Last active
September 13, 2022 05:56
-
-
Save tam17aki/9bd7d48c11ece38df8e086ab3d5f143d to your computer and use it in GitHub Desktop.
Unsupervised Outlier Detection based on Kernel Principal Component Analysis (Kernel PCA)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# -*- coding: utf-8 -*- | |
"""Kernel Principal Component Analysis (KPCA) Outlier Detector | |
""" | |
# Author: Akira Tamamori <tamamori5917@gmail.com> | |
# License: BSD 2 clause | |
import numpy as np | |
from pyod.models.base import BaseDetector | |
from pyod.utils.utility import check_parameter | |
from sklearn.decomposition import KernelPCA | |
from sklearn.utils import check_array, check_random_state | |
from sklearn.utils.validation import check_is_fitted | |
class PyODKernelPCA(KernelPCA): | |
"""A wrapper class for KernelPCA class of scikit-learn.""" | |
def __init__( | |
self, | |
n_components=None, | |
kernel="rbf", | |
gamma=None, | |
degree=3, | |
coef0=1, | |
kernel_params=None, | |
alpha=1.0, | |
fit_inverse_transform=False, | |
eigen_solver="auto", | |
tol=0, | |
max_iter=None, | |
iterated_power="auto", | |
remove_zero_eig=False, | |
copy_X=True, | |
n_jobs=None, | |
random_state=None, | |
): | |
super().__init__( | |
kernel=kernel, | |
gamma=gamma, | |
degree=degree, | |
coef0=coef0, | |
kernel_params=kernel_params, | |
alpha=alpha, | |
fit_inverse_transform=fit_inverse_transform, | |
eigen_solver=eigen_solver, | |
tol=tol, | |
max_iter=max_iter, | |
iterated_power=iterated_power, | |
remove_zero_eig=remove_zero_eig, | |
n_jobs=n_jobs, | |
copy_X=copy_X, | |
random_state=check_random_state(random_state), | |
) | |
@property | |
def get_centerer(self): | |
"""Return a protected member _centerer.""" | |
return self._centerer | |
@property | |
def get_kernel(self): | |
"""Return a protected member _get_kernel.""" | |
return self._get_kernel | |
class KPCA(BaseDetector): | |
"""KPCA class for outlier detection. | |
PCA is performed on the feature space uniquely determined by the kernel, | |
and the reconstruction error on the feature space is used as the anomaly score. | |
Reference: See | |
Heiko Hoffmann, "Kernel PCA for novelty detection," | |
Pattern Recognition, vol.40, no.3, pp. 863-874, 2007. | |
https://www.sciencedirect.com/science/article/pii/S0031320306003414 | |
for details. | |
Parameters | |
---------- | |
n_components : int, optional (default=None) | |
Number of components. If None, all non-zero components are kept. | |
n_selected_components : int, optional (default=None) | |
Number of selected principal components | |
for calculating the outlier scores. It is not necessarily equal to | |
the total number of the principal components. If not set, use | |
all principal components. | |
kernel : string {'linear', 'poly', 'rbf', 'sigmoid', | |
'cosine', 'precomputed'}, optional (default='rbf') | |
Kernel used for PCA. | |
gamma : float, optional (default=None) | |
Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other | |
kernels. If ``gamma`` is ``None``, then it is set to ``1/n_features``. | |
degree : int, optional (default=3) | |
Degree for poly kernels. Ignored by other kernels. | |
coef0 : float, optional (default=1) | |
Independent term in poly and sigmoid kernels. | |
Ignored by other kernels. | |
kernel_params : dict, optional (default=None) | |
Parameters (keyword arguments) and | |
values for kernel passed as callable object. | |
Ignored by other kernels. | |
alpha : float, optional (default=1.0) | |
Hyperparameter of the ridge regression that learns the | |
inverse transform (when inverse_transform=True). | |
eigen_solver : string, {'auto', 'dense', 'arpack', 'randomized'}, \ | |
default='auto' | |
Select eigensolver to use. If `n_components` is much | |
less than the number of training samples, randomized (or arpack to a | |
smaller extend) may be more efficient than the dense eigensolver. | |
Randomized SVD is performed according to the method of Halko et al. | |
auto : | |
the solver is selected by a default policy based on n_samples | |
(the number of training samples) and `n_components`: | |
if the number of components to extract is less than 10 (strict) and | |
the number of samples is more than 200 (strict), the 'arpack' | |
method is enabled. Otherwise the exact full eigenvalue | |
decomposition is computed and optionally truncated afterwards | |
('dense' method). | |
dense : | |
run exact full eigenvalue decomposition calling the standard | |
LAPACK solver via `scipy.linalg.eigh`, and select the components | |
by postprocessing. | |
arpack : | |
run SVD truncated to n_components calling ARPACK solver using | |
`scipy.sparse.linalg.eigsh`. It requires strictly | |
0 < n_components < n_samples | |
randomized : | |
run randomized SVD. | |
implementation selects eigenvalues based on their module; therefore | |
using this method can lead to unexpected results if the kernel is | |
not positive semi-definite. | |
tol : float, optional (default=0) | |
Convergence tolerance for arpack. | |
If 0, optimal value will be chosen by arpack. | |
max_iter : int, optional (default=None) | |
Maximum number of iterations for arpack. | |
If None, optimal value will be chosen by arpack. | |
iterated_power : int >= 0, or 'auto', optional (default='auto') | |
Number of iterations for the power method computed by | |
svd_solver == 'randomized'. When 'auto', it is set to 7 when | |
`n_components < 0.1 * min(X.shape)`, other it is set to 4. | |
remove_zero_eig : bool, optional (default=False) | |
If True, then all components with zero eigenvalues are removed, so | |
that the number of components in the output may be < n_components | |
(and sometimes even zero due to numerical instability). | |
When n_components is None, this parameter is ignored and components | |
with zero eigenvalues are removed regardless. | |
copy_X : bool, optional (default=True) | |
If True, input X is copied and stored by the model in the `X_fit_` | |
attribute. If no further changes will be done to X, setting | |
`copy_X=False` saves memory by storing a reference. | |
n_jobs : int, optional (default=None) | |
The number of parallel jobs to run. | |
``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. | |
``-1`` means using all processors. | |
sampling : bool, optional (default=False) | |
If True, sampling subset from the dataset is performed only once, | |
in order to reduce time complexity while keeping detection performance. | |
subset_size : float in (0., 1.0) or int (0, n_samples), optional (default=20) | |
If sampling is True, the size of subset is specified. | |
random_state : int, RandomState instance or None, optional (default=None) | |
If int, random_state is the seed used by the random number generator; | |
If RandomState instance, random_state is the random number generator; | |
If None, the random number generator is the RandomState instance | |
used by np.random. | |
Attributes | |
---------- | |
decision_scores_ : numpy array of shape (n_samples,) | |
The outlier scores of the training data. | |
The higher, the more abnormal. Outliers tend to have higher | |
scores. This value is available once the detector is | |
fitted. | |
threshold_ : float | |
The threshold is based on ``contamination``. It is the | |
``n_samples * contamination`` most abnormal samples in | |
``decision_scores_``. The threshold is calculated for generating | |
binary outlier labels. | |
labels_ : int, either 0 or 1 | |
The binary labels of the training data. 0 stands for inliers | |
and 1 for outliers/anomalies. It is generated by applying | |
``threshold_`` on ``decision_scores_``. | |
""" | |
def __init__( | |
self, | |
contamination=0.1, | |
n_components=None, | |
n_selected_components=None, | |
kernel="rbf", | |
gamma=None, | |
degree=3, | |
coef0=1, | |
kernel_params=None, | |
alpha=1.0, | |
eigen_solver="auto", | |
tol=0, | |
max_iter=None, | |
iterated_power="auto", | |
remove_zero_eig=False, | |
copy_X=True, | |
n_jobs=None, | |
sampling=False, | |
subset_size=20, | |
random_state=None, | |
): | |
super().__init__(contamination=contamination) | |
self.n_components = n_components | |
self.n_selected_components = n_selected_components | |
self.copy_x = copy_X | |
self.sampling = sampling | |
self.subset_size = subset_size | |
self.random_state = check_random_state(random_state) | |
self.decision_scores_ = None | |
self.n_selected_components_ = None | |
self.kpca = PyODKernelPCA( | |
n_components=n_components, | |
kernel=kernel, | |
gamma=gamma, | |
degree=degree, | |
coef0=coef0, | |
kernel_params=kernel_params, | |
alpha=alpha, | |
fit_inverse_transform=False, | |
eigen_solver=eigen_solver, | |
tol=tol, | |
max_iter=max_iter, | |
iterated_power=iterated_power, | |
remove_zero_eig=remove_zero_eig, | |
copy_X=copy_X, | |
n_jobs=n_jobs, | |
) | |
def _check_subset_size(self, array): | |
"""Check subset size.""" | |
n_samples, _ = array.shape | |
if isinstance(self.subset_size, int) is True: | |
if 0 < self.subset_size <= n_samples: | |
subset_size = self.subset_size | |
else: | |
raise ValueError( | |
f"subset_size={self.subset_size} " | |
f"must be between 0 and n_samples={n_samples}." | |
) | |
if isinstance(self.subset_size, float) is True: | |
if 0.0 < self.subset_size <= 1.0: | |
subset_size = int(self.subset_size * n_samples) | |
else: | |
raise ValueError("subset_size=%r must be between 0.0 and 1.0") | |
return subset_size | |
def fit(self, X, y=None): | |
"""Fit detector. y is ignored in unsupervised methods. | |
Parameters | |
---------- | |
X : numpy array of shape (n_samples, n_features) | |
The input samples. | |
y : Ignored | |
Not used, present for API consistency by convention. | |
Returns | |
------- | |
self : object | |
Fitted estimator. | |
""" | |
# validate inputs X and y (optional) | |
X = check_array(X, copy=self.copy_x) | |
self._set_n_classes(y) | |
# perform subsampling to reduce time complexity | |
if self.sampling is True: | |
subset_size = self._check_subset_size(X) | |
random_indices = self.random_state.choice( | |
X.shape[0], | |
size=subset_size, | |
replace=False, | |
) | |
X = X[random_indices, :] | |
# copy the attributes from the sklearn Kernel PCA object | |
if self.n_components is None: | |
n_components = X.shape[1] # use all dimensions | |
else: | |
if self.n_components < 1: | |
raise ValueError( | |
f"`n_components` should be >= 1, got: {self.n_components}" | |
) | |
n_components = min(X.shape[0], self.n_components) | |
# validate the number of components to be used for outlier detection | |
if self.n_selected_components is None: | |
self.n_selected_components_ = n_components | |
else: | |
self.n_selected_components_ = self.n_selected_components | |
check_parameter( | |
self.n_selected_components_, | |
1, | |
n_components, | |
include_left=True, | |
include_right=True, | |
param_name="n_selected_components", | |
) | |
self.kpca.fit(X) | |
centerer = self.kpca.get_centerer | |
kernel = self.kpca.get_kernel | |
x_transformed = self.kpca.eigenvectors_ * np.sqrt(self.kpca.eigenvalues_) | |
x_transformed = x_transformed[:, : self.n_selected_components_] | |
potential = [] | |
for i in range(X.shape[0]): | |
sample = X[i, :].reshape(1, -1) | |
potential.append(kernel(sample)) | |
potential = np.array(potential).squeeze() | |
potential = potential - 2 * centerer.K_fit_rows_ + centerer.K_fit_all_ | |
# reconstruction error | |
self.decision_scores_ = potential - np.sum(np.square(x_transformed), axis=1) | |
self._process_decision_scores() | |
return self | |
def decision_function(self, X): | |
"""Predict raw anomaly score of X using the fitted detector. | |
The anomaly score of an input sample is computed based on different | |
detector algorithms. For consistency, outliers are assigned with | |
larger anomaly scores. | |
Parameters | |
---------- | |
X : numpy array of shape (n_samples, n_features) | |
The training input samples. Sparse matrices are accepted only | |
if they are supported by the base estimator. | |
Returns | |
------- | |
anomaly_scores : numpy array of shape (n_samples,) | |
The anomaly score of the input samples. | |
""" | |
check_is_fitted(self, ["decision_scores_", "threshold_", "labels_"]) | |
X = check_array(X) | |
# Compute centered gram matrix between X and training data X_fit_ | |
centerer = self.kpca.get_centerer | |
kernel = self.kpca.get_kernel | |
gram_matrix = kernel(X, self.kpca.X_fit_) | |
centered_g = centerer.transform(gram_matrix) | |
# scale eigenvectors (properly account for null-space for dot product) | |
non_zeros = np.flatnonzero(self.kpca.eigenvalues_) | |
scaled_alphas = np.zeros_like(self.kpca.eigenvectors_) | |
scaled_alphas[:, non_zeros] = self.kpca.eigenvectors_[:, non_zeros] / np.sqrt( | |
self.kpca.eigenvalues_[non_zeros] | |
) | |
# Project with a scalar product between K and the scaled eigenvectors | |
x_transformed = np.dot(centered_g, scaled_alphas) | |
x_transformed = x_transformed[:, : self.n_selected_components_] | |
potential = [] | |
for i in range(X.shape[0]): | |
sample = X[i, :].reshape(1, -1) | |
potential.append(kernel(sample)) | |
potential = np.array(potential).squeeze() | |
gram_fit_rows = np.sum(gram_matrix, axis=1) / gram_matrix.shape[1] | |
potential = potential - 2 * gram_fit_rows + centerer.K_fit_all_ | |
# reconstruction error | |
anomaly_scores = potential - np.sum(np.square(x_transformed), axis=1) | |
return anomaly_scores |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment