, interval=40)
ANIME.save("plot_sawtooth.mp4", writer="ffmpeg", dpi=300)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment