-
-
Save tanmayb123/0fd2a935dacb9e012174035ba4aed25f to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@_fixed_layout | |
public struct Dense<Scalar: TensorFlowFloatingPoint>: Layer { | |
public var weight: Tensor<Scalar> | |
public var bias: Tensor<Scalar> | |
@noDerivative var useBias: Bool | |
public typealias Activation = @differentiable (Tensor<Scalar>) -> Tensor<Scalar> | |
@noDerivative public let activation: Activation | |
public init( | |
weight: Tensor<Scalar>, | |
bias: Tensor<Scalar>, | |
useBias: Bool, | |
activation: @escaping Activation | |
) { | |
self.weight = weight | |
self.bias = bias | |
self.useBias = useBias | |
self.activation = activation | |
} | |
@differentiable | |
private func applyingWithBias(to input: Tensor<Scalar>) -> Tensor<Scalar> { | |
return activation(matmul(input, weight) + bias) | |
} | |
@differentiable | |
private func applyingWithoutBias(to input: Tensor<Scalar>) -> Tensor<Scalar> { | |
return activation(matmul(input, weight)) | |
} | |
@differentiable(vjp: _vjpApplied(to:in:)) | |
public func applied(to input: Tensor<Scalar>, in _: Context) -> Tensor<Scalar> { | |
if useBias { | |
return applyingWithBias(to: input) | |
} else { | |
return applyingWithoutBias(to: input) | |
} | |
} | |
@usableFromInline | |
func _vjpApplied(to input: Tensor<Scalar>, in context: Context) -> | |
(Tensor<Scalar>, (Tensor<Scalar>) -> | |
(Dense<Scalar>.CotangentVector, Tensor<Scalar>)) { | |
if useBias { | |
return valueWithPullback(at: input) { | |
$0.applyingWithBias(to: $1) | |
} | |
} else { | |
return valueWithPullback(at: input) { | |
$0.applyingWithoutBias(to: $1) | |
} | |
} | |
} | |
} | |
public extension Dense where Scalar.RawSignificand: FixedWidthInteger { | |
init<G: RandomNumberGenerator>( | |
inputSize: Int, | |
outputSize: Int, | |
activation: @escaping Activation = identity, | |
generator: inout G, | |
useBias: Bool | |
) { | |
self.init(weight: Tensor<Scalar>(glorotUniform: [Int32(inputSize), Int32(outputSize)], | |
generator: &generator), | |
bias: useBias ? Tensor(zeros: [Int32(outputSize)]) : Tensor(0), | |
useBias: useBias, activation: activation) | |
} | |
init(inputSize: Int, outputSize: Int, activation: @escaping Activation = identity, useBias: Bool) { | |
self.init(inputSize: inputSize, outputSize: outputSize, activation: activation, | |
generator: &PhiloxRandomNumberGenerator.global, useBias: useBias) | |
} | |
} | |
public extension Dense { | |
init( | |
inputSize: Int, | |
outputSize: Int, | |
activation: @escaping Activation = identity, | |
seed: (Int64, Int64) = (Int64.random(in: Int64.min..<Int64.max), | |
Int64.random(in: Int64.min..<Int64.max)), | |
useBias: Bool | |
) { | |
self.init(weight: Tensor(glorotUniform: [Int32(inputSize), Int32(outputSize)], | |
seed: seed), | |
bias: useBias ? Tensor(zeros: [Int32(outputSize)]) : Tensor(0), | |
useBias: useBias, activation: activation) | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment