Last active
January 14, 2020 07:04
-
-
Save tam17aki/e2f39883b35dd8284c7064b9d3ecf067 to your computer and use it in GitHub Desktop.
A Python wrapper using oct2py package for demo script of ILRMA method
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from oct2py import octave | |
import numpy as np | |
from scipy import signal | |
# path for ILRMA | |
path_to_ILRMA = '/path/to/ILRMA' | |
octave.addpath(path_to_ILRMA) | |
# Set parameters | |
seed = 1 # pseudo random seed | |
refMic = 1 # reference microphone for back projection | |
fsResample = 16000 # resampling frequency [Hz] | |
ns = 2 # number of sources | |
fftSize = 4096 # window length in STFT [points] | |
shiftSize = 2048 # shift length in STFT [points] | |
# number of bases (for type=1, nb is # of bases for "each" source. | |
# for type=2, nb is # of bases for "all" sources) | |
nb = 10 | |
# number of iterations (define by checking convergence | |
# behavior with drawConv=true) | |
it = 100 | |
# 1 or 2 (1: ILRMA w/o partitioning function, | |
# 2: ILRMA with partitioning function) | |
type = 1 | |
# true or false (true: plot cost function values in each iteration | |
# and show convergence behavior, false: faster and | |
# do not plot cost function values) | |
drawConv = octave.logical(1) | |
# true or false (true: apply normalization in each iteration | |
# of ILRMA to improve numerical stability, but the monotonic | |
# decrease of the cost function may be lost. false: do not apply normalization) | |
normalize = octave.logical(1) | |
# Fix random seed | |
octave.rand('seed', seed) | |
# signal x channel x source (source image) | |
sig_src1, fs = octave.audioread(path_to_ILRMA + '/input/drums.wav', nout=2) | |
sig_src2, fs = octave.audioread(path_to_ILRMA + '/input/piano.wav', nout=2) | |
sig = np.stack([sig_src1, sig_src2], axis=1) | |
del sig_src1, sig_src2 | |
# resampling for reducing computational cost | |
sig_src1 = signal.resample_poly(sig[:, :, 0], fsResample, fs) | |
sig_src2 = signal.resample_poly(sig[:, :, 1], fsResample, fs) | |
sig_resample = np.stack([sig_src1, sig_src2], axis=1) | |
del sig_src1, sig_src2 | |
mix1 = sig_resample[:, 0, 0] + sig_resample[:, 0, 1] | |
mix2 = sig_resample[:, 1, 0] + sig_resample[:, 1, 1] | |
mix = np.stack([mix1, mix2], axis=1) | |
del mix1, mix2 | |
sep, cost = octave.bss_ILRMA(mix, ns, nb, fftSize, shiftSize, it, type, | |
refMic, drawConv, normalize, nout=2) | |
outputDir = './output' | |
os.makedirs(outputDir, exist_ok=True) | |
# observed signal | |
octave.audiowrite('{}/observedMixture.wav'.format(outputDir), | |
mix, fsResample) | |
# source signal 1 | |
octave.audiowrite('{}/originalSource1.wav'.format(outputDir), | |
sig_resample[:, refMic - 1, 0], fsResample) | |
# source signal 2 | |
octave.audiowrite('{}/originalSource2.wav'.format(outputDir), | |
sig_resample[:, refMic - 1, 1], fsResample) | |
# estimated signal 1 | |
octave.audiowrite('{}/estimatedSignal1.wav'.format(outputDir), | |
sep[:, 0], fsResample) | |
# estimated signal 2 | |
octave.audiowrite('{}/estimatedSignal2.wav'.format(outputDir), | |
sep[:, 1], fsResample) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment