Created
March 20, 2014 04:46
-
-
Save tantanm/9657438 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
{ | |
"metadata": { | |
"name": "SharetribeData" | |
}, | |
"nbformat": 3, | |
"nbformat_minor": 0, | |
"worksheets": [ | |
{ | |
"cells": [ | |
{ | |
"cell_type": "code", | |
"collapsed": true, | |
"input": "## Init data\nimport sqlite3\n\ndef dict_factory(cursor, row):\n d = {}\n for idx, col in enumerate(cursor.description):\n d[col[0]] = row[idx]\n return d\n\ndata = sqlite3.connect('sharetribe.db' )\ndata.row_factory = dict_factory\ndata = data.cursor()\n\n## migty powers of plots and R\n%matplotlib inline\n# %load_ext rmagic\n\nprint(\"Ready to go\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Ready to go\n" | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 6, | |
"metadata": {}, | |
"source": "Descriptive statistics" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "communities = {}\n\nfor row in data.execute('select id, name from communities'):\n communities[ row['id'] ] = row['name']\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 2 | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": "Name of the community with the number of members" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "## number of people per communities\nfor row in data.execute('select count(*) \"count\", community_id as \"id\" from community_memberships group by community_id order by count desc'):\n if row['id'] in communities:\n print '%s %i' % ( communities[ row['id'] ], row['id'])\n else:\n print '%s %i' % ( row['id'], row['count'] )", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Aalto 501\nHelsingin yliopisto 19\nOtaniemi International Network 11\nKallio 295\nUniversitat Rovira i Virgili 297\nPUC 308\nUniversity of Patras 27\nIf 322\nSavonia 12\nLarun tori 473\nPikku Huopalahti 29\nHTC Keilaniemi 14\nKaristo 306\nFacultad de Econom\u00eda y Negocios de la U. de Chile 321\nHoas Kamppi 30\nOuiShare Fest 731\nStart-Up Chile 28\nOuiShare 402\nHaaga 551\nPakilan tori 445\nAnkkuri 294\nMukkula 305\nEdificio Parque Providencia 313\nPit\u00e4j\u00e4nm\u00e4ki 31\nPTSem 6\nau Comptoir Num\u00e9rique 455\nC\u00e1tedras Libres 566\nOakland Single Parents' Network 502\nRepublic of Supercellia 956\nThe Journey Exchange 719\nTeiskolaisten heimosivut 639\n\u00dcbrLocal Seattle 947\nUDD Facultad De Dise\u00f1o 314\nTrinity College Dublin 9\nZeppelin Universit\u00e4t 454\nMetropolia 299\nDarmstadt 587\nPartiokirpputori 634\nNew Hope FMC 465\nCVX-Sevilla 570\nOtaniemi 648\nMalminkartano 496\nKa\u2019ana Pono Hawaii 747\nMutualAidHarrisburg 1016\nargelaguerentransicio 352\nsllpilots 647\nHPI School of Design Thinking 360\nEtel\u00e4-Haaga 688\nOuiShareRA 488\nQuartier R\u00e9collets, Paris 788\nSummer 468\nYoruba 469\nUutisraivaaja 478\n[In.Co.Nu] 537\nReCambio 571\nHub Helsinki 351\n\u0411\u0440\u044f\u043d\u0441\u043a 4\nCentro de Estudiantes de Ingenier\u00eda El\u00e9ctrica 312\nPucon-Villarica 334\nShare-Suomi 412\nCommunaut\u00e9 des joueurs st\u00e9phanois et assimil\u00e9s :) 511\nHauhontie 346\nFlemari 369\nAthens (central) 495\nKarkku 872\nThings 383\nKing's College London 513\nBioBui(L)t 877\nBro 8\nPartio 810\nRantaharju 908\nMatinkyl\u00e4 493\nAuroville 557\n\u0392\u03b9\u03b2\u03bb\u03b9\u03cc-\u03c4\u03c3\u03b1\u03c1\u03ba\u03b5\u03c2 603\nMyyrm\u00e4ki 803\nmt airy shares 422\nNone 10\nEjemplo para Chile 296\nDemo 309\nWorld 427\nEspoo-Kauniainen 518\nLapinlahden palstaviljelij\u00e4t 528\nWijdelen 798\nUUING 828\nBay Area TCN 848\nMarket 920\nSnapbike 994\nInclusivo de Un Techo para Chile 311\nTroijan hevonen 370\nRaunon kaverit 449\nBazouges 515\nR\u00f6\u00f6peri 545\nKanervala 649\nSatorinne 779\nGalactivators Unite 882\nBuurt Talentz 894\nPuerto Varas 364\nOgeli 409\nEspoo Department 463\nCentral Hub 467\nLauttasaaren seurakunta 477\nMunkkiniemi 556\nFrankfurt am Main 580\nIda Unity 594\nKannelm\u00e4ki 629\nslo.punks 703\nSlashers rf // Yrsel 826\nCOCOBAR.Wroc\u0142aw 961\nJakom\u00e4ki 966\nReal Good Food 310\nOhana 390\nsnow 444\n\u00c9gregor 658\nHermanni 675\nDogLovers of Ibiza 732\nPortal d'Intercanvi del #Pallars 915\nLes Commandos Black Ops Strike Team 928\nSociedad de Emprendimiento e Innovaci\u00f3n UC 323\nMankkaan Er\u00e4sudet 462\nconscious living Finland 547\n\u0395\u03c1\u03c9\u03b4\u03b9\u03bf\u03af 598\n@paiania 654\nEriksn\u00e4s asukasyhdistys ry 659\nfrenchtest 18\ntest 302\nVecinos de Barcelona 316\nKasvua 327\nEdificio Plaza Italia 332\nKaivosrinteentie 338\nWazemmes La Veilleuse 357\nKaverit 395\nNational University of Singapore 470\nMonnilaiset 491\nSE Portland ShareTribe 538\nSwarthmore Presbyterian Church 723\nPopHub 733\nSeedstock Community Currency 736\nBowen 745\nTerrey Hills community 802\nJaetaan 807\nNew York University 840\nlebonhom.me 898\nCity of Caldwell, ID 916\nGear Lending test 300\nRichmond 341\nPedago Ry 349\nJakorasia 361\nMiun Siun 362\nLittoisten Verkatehdas 379\nthreeofus 380\nUOC Talent 397\nChangingChelmsford 398\nPegas 410\nAssembly 413\nTransition Highgate 417\nBoston 425\nMango 446\nTemplates 4 Transformation 453\nConsommer autrement dans la Loire 482\nN\u00f3s Coworking 486\nRecreio Vivo 505\nFriends 514\nOnmyshelf.org 539\nVernier 602\nPilpalan kyl\u00e4t 653\nPunta de Lobos 676\nIT-Innovation 697\nshare more at the well 717\nCityMakers 781\nShareHill 806\nPerrers Road Sharing Assocation 812\nHerttoniemen siirtolapuutarha 813\nCoroutine 816\nCVUU Tool Pool 829\nTucson TCN 835\nPlateforme citoyenne Lyon 844\n\u00dcbrLocal Seattle Company Test 934\nKilo 954\nEbre 298\nAvenue 61 303\nNirmal Test 307\nKaskipartio 315\nPes\u00e4, Tampere 339\naurinkoinen tulevaisuus 345\nSamraksh 348\nculturaficcion 359\nJa(h) connexion ! 365\nFalmouth 366\nGames_Maken 372\nConnected 388\nIstoryadista 391\nchow family 399\nProovih\u00f5im 407\nDougherty 418\nFund Balance 430\nHome 443\nSantaBetty 457\nintelligent life 460\nVedb\u00e6k 474\nPlaya del Carmen Shares! 479\ncheminvert 498\nFinnWill's Tribal 499\nevisovo 510\nYague4 516\nLab Cluster 1 531\nTallbo f\u00f6r\u00e4ldrar 532\nsuman 533\nGreener World Net 540\nSkintMint 577\nYorkwood Hills 583\nHesa kerho 622\nSouthgate Commons 623\ndudettes 643\nKeilaniemi 652\nsos 661\nMobile Territorial Lab 662\nBird Flu 667\nVantaan asukkaan parempaan arkeen rikkautta ilolla 674\nRental Housing in Helsinki 686\nWindsor Essex Crowd 711\n Les Pantinois 725\nBrixton Sharetribe 738\nYhteis\u00f6tori Vaasa/ Samh\u00e4lletorget Vasa 759\nPorvoo 762\nmyQute 776\nPortlandia 794\nLauneen verkkotori 831\nTribal Convergence Network 856\nThe Sustainable Gulf Coast 902\nWalo Talo 905\nPhotographers 911\nSingaporeSharetribe 938\nTest 943\nTapiola 952\nLamia 967\nOccupy National Gathering 2013 969\nPellenbergveld 980\nSuperTribu 995\nLondon Squatters 1012\nGCGH MarketPlace 1036\nTU Delft 16\nCollcons Paris 24\nCREB 301\nCREando de la Universidad del B\u00edo-B\u00edo 319\nClaro Chile 324\nAntin testiyhteis\u00f6 337\nla famiglia 340\nSavigny sur Orge 342\nBujinkan Dojo Oulu ry 343\nFiskarsin ruukki 355\nBoston University 367\nSuurpelto 368\nNet Impact Paris 377\nSoFa 378\nWitoi 381\nC\u00edrculo Liban\u00e9s Chile 384\nbadenhorst 404\nPalm Springs 405\ncurtocafe 420\nHeaton Moor 421\nWaterB.us 434\niFixit 438\nVietnam Travel 447\nDUH GORD GORD PEEPOes 451\nzero2hero 458\nERAP 461\nAmherst 476\nNNE Portland 483\ndyabe core team 484\nR\u00e4\u00e4kkyl\u00e4 489\nMin\u00e4 490\nDun Band 517\nSecond Wind 523\nruoiti 525\nyhteismaa 529\nMontreuil 530\nMurroe Shares 535\n11 Hornton Street 536\nArlington Sharing Sangha 561\ncreaexchange 565\nMurray Creek 576\nOmst\u00e4llning Tran\u00e5s 588\nHub 609\nAll Things Green 611\nHive13 613\nSapient 626\nEspoon pitsinnyplays 631\nWulff 633\nTom's tribe 635\nRiihim\u00e4en Er\u00e4tytt\u00f6jen ja Er\u00e4poikien tuki ry Reetu 638\nLeWeb 641\n\u015awierki 642\nParque Bustamante 645\nC\u00edrculo comunitario 646\n\u03a0\u03cc\u03bb\u03b7 \u03a4\u03c1\u03af\u03ba\u03b1\u03bb\u03b1 666\n\u0110\u1ea1i h\u1ecdc Qu\u1ed1c gia TP HCM (VNU-HCM) 668\nLifeCollection 671\nPHIT Lab Tribe 672\nErasmusKyamk 694\nRingv\u00e4gen 80 699\nRentez-Vous 700\nSeguidors d'Orxata 705\nMussies 718\nRahamiehen klaani 726\nKansas City Commons 729\nAbroaderview Volunteers 751\nFriends in Deed 754\nfmpreuss 757\nInner NE Portland 763\nIthaca 774\nPowderhook 782\nsharebase.inc 786\nKonsulaatin Kirpputori 795\nNew York University Gallatin 801\nZona D'Ronda 804\nLohja 811\nPARC ShareTribe 822\nNew Culture 823\nSlow Food Cache Valley 830\nValeureux 845\nPortland TCN 847\nLA TCN 861\nTestify 883\nthessaloniki 892\nPank pankerima 896\nGureganbara 903\nCasa 925\nLyddo 926\nbordeaux 927\nZeitgeist Chapter Berlin 933\nConsommation collaborative 936\nEstancias del Pilar Marketplace 940\nPunkael 955\nferhat 982\nTHD 983\nGente Linda 988\nHervanta 1001\nMazagbelleville 1009\nMagPower Magazine Literacy Marketplace 1037\nNaantalin Siniset 7\nParis 25\nAntofagasta 320\nLon 326\nEnjoy 330\nIquique 331\nTorre 18 333\nNaispurjehtijat 344\nMeksikolainen 350\nUniversidad de la Frontera 353\nULA B\u00e1squetbol Pto. Mott 354\nMustio 356\ntommi 358\nHardu 363\ncomunidad puerto varas 371\nThe New School 373\nlinyu 374\n pnch 375\nCamp Liljegrund 376\nSOYGEEK 387\nITALIANS DO IT 389\n\u0627\u062c\u062a\u0645\u0627\u0639\u064a\u0627\u062a\u064a 392\nSpirit Soul Music 393\nLattia 394\nThe Circle of W.I.C.C.A. 396\nTout (se) passe... 400\nZadco 401\nCompartirLand 403\n Middlebury 406\nSEO 408\nCDI 411\ntexploration 414\nInspiring tribe 416\ncurtocafe 419\nTransition Media Shares 423\nNewcastle upon Tyne 424\nHanoi 426\nQueensmill Road 428\nCoFED 429\nMuotiala ja Steineri 431\nIntecovietnam 432\nColucci Media 433\nkenfox 435\nGroote 436\nAn Phu Neighbours 437\nMiss Royal Boutique 439\nTrung tam SHTT&CGCN 440\nKMS Technology 441\nClayton Bruster's associates 442\nOSD-CMCSoft 448\nGentenaars 450\nKIN:D 452\nTerolankoulu 459\nasdf 464\nSpindleMedia 471\nPROJETO 5 472\nMonpaysBio 480\nPoker 481\nGenerosity Bloc 485\nPihlala-kunta 487\nTOL sharing 492\nPirkkala 494\nKisko Labs 497\nT3RC 503\nlahtelaista 506\nansoworld13 507\nSharebox 508\nShelley 509\nSFC 512\nAsociaci\u00f3n para la prevenci\u00f3n de la disbiosi intes 519\nKeskus-Kallio 520\nJussinlinja 521\nPorthaninkatu 9 522\nBinh Home 524\nPartage Ton Frigo 526\nBlue Factory 527\nlendu 534\nprivatesale.us 541\nAltrincham Community Group 542\nRUN2.CO 543\nsantab 544\nTest Jab 546\nQviflax 549\nSwallownest 550\nTorquay 552\nAltom 553\nMailMill 554\nSciencesPo Franco-Deutsch in Nanzig 555\nAJG Consultores 558\nRobbans tribe 559\nYUVENDING 560\nAnthemis Community 562\nSouthern Saratoga County Sharing Co-Op 563\nintimafaktory 564\nBeinghood 567\nCollaborate 568\narcoiris 569\nRazorblade 572\nRelieve The Stress 573\nfoo 574\nSutton-under-Whitestonecliffe 575\nsave the life 578\nxvi 579\nLoving Oslo 581\nEdgeryders 582\nHelsinki trade society 584\nPrueba 585\nHelsinki trade 586\nMoncton 589\nDas Baumhaus 590\nColumbia Heights 591\nIntegrity Buddies 592\nSue 593\nSibelius Academy / Sibelius-Akatemia 595\nLa Manchuela 596\nihuv 597\nData Tribe 599\nShiloh Oaks Neighborhood Association 600\ntribalquest 601\nEnskedef\u00e4ltet 605\n\u03b1\u03bb\u03bb\u03c5\u03bb\u03b5\u03b3\u03c5\u03b7 606\nThe Arkan Project 607\nWeToom 608\nkidup 610\nMuLondon 612\nmadrid 614\nfsh 615\nfsh2 616\nfsh3 617\nKaterina 618\nneighborhoodwatch 619\nShare n Care in Oslo 624\ngiving therapy 625\nM\u00f6kkitori 627\ncarpoola 628\nsomos santa maria 630\nglyfada 632\nOccupy Venice 636\nUllis 637\nFree The World 640\nLes insulaires de Port-Cergy 650\nRy\u00f6k\u00e4leet 657\nBeacon 660\nPancrattos 663\nOpiskelijakunta Klaani 664\nkoukaki 665\nPuya 669\nKotkan Omakotiyhdistys 670\nRRNagar 673\nWorldVideo and more 677\nAnahata Giving from the Heart 678\nAll Together 679\nTestiyhteis\u00f6 680\nprueba 681\nTENEMOSPRESIDENTE 682\nBeratung- Begleitung 683\nbdp4us 684\nFriends Share 685\nLemont 687\nJohannesburg 689\nNeev 690\njuha 691\n1180 692\ngarden geeks, et al 693\nTransition Schenectady 695\nSari 696\nCharlottle 698\nSocialMarket 701\nCommunityMarket 702\nDalston Square 704\nReaktor 706\ntalojutska 707\n24\u03bf \u03b4\u03b7\u03bc\u03bf\u03c4\u03b9\u03ba\u03cc \u03c3\u03c7\u03bf\u03bb\u03b5\u03af\u03bf \u03a0\u03b5\u03c1\u03b9\u03c3\u03c4\u03b5\u03c1\u03af\u03bf\u03c5 708\ninoui 709\nFood 710\nCommunityShare 712\nan 713\nioannina 714\nBike Riding 715\nxariseto 716\nJustLoveLocal 720\nSeoul searching 721\nGodot Media 722\nukonek.com 724\nom 727\nHenri Kylenin tukiryhm\u00e4 728\nlolz 730\nFriends of Bootstrap Campus 734\nCollaborative Community 735\nWorldWar Programed Obsolescence 737\nOzCarsClub 739\nGoodtronix 740\nStand Up For Singapore 741\nPACCA Share 742\nLacrosse league 743\nlifestyle travelers 744\nSharing Inwood 748\nSharing South Padre 749\nPawalla Tribe 750\nhit 752\nFriends in Deed 753\nThe Third Hand 755\nas 756\nPoppoo 758\nThe Collaborative Users 760\nOhio University 761\nSharing I-90 (SD) 764\nhamznz 765\nAmhurst 766\nchloedigital 767\nBelfast Local Network 768\nFaith and Pride 769\nPimpampum 770\nMotley 771\nRabat 772\nTampa Share A Gun 773\nTribe 775\nVillage of Eldorado 777\nFirst Baptist Church of Richmond, IN 778\nGarber Electrical Contractors, Inc. 780\nSocial Media SEO 783\nTacloban 784\nIa 785\n#CiberPadres 787\nSegundaOportunidad 789\nKarlsruhe 790\nDoktors 791\nFrench connexion Berlin 792\nLuftbildaufnahmen, Foto, Fotoshooting 793\nUkko.fi 796\nVinde 797\nsharefair 799\nKring Way Neighbors 800\nThe West Coast Architects 805\nPrintie 808\nPizarron de Avisos del CRES 809\nDaily Valet 814\nBioDealer 815\ntest 817\nLa Tribu du Partage 818\nComplino 819\nMakers 820\nBatticesare 821\nOD 824\nSustainable Economies Alliance 825\nPlantZilla 827\nTest 832\nGreencove 833\nMegcsin\u00e1ljuk helyetted - Budapest 834\nESHPA 836\nFarmer's Market 837\nsouthfields 838\npolicias corruptos 839\nShared Economy 841\nClothing Swap 842\nRavensbourne 843\nselaudonien 846\nTest75 849\nTest 850\nArr\u00eat de Bus 851\nDVD Sharers 852\nelaurentpollen 853\naC3 854\n Communaut\u00e9 haitienne de Montr\u00e9al 855\nEvolver Vancouver 857\nSincronoz 858\nKanaky Online 859\ngeminiere 860\nCyprus 862\nJe dis \u00e7a je dis rien.... Alors ta gueule ! 863\nTIMGROUP 864\nKnowmads 865\n271 866\nsxb365 867\nJRDM 868\nFerritable 869\narrahib 870\nCooperative Integrale Toulouse 871\nBethelChristianFellowship (bcfHastings) 873\nSciar Treibh 874\nTradeo 875\nCadena de Favores 876\nCommunify 878\nTestify 879\nmughal 880\nshakhbazi 881\nPunaCulture 884\nEF Education First - Zurich Office 885\nOnline Marketplace for the AIESEC members & alumni 886\nizziyo 887\nthe vocalist magazine 888\nTeRento 889\nTestTwibe 890\nSammel Welt 891\nopenminded 893\nkid trade 895\nigiveyousixty 897\nFuveau 899\nTribu Campo Las Naciones 900\nMafia del pescaito 904\nKrsna Hemant 906\nKiev 907\nPennPost 909\nMajadahonda 910\nOklahoma City 912\nUrbex 913\nArunan 914\nJaipuria Sunrise Greens 917\nprueba 918\nMalillerxs Rockerxs 919\nTutoring 921\nshare&chair 922\nKwac 924\nLa Communaut\u00e9 Teufeur ! 929\nRoihuvuoren vaihtopiiri 930\nLirac 931\nLES ETANCHEURS DE L'OUEST 932\nubrlocal wallingford 935\nrandom walk 937\nAmerican Nomad 939\nComm'unes Ressources Paris 942\nTeam AUS 944\nUnion Sportive Melunaise Athl\u00e9tisme 945\nBras\u00edlia 946\nGeekeur Of The Dead 948\nSCA - Programme Clusters 949\nAz.g.zA 950\nThe Paris Expats Marketplace 951\nStart In Paris 953\nWaren M\u00fcritz 957\nSao 958\nTOUGHRUN 959\nSupernova 960\nEskidiBunlar 962\nBlindMelon 963\n#LOTE3- the unMonastery Edition 964\nasdfadsfadf 965\n\u0391Koukouselis 968\nneon 970\nUK Makers 971\ngold coast bulletin board 972\nfamilyCrescit 973\nTest 974\nwebactonodea 975\nWriting Service 976\nCopy Writer 977\nscouts helsinki 978\n801Fillmore 979\nLets Grimbergen 981\nParagliding 984\nEscapade Lesquinoise 985\nBermondsey 986\ncve4me 987\nMyCityUnsigned 989\nDigital Brick 990\nAtom - \u041a\u043b\u0443\u0431 \u0441\u043e\u0446\u0438\u0430\u043b\u044c\u043d\u043e\u0439 \u0441\u043e\u043b\u0438\u0434\u0430\u0440\u043d\u043e\u0441\u0442\u0438 991\nTesttribe 993\nChilangos 996\nRasnov 997\nBangladesh Community Marketplace 998\nantoppatrickbadmk 999\nhoyashare 1000\nalfonsoguerra 1002\nRERS du Campus Grenoble 1003\nFortunatus 1004\nBooksy Singapore 1005\nsaurabh 1006\nbarnet 1007\nPhilippe TREBAUL in PARIS 1008\nshoreo 1010\nua 1011\nThe Johnnie Exchange 1013\namericandream 1014\nUK Sharetribe 1015\nBiboo World 1017\nSOPE 1018\njnoleez 1019\nShopforcharity 1020\nTest 1022\nCoopNumancia29 08029 Barcelona 1023\nFollowingRyan 1024\nYABE 1025\n... 1026\nComunidad Makers 1027\nMural de Anuncios 1028\nTizi-Ouzou 1029\nKitchen Interiors | Modern Home Interiors 1030\nemeditation 1031\nantrapotte 1032\nWeInvest 1033\nComputer Services | Tech Repair Solutions | Laptop 1034\nNo name 1035\nEnglish Farms 1038\n" | |
} | |
], | |
"prompt_number": 3 | |
}, | |
{ | |
"cell_type": "raw", | |
"metadata": {}, | |
"source": "Community ID by number of posts" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "a = data.execute('select community_id \"id\", count(*) \"count\" from listings left outer join communities_listings on id=listing_id group by community_id order by count desc')\ncomm_member=[]\nsample=[]\nfinal_comm=[]\nfor row in a:\n if row['id'] in communities:\n comm_member.append((communities[ row['id'] ], row['count'], row['id']))\n# print '%s %i (id: %i)' % ( communities[ row['id'] ], row['count'], row['id'])\n# else:\n# print '%s %i' % ( row['id'], row['count'] )\nfor i in comm_member:\n if i[1]>100:\n sample.append(i[2])\n final_comm.append((i[0], i[1]))\n print i\nprint len(sample), len(final_comm)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "(u'Aalto', 9210, 501)\n(u'Otaniemi International Network', 2609, 11)\n(u'Kallio', 1569, 295)\n(u'Helsingin yliopisto', 1322, 19)\n(u'Pikku Huopalahti', 476, 29)\n(u'Universitat Rovira i Virgili', 297, 297)\n(u'University of Patras', 237, 27)\n(u'If', 231, 322)\n(u'Savonia', 207, 12)\n(u'Etel\\xe4-Haaga', 196, 688)\n(u'Larun tori', 156, 473)\n(u'Summer', 147, 468)\n(u'PUC', 145, 308)\n(u'Flemari', 122, 369)\n(u'HTC Keilaniemi', 115, 14)\n(u'Hervanta', 107, 1001)\n(u'Karisto', 106, 306)\n17 17\n" | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "## number of items per community and per type\n\n# sample = [501, 19, 11, 295, 297, 308, 27, 322, 12, 472]\nsample_1=[]\n for community in sample:\n print communities[ community ]\n for row in data.execute('select (select name from share_types where id == share_type_id) \"type\", count(*) \"count\" from listings where id in (select listing_id from communities_listings where community_id == %i) group by share_type_id'% community):\n sample_1.append('%s, %s, %i' % ( communities[ community ], row['type'], row['count'] ))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "IndentationError", | |
"evalue": "unexpected indent (<ipython-input-5-471952f43b56>, line 5)", | |
"output_type": "pyerr", | |
"traceback": [ | |
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-5-471952f43b56>\"\u001b[0;36m, line \u001b[0;32m5\u001b[0m\n\u001b[0;31m for community in sample:\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m unexpected indent\n" | |
] | |
} | |
], | |
"prompt_number": 5 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "stat=[]\nfor i in sample_1:\n i=i.split(\",\")\n for j in final_comm:\n if j[0]==i[0]:\n a=float(i[2])/float(j[1])*100\n print i[0], i[1], i[2], (\"%.2f\" %a)\n stat.append ((i[0], i[1], i[2], a))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"ename": "NameError", | |
"evalue": "name 'sample_1' is not defined", | |
"output_type": "pyerr", | |
"traceback": [ | |
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)", | |
"\u001b[0;32m<ipython-input-6-4014fb083a69>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mstat\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msample_1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msplit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\",\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;32mfor\u001b[0m \u001b[0mj\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mfinal_comm\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mj\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m==\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n", | |
"\u001b[0;31mNameError\u001b[0m: name 'sample_1' is not defined" | |
] | |
} | |
], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 6 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 5, | |
"metadata": {}, | |
"source": "Select all succesfully complished exchanges of favors and see the users of those" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "links = {}\nauthors = {}\nAll = {}\n\n# for row in data.execute('select * from testimonials'):\n## get it favors\nfor row in data.execute('select * from testimonials where participation_id in (select id from participations where id in (select id from conversations where listing_id in ( select id from listings where category_id == 17)))'):\n _from = row['receiver_id']\n _to = row['author_id']\n if (_from, _to) not in links:\n links[ ( _from, _to ) ] = 0\n links[ ( _from, _to ) ] += 1\n \n if _from not in authors:\n authors[ _from ] = 0\n \n if _to not in authors:\n authors[ _to ] = 0\n \n if _from not in All:\n All[ _from ] = 0\n All[ _from ] += 1\n \n authors[ _from ] += 1\n authors[ _to ] -= 1\n\n## relationships\nx0 = map( lambda x: x[0], links)\nx1 = x = map( lambda x: x[1], links)\n%Rpush x0\n%Rpush x1\n%R data = data.frame( x0, x1 )\n%R library(igraph)\n%R graph <- graph.data.frame( data )\n%R plot( graph )\n\n## Overall stuff\nx = map( lambda x: x, All)\ny = map( lambda x: All[x], All)\ny.sort()\n%Rpush y\n%R hist(y, main=\"Distribution of finished requests\")\n\nprint len(y)\n \n## generate two vectors\nx = map( lambda x: x, authors)\ny = map( lambda x: authors[x], authors)\ny.sort()\n%Rpush y\n%R hist(y, main = \"Sum interaction of finished requests\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Error in library(igraph) : there is no package called \u2018igraph\u2019\n" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Error in eval(expr, envir, enclos) : \n could not find function \"graph.data.frame\"\n" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "Error in plot(graph) : object 'graph' not found\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAEJGlDQ1BJQ0MgUHJvZmlsZQAAOBGF\nVd9v21QUPolvUqQWPyBYR4eKxa9VU1u5GxqtxgZJk6XtShal6dgqJOQ6N4mpGwfb6baqT3uBNwb8\nAUDZAw9IPCENBmJ72fbAtElThyqqSUh76MQPISbtBVXhu3ZiJ1PEXPX6yznfOec7517bRD1fabWa\nGVWIlquunc8klZOnFpSeTYrSs9RLA9Sr6U4tkcvNEi7BFffO6+EdigjL7ZHu/k72I796i9zRiSJP\nwG4VHX0Z+AxRzNRrtksUvwf7+Gm3BtzzHPDTNgQCqwKXfZwSeNHHJz1OIT8JjtAq6xWtCLwGPLzY\nZi+3YV8DGMiT4VVuG7oiZpGzrZJhcs/hL49xtzH/Dy6bdfTsXYNY+5yluWO4D4neK/ZUvok/17X0\nHPBLsF+vuUlhfwX4j/rSfAJ4H1H0qZJ9dN7nR19frRTeBt4Fe9FwpwtN+2p1MXscGLHR9SXrmMgj\nONd1ZxKzpBeA71b4tNhj6JGoyFNp4GHgwUp9qplfmnFW5oTdy7NamcwCI49kv6fN5IAHgD+0rbyo\nBc3SOjczohbyS1drbq6pQdqumllRC/0ymTtej8gpbbuVwpQfyw66dqEZyxZKxtHpJn+tZnpnEdrY\nBbueF9qQn93S7HQGGHnYP7w6L+YGHNtd1FJitqPAR+hERCNOFi1i1alKO6RQnjKUxL1GNjwlMsiE\nhcPLYTEiT9ISbN15OY/jx4SMshe9LaJRpTvHr3C/ybFYP1PZAfwfYrPsMBtnE6SwN9ib7AhLwTrB\nDgUKcm06FSrTfSj187xPdVQWOk5Q8vxAfSiIUc7Z7xr6zY/+hpqwSyv0I0/QMTRb7RMgBxNodTfS\nPqdraz/sDjzKBrv4zu2+a2t0/HHzjd2Lbcc2sG7GtsL42K+xLfxtUgI7YHqKlqHK8HbCCXgjHT1c\nAdMlDetv4FnQ2lLasaOl6vmB0CMmwT/IPszSueHQqv6i/qluqF+oF9TfO2qEGTumJH0qfSv9KH0n\nfS/9TIp0Wboi/SRdlb6RLgU5u++9nyXYe69fYRPdil1o1WufNSdTTsp75BfllPy8/LI8G7AUuV8e\nk6fkvfDsCfbNDP0dvRh0CrNqTbV7LfEEGDQPJQadBtfGVMWEq3QWWdufk6ZSNsjG2PQjp3ZcnOWW\ning6noonSInvi0/Ex+IzAreevPhe+CawpgP1/pMTMDo64G0sTCXIM+KdOnFWRfQKdJvQzV1+Bt8O\nokmrdtY2yhVX2a+qrykJfMq4Ml3VR4cVzTQVz+UoNne4vcKLoyS+gyKO6EHe+75Fdt0Mbe5bRIf/\nwjvrVmhbqBN97RD1vxrahvBOfOYzoosH9bq94uejSOQGkVM6sN/7HelL4t10t9F4gPdVzydEOx83\nGv+uNxo7XyL/FtFl8z9ZAHF4bBsrEwAAPcdJREFUeAHt3QmYFNW5//F3VGCAkX0CiFwElIhBDIkY\nicimIhh3XFExGiTiDbmDMRoxVyOaGEwM4nYF7xUjVxBQRAUUXMBARA1XHoOCuGVc2AREFpVloP/1\nO0n1vxm6Zhqmi66u/p7naeg+VX3qnM/p6bfOqdPdRQkvGQkBBBBAAAEE9qvAAfv1aBwMAQQQQAAB\nBJwAAZgXAgIIIIAAAjkQIADnAJ1DIoAAAgggQADmNYAAAggggEAOBAjAOUDnkAgggAACCBCAeQ0g\ngAACCCCQAwECcA7QOSQCCCCAAAIEYF4DCCCAAAII5ECAAJwDdA6JAAIIIIAAAZjXAAIIIIAAAjkQ\nIADnAJ1DIoAAAgggQADmNYAAAggggEAOBAjAOUDnkAgggAACCBCAeQ0ggAACCCCQAwECcA7QOSQC\nCCCAAAIEYF4DCCCAAAII5ECAAJwDdA6JAAIIIIAAAZjXAAIIIIAAAjkQIADnAJ1DIoAAAgggQADm\nNYAAAggggEAOBAjAOUDnkAgggAACCBCAeQ0ggAACCCCQAwECcA7QOSQCCCCAAAIHQYBATQQWL15s\nn376abKI4uJiO+SQQ6xDhw5Wu3btZP6aNWvs9ddft5YtW1rXrl2T+Znc2bVrlx1wQPC5ol+H73//\n+9aqVSt77bXX7PPPP7cf/vCH1qxZs0wOEbhP6rFr0obAA9Rgw/z58+3NN9+0Fi1a2I9+9CMrKSnZ\nrbSvvvrKnn/+eVuxYoV16tTJvvOd7+x1H1S23e0AaR6oPp999pkde+yx7nWQZpd9yvrrX/9q69ev\ntx49elijRo32qYyoPyn1tRb1ulK/LAkkSAjUQODyyy9PeC/FPW6HH3544oUXXkiW/Oyzz7p9zj33\n3GRedXfeeuutRK9evRLeG3qVu1522WWu7Mcff9zt169fP/f4pZdeqvJ5VW303gwTEyZMSJx33nnJ\n3falDcknZ/nOQw89tJv5unXr9jhC3759k/v07t07sS/1r2y7x0EqZVx66aXumFOmTKm0pWYPTzzx\nRFeud3JVs4Ii+Owvv/wyMXz48MR9990XwdpRpTAFGAFn6USm0Is588wzzXuTt2+++ca8wOduylu2\nbJm1adPGjjjiCBsxYoQbiWVqddZZZ1l5eXm1u+s4rVu3tqOOOqrafTPd4f/+7//MCz7WrVu35FP2\npQ3JJ2f5zpw5c1yJo0ePtoEDB1rTpk13O0JFRYW9/PLLdtBBB9m7775rTZo0cbMCe9sHYdjuVlEe\n2G9/+1tTP+pGKiwBAnBh9XdorfVGKFZWVubKv/HGG+3iiy82b0Rqt956qz388MMuEDRo0MDq1q2b\nrMPf/vY3e+qpp8wbAdh3v/td69mzp3372992273Rp23cuNHdv//+++3ss892z501a5YL9AqQn3zy\niV111VUuX2Ur2KSmHTt22H/913/Z22+/bV26dLErrrjCDjzwQPPOaO3OO+90+//iF79wT9GU9fjx\n4920qY71yCOPuHxN344aNcqGDh2atg3a6S9/+Yu98sor9sUXX9hxxx1nF154YXLK3Bt12tKlS+3H\nP/6xzZs3zxYsWOBOFq6++mpTnYPS5s2bbfbs2aap14YNG9ppp53mytb+//M//2OaGlZScNWxzz//\nfPdY/2iq9t577zUFYU1LP/HEE+759erVc8f0++D999+3adOmuZMM7ffkk0/azp07XUDv3LmzK0/7\nptpqu/pVfVerVi07/vjjXX8owKcmGU+ePNm1t23btvbTn/7U6tevn9zlvffes0mTJpk3cjddOtDJ\njvrGT+ozbVcfXnLJJX522v+3b9/ugpcufbRr186mTp1q3iyIu+mEUF7qA9VDZWk/P23bts282QTn\n+IMf/MD0Ola9dZmkT58+Nn36dFu+fLl5MyHWvn1797Rx48bZhg0b7JprrrGDDz7Y5VXVnqrM5KhL\nM0o6cZXjoEGDbO3ate71+NFHH9lhhx3mnDX9XtWlGFcI/+SXQJjDa8qOv4A/Bf2HP/xht8bOnDnT\nTRkec8wxLr/y9Keml72/lIQXFBJHHnlkwnvzTdSpUyexZMkSt7/3Zui2ax/dvICZ8N5I3X3v+nJy\nm8qpPE3qT0F7b7QJ7zp0oqioyO3fv39/V7b3hugee9erk3X2rl26PB3XC+zJ8v3jeyPxtFO4N9xw\nwx77du/ePfH111+7sr3Rqdt+wgknuPZ5QSt5nOTBK93x3twT3/ve93Yr13vjTfzud79ze3rXcnfb\npvampnfeeWe37WqD7Cr3gXfy4/bzrte6unlB2D1WP3gBxRVZ2fY///M/3T7edefEv/3bv7n7XrBK\neIHS7e9PQXuzBQn5yl/H906uklXUpQH1u/K9AO/+94JLwjthcPt4JyruudquMlQfb4Tv9ks3Be2d\nrLht3vqChN+Gm266KbFp06aENyuy23FUjl4zSqqz/zqTr26y0HE1Jaw0YMAA91h2ftLlFe2j14lS\nde2pyuyuu+5yZak83WSpyx8dO3Z09dFr3TsBctv8/vfrwf/5LxC8ssV7NZAQ2FcBTQkrffjhh2mL\n0AhNaeLEiW6a+sUXX3SjJJ35K2nkeOihh7r7GiVoBOonjQqefvppt48/UvO3pf6vkYNGyV5Qt299\n61v23HPPuVFl6j7p7muENGPGDLdJozMtKvLrkrq/6qDRsY6jUahGWV7wdaO+22+/PXVXd1+jvQ8+\n+MCN2DXq0ag7XfrZz37mFldp1PXxxx+7UZhGqL/+9a9dvkbcGg0pqQ4akaYmzSJoRKZUWlpqWjym\naeqgpHpr4ZpmHDTq06jQn+JOfY4WCXnXKZ2lLi2obppJ8E5s3DFS95W3ZgS0j+ouH7VfSSNH7wTF\njVS1j2ZL1KbHHnvMbdcMytatW+26665zI80HH3zQjerdxir+WbVqlf3kJz9xx9IMg+qmtml0reNo\nRK3ZAS84u1IeffRRN/rUpQXvpMXtq5Ht3qaq2lOd2ZAhQ0x1VbrlllvMO3E1/S3IV6N1/a/Xn2YQ\nqpox2ds6s380BAjA0eiH2NVCb6BKlaeF/YZqqlBJ070KGJomPeecc9x0pvIVOPznauW03sT9dNJJ\nJ5muTZ5++ul+Vtr/vdGYNW/e3K3+1XOUNHVdXdJUqAKIklZya2V16vSo/3xNEStpylAB0Ru1mD+l\n7Qdwf19NS6sN3qjRXRNXfro3e++cPhn89Ias/XUtXKuc9WauKXhNU/orzBs3buymqP3j6H/V1V/9\nrSlLtUWr04OSTjJ0CUD76gRCKV3dtF0nGzpxUJmartX075VXXumMUsu/4IIL3ImGVmirDX6Zeq6m\ndFWfLVu2uOle33ru3Lnu8oBWUiv9/Oc/d/spgGoaPpM0cuRI1xc6YVJQV9JrSdPKmo72RtOm4yi9\n8cYb7n9vYaB5szDudaj71SX1kZ+qa091ZnpN+NPYWt2tuqrueu3rMowe69KJpvp1ckGKlwABOF79\nGZnW+IunNLpIl7ypW7vjjjvMm85zozVd59UiLo1aqksKyJkkvXn5SQvBlPSm7yddm/OTAsneJn8E\nm9pG/zqhRlqpKbUufvBMfSP391U9dE1cQVTXLP0kJ6XK5frba/J/urop2KdLGnErIOh6rq5na1Su\nEyhdi05NCrx+0rViJXn7/ipffa0ZBI22dfKi/TT61k3t9+ul+zoJqi6pTqmjRP9Yuo6r43iXSdw1\nYp0Q6CNa/nb/ZFDl+ycDlY+V+lrRdWk/+WUEtUf7ZWrmlykLjYR79epl3jS6uzYvc53wkOIlQACO\nV39GojWaXhwzZoyri0a16ZIWEWmaWv9rmtK7FuZ206IpP2n0oKTFRKlJo5hMkgKEn/SZWSUFNZWr\nxUV6I9WoSEl1SE1601dKfeNN3a77WrSjpFGpnzTNrXT00Uf7We5/fzS/W2aaB2qbRqM6buo0sH+M\nyuWmKWKvszKtm4KWptA1a6ETAY0g1b8KmFpol5q86+7Jh6knGgp2GkUrT/2jKWIFyLFjx7qArJGx\nLgGo/f5IWFPomoqtLvknNv5+J598srurkwQdR+UpCMtSwdo/WfJHyto51VyP/YVjCoRKer34J156\nXF17MjGr/DrX5+o1g3T33Xe7qXMFcJ1ALlq0yN10XFI8BAjA8ejHnLdCb6B6w9OXXyiwavWuRkb+\nlGzlCv7v//6vaYpY04u6xqvrd0r+SFX3/ak5TSumTummvrlrv6B0zz33mKZCdY3x1VdfdV/g4C2q\ncbtrlKE0ePBg90ZXuZ7+sTVdev311yfr5570r38UfDTVq2uwWqXsLUgzb8GNC/A333xz6q57dV8r\nu5U0ta3rizLV1Lm+3KSqa7l7dZB92FnuuhapAOwtCDLNcmi0rqSgmmnSdLpOfrRyWyuKNcWuFfB6\nHSj5U626tqyZEv/yQXXl+4HM3099oqSpfH3ER6NIXbb4/e9/7/Llq1G3Vk2rXZp+9j677rb5//iv\nEz1H16L1/MqzJVW1JxMz/7WmVegaqetkUK8t1Ud5q1evdtfMdYKROrPg15H/81jAOxMlIbDPAv4q\naO9PwK3U1IpVrRIdNmxYIvXLISqvwPVGEgnvDTHhXe9yz9PztVLWW2CVrIs3AkiuYPaCYHIVtLdo\nJbmP7lReqeuvgvZGZQlvStGVr1W73uKW5PO80VfCC55um3edOOEFUXdfq2KVvCnFhDfl5/K80XBC\nq28rt0H7acWxd30u4Y0i3b7eCUTCO1nQJpf8VdDem7yflfAWjrl9vVFdMq/yHS8wJbzRutvPCywJ\nfamGF/CSu3knO26bN3pL5qXe8RYdue1qm58q199fBe2dpPi7JLzFY+553sfHXF5lW28Uljj11FMT\n3sjQ7ecFhcR//Md/JLwRq9vfXwWd+kUcldurVcveSVFyhbTa6QXIZB20gtwLjq7v1Xbtq5teI1Wt\ngtYK58rJm1FJeNfJ3XO1mlht9Veoa19vIVayLd6IOOGdkLl9/VXQ3sK0hFa169haka38U045xT32\nV0FX157qzLyPXCW86/quTFkoPfDAAwnvo3NuJbSO7U3BJ7xg7LbxT3wEitQUr4NJCORMQFNuWoDi\njwRSK6LFQJqC9q8Hpm7L5L5e3vosr64hVh45a9vKlSurvL6oFaj6kgv/s7NBx/SvKWrRVzaTRj9y\n8adCs1l2TcrSCNZ39a/x7m15KkOr3lM/l5tahqZ9dW01G189qbqqb9JNt6semlbWa0RrEbQK3Qu0\n9qc//SlZHW3XQrCqLn9U156qzDSqVl9rAVbqSF6vf03xq+6VX7/JynEnbwUIwHnbdVQcAQSyLRAU\ngLN9HMpDQAJcA+Z1gAACCPxLQB/r0keSsj2TATAC6QQYAadTIQ8BBBBAAIGQBRgBhwxM8QgggAAC\nCKQTIACnUyEPAQQQQACBkAUIwCEDUzwCCCCAAALpBAjA6VTIQwABBBBAIGQBAnDIwBSPAAIIIIBA\nOgECcDoV8hBAAAEEEAhZgAAcMjDFI4AAAgggkE6AAJxOhTwEEEAAAQRCFiAAhwxM8QgggAACCKQT\nIACnUyEPAQQQQACBkAUIwCEDUzwCCCCAAALpBAjA6VTIQwABBBBAIGQBAnDIwBSPAAIIIIBAOgEC\ncDoV8hBAAAEEEAhZgAAcMjDFI4AAAgggkE6AAJxOhTwEEEAAAQRCFiAAhwxM8QgggAACCKQTIACn\nUyEPAQQQQACBkAUIwCEDUzwCCCCAAALpBAjA6VTIQwABBBBAIGQBAnDIwBSPAAIIIIBAOgECcDoV\n8hBAAAEEEAhZgAAcMjDFI4AAAgggkE6AAJxOhTwEEEAAAQRCFiAAhwxM8QgggAACCKQTIACnUyEP\nAQQQQACBkAUIwCEDUzwCCCCAAALpBAjA6VTIQwABBBBAIGQBAnDIwBSPAAIIIIBAOgECcDoV8hBA\nAAEEEAhZgAAcMjDFI4AAAgggkE6AAJxOhTwEEEAAAQRCFjgo5PJjUfwLL7xgb7/9dizaEkYj6tSp\nY4MHD7batWuHUTxlIoAAArEUKEp4KUotq6iosM2bN1vjxo0jU61u3brZr371KysqKopMnaJUkQUL\nFtjJJ59sffv2jVK1qAsCCCAQaYFIjIC3b99uv/nNb2zChAm2YsUK0zlBvXr1rG3btvaLX/zCrrji\nipwiqi5nnHGGHXAAM/bpOuKdd95Jl00eAggggEAVApEIwMOGDbPVq1fbzJkzrV27dla/fn3btGmT\nLV261MrKymzr1q02dOjQKprBJgQQQAABBPJLIBJDujlz5tjYsWOtc+fOVlJS4qZ6GzZsaJr6HTNm\njE2fPj2/VKktAggggAAC1QhEIgB36tTJ5s6dm7aqM2bMsNLS0rTbyEQAAQQQQCBfBSIxBT1y5Egb\nOHCgjR492tq3b28NGjSwjRs32rJly0yLsmbNmpWR77p162z9+vVp992yZYs1a9bM2rRpk3Y7mQgg\ngAACCOxPgUgE4C5dutjixYtt4cKFVl5e7q4HFxcX21VXXWV9+vTJePXx/Pnzbfbs2Wn9PvzwQ9NI\nW0GehAACCCCAQK4FIhGABw0aZCNGjLDevXvb8uXL7dprr7WXXnrJXQ++6KKLXNCsVatWtVbnnHOO\n6ZYuTZ061dauXZtuE3kIIIAAAgjsd4FIXAPWl1x89dVXrvF33HGHHXnkkbZy5Up79dVX3YhYeSQE\nEEAAAQTiJBCJAJwKqilkfSa4SZMm1qFDB7v99ttt3rx5qbtwHwEEEEAAgbwXiEwA1mh31apVdvzx\nx++2kGrJkiWma8QkBBBAAAEE4iQQiWvAl1xyiT377LN22223udXPWoA1adIkNxK+//773fXgOKHT\nFgQQQAABBCIRgPV1k7op6aso9S1YSv369bPrrrvOLcZyGfyDAAIIIIBATAQiEYBTLVu1amW6KWk6\nmoQAAggggEAcBSJzDTiOuLQJAQQQQACBIAECcJAM+QgggAACCIQoQAAOEZeiEUAAAQQQCBIgAAfJ\nkI8AAggggECIAgTgEHEpGgEEEEAAgSABAnCQDPkIIIAAAgiEKEAADhGXohFAAAEEEAgSIAAHyZCP\nAAIIIIBAiAIE4BBxKRoBBBBAAIEgAQJwkAz5CCCAAAIIhChAAA4Rl6IRQAABBBAIEiAAB8mQjwAC\nCCCAQIgCBOAQcSkaAQQQQACBIAECcJAM+QgggAACCIQoQAAOEZeiEUAAAQQQCBIgAAfJkI8AAggg\ngECIAgTgEHEpGgEEEEAAgSABAnCQDPkIIIAAAgiEKEAADhGXohFAAAEEEAgSIAAHyZCPAAIIIIBA\niAIE4BBxKRoBBBBAAIEgAQJwkAz5CCCAAAIIhChAAA4Rl6IRQAABBBAIEiAAB8mQjwACCCCAQIgC\nBOAQcSkaAQQQQACBIAECcJAM+QgggAACCIQoQAAOEZeiEUAAAQQQCBIgAAfJkI8AAggggECIAgTg\nEHEpGgEEEEAAgSABAnCQDPkIIIAAAgiEKEAADhGXohFAAAEEEAgSIAAHyZCPAAIIIIBAiAIE4BBx\nKRoBBBBAAIEgAQJwkAz5CCCAAAIIhChAAA4Rl6IRQAABBBAIEiAAB8mQjwACCCCAQIgCBOAQcSka\nAQQQQACBIAECcJAM+QgggAACCIQoQAAOEZeiEUAAAQQQCBIgAAfJkI8AAggggECIAgTgEHEpGgEE\nEEAAgSABAnCQDPkIIIAAAgiEKEAADhGXohFAAAEEEAgSIAAHyZCPAAIIIIBAiAIE4BBxKRoBBBBA\nAIEgAQJwkAz5CCCAAAIIhChAAA4Rl6IRQAABBBAIEiAAB8mQjwACCCCAQIgCBOAQcSkaAQQQQACB\nIIHIBeCKigrbsGFDUH3JRwABBBBAIBYCkQjA27dvtxEjRljr1q2tdu3a1qRJE6tfv7516tTJxo8f\nHwtoGoEAAggggECqwEGpD3J1f9iwYbZ69WqbOXOmtWvXzgXfTZs22dKlS62srMy2bt1qQ4cOzVX1\nOC4CCCCAAAJZF4jECHjOnDk2duxY69y5s5WUlFhRUZE1bNjQunXrZmPGjLHp06dnveEUiAACCCCA\nQC4FIhGANdU8d+7ctA4zZsyw0tLStNvIRAABBBBAIF8FIjEFPXLkSBs4cKCNHj3a2rdvbw0aNLCN\nGzfasmXLTIuyZs2alZGvpqq3bduWdt+vv/7alZV2I5kIIIAAAgjsZ4FIBOAuXbrY4sWLbeHChVZe\nXu6uBzdq1MgGDRpk/fv3d1PSmbhMnTrVnnzyybS7rlixwo477ri028hEAAEEEEBgfwtEIgCr0cXF\nxda7d+9k+x977DGbNm2anXbaacm86u5cdtllplu6pOC8du3adJvIQwABBBBAYL8LRCIAH3HEEbZu\n3brdGq+PJmn6WSPas88+m48j7abDAwQQQACBfBeIRADWZ32vvPJKu/TSS+3yyy93plr5rCnpUaNG\nuY8l5Ts09UcAAQQQQCBVIBKroLt3726LFi2yDz74wK699loXcJs1a+Y+ktSmTRvTfRICCCCAAAJx\nEojECFigWvn86KOP2pQpU6xHjx72gx/8wA488MA4WdMWBBBAAAEEkgKRGAEna+PdueCCC0xfzKFr\nwi1atEjdxH0EEEAAAQRiIxCZEXCq6KGHHmrPPvtsahb3EUAAAQQQiJVA5EbAsdKlMQgggAACCAQI\nEIADYMhGAAEEEEAgTAECcJi6lI0AAggggECAAAE4AIZsBBBAAAEEwhQgAIepS9kIIIAAAggECBCA\nA2DIRgABBBBAIEwBAnCYupSNAAIIIIBAgAABOACGbAQQQAABBMIUIACHqUvZCCCAAAIIBAgQgANg\nyEYAAQQQQCBMAQJwmLqUjQACCCCAQIAAATgAhmwEEEAAAQTCFCAAh6lL2QgggAACCAQIEIADYMhG\nAAEEEEAgTAECcJi6lI0AAggggECAAAE4AIZsBBBAAAEEwhQgAIepS9kIIIAAAggECBCAA2DIRgAB\nBBBAIEwBAnCYupSNAAIIIIBAgAABOACGbAQQQAABBMIUIACHqUvZCCCAAAIIBAgQgANgyEYAAQQQ\nQCBMAQJwmLqUjQACCCCAQIAAATgAhmwEEEAAAQTCFCAAh6lL2QgggAACCAQIEIADYMhGAAEEEEAg\nTAECcJi6lI0AAggggECAAAE4AIZsBBBAAAEEwhQgAIepS9kIIIAAAggECBCAA2DIRgABBBBAIEwB\nAnCYupSNAAIIIIBAgAABOACGbAQQQAABBMIUIACHqUvZCCCAAAIIBAgQgANgyEYAAQQQQCBMAQJw\nmLqUjQACCCCAQIAAATgAhmwEEEAAAQTCFCAAh6lL2QgggAACCAQIEIADYMhGAAEEEEAgTAECcJi6\nlI0AAggggECAAAE4AIZsBBBAAAEEwhQgAIepS9kIIIAAAggECBCAA2DIRgABBBBAIEwBAnCYupSN\nAAIIIIBAgAABOACGbAQQQAABBMIUIACHqUvZCCCAAAIIBAgQgANgyEYAAQQQQCBMAQJwmLqUjQAC\nCCCAQIAAATgAhmwEEEAAAQTCFCAAh6lL2QgggAACCAQIRC4AV1RU2IYNGwKqSzYCCCCAAALxEIhE\nAN6+fbuNGDHCWrdubbVr17YmTZpY/fr1rVOnTjZ+/Ph4SNMKBBBAAAEEUgQOSrmfs7vDhg2z1atX\n28yZM61du3Yu+G7atMmWLl1qZWVltnXrVhs6dGjO6seBEUAAAQQQyLZAJEbAc+bMsbFjx1rnzp2t\npKTEioqKrGHDhtatWzcbM2aMTZ8+PdvtpjwEEEAAAQRyKhCJAKyp5rlz56aFmDFjhpWWlqbdRiYC\nCCCAAAL5KhCJKeiRI0fawIEDbfTo0da+fXtr0KCBbdy40ZYtW2ZalDVr1qx89aXeCCCAAAIIpBWI\nRADu0qWLLV682BYuXGjl5eXuerBGvbru26NHDzclnbb2lTLHjRtnEydOrJT7z4dr16617t27p91G\nJgIIIIAAAvtbIDAA33333W4UOmjQIGvbtm3o9SouLrbevXsnj7Nz50776quvMg6+euKQIUPcLVlI\nyp2pU6eagjAJAQQQQACBKAgEXgP+0Y9+ZJs3b3ajxl69etkjjzxiW7ZsCaXOO3bssDvuuMOuvPJK\ne/PNN+3xxx+35s2bW6NGjezcc8+1bdu2hXJcCkUAAQQQQCBXAoEB+IgjjrA//vGP9sknn9iNN95o\nf/nLX6xjx4724x//2F577bWs1veXv/ylzZs3zwXdCy+80G699VZ78skn7f3333fXgFkFnVVuCkMA\nAQQQiIBA4BS0X7cvvvjC3nvvPXc76KCDrGnTpu6zuYcddpgbqfr71eR/LbJatGiRW3xVt25d+/zz\nz61nz56uyNtvv91+/etfmwIzCQEEEEAAgbgIBAbg+fPn2+9//3vT/6effrrdcsstdtJJJ9kBBxxg\nu3btslatWrkFUwrENU368o13333XjjvuOBs8eLB99tlnySKXLFlihx9+ePIxdxBAAAEEEIiDQGAA\n1qj3jDPOcKuK9aUYqUlBWF8RqSCcjXTttdfaWWedZQ8++KD7/5BDDnHF6uspH374YXvxxRezcRjK\nQAABBBBAIDICgdeAtSBKgfett95ylX3ggQdc0NXqZKV+/fpZrVq13P2a/tO3b19bvny5GwGnlqUT\ngI8++sh9J3RqPvcRQAABBBDId4HAADxt2jT3xRgtWrRwbdTncSdNmmR//vOfQ2mzvnyjZcuWu5Wt\nr6KsV6/ebnk8QAABBBBAIA4CgQH4ueees9/+9rfWoUMH1059XaS+qeqJJ56IQ7tpAwIIIIAAAjkV\nCAzAbdq0sdmzZ+9WuVdeecWtVN4tkwcIIIAAAgggsNcCgYuwdA345JNPdj8RePzxx9vf//53W7Nm\njWlkTEIAAQQQQACBmgkEBmCtcNYXbmgFsr4QQx8P0jVZrYAmIYAAAggggEDNBAIDsIrVKugBAwbU\n7Ag8GwEEEEAAAQT2EAgMwF9++aVdc801pi/C2L59e/KJ/fv3N/1QAwkBBBBAAAEE9l0gMADfeeed\n7teQ7rnnHispKUkeoUmTJsn73EEAAQQQQACBfRMIDMArVqxwI+DUnwjct0PwLAQQQAABBBCoLBC4\noko/AzhhwgT3wwiVn8RjBBBAAAEEEKiZQGAAXrlypelXivTtVPppwiOPPNLdysrKanZEno0AAggg\ngAACFjgFrV9AOvbYYx3RunXrrFGjRqafI+QaMK8aBBBAAAEEai4QOALW54D1TVg/+clP7Prrr7dN\nmza5r6bUdzaTEEAAAQQQQKBmAoEBeNy4cfbyyy+bfpRBqU+fPu7nB5VPQgABBBBAAIGaCQQG4Pnz\n59t1111n/m/z6qcHdf1XQZmEAAIIIIAAAjUTCAzArVu3NgXh1PT000/v8ZOBqdu5jwACCCCAAAKZ\nCQQuwho+fLh17drVXnjhBVu1apX7Hujy8nL33dCZFc1eCCCAAAIIIBAkEBiAmzdvbkuXLrXJkyfb\nJ598Yj179nS3Aw88MKgs8hFAAAEEEEAgQ4HAAKzn6ysotQqahAACCCCAAALZFQgMwHfddZf7JqzK\nh+vbt6/pe6JJCCCAAAIIILDvAoEB+JxzzrHjjjvOlZxIJEzfjDVmzBg77bTT9v1oPBMBBBBAAAEE\nnEBgAG7Xrp3plpr0+I9//KP16tUrNZv7CCCAAAIIILCXAoEfQ0pXzj/+8Q/3E4XptpGHAAIIIIAA\nApkLBI6ANdJ99NFHkyV988039umnn9qkSZOSedxBAAEEEEAAgX0TCAzAAwYMcJ/99YvVDzFoCrq0\ntNTP4n8EEEAAAQQQ2EeBwADctm1b042EAAIIIIAAAtkXCAzAQR9DSq3Cq6++avXq1UvN4j4CCCCA\nAAIIZCAQGIBPOOEEe/jhh90XcZx44on29ttv27333muamu7Ro4cruk6dOhkcgl0QQAABBBBAoLJA\nYADWAqxbb73VzjvvPPccfS90x44dbeTIkXbTTTdVLofHCCCAAAIIILAXAoEfQ9LXUOpjR6npzTff\ntPr166dmcR8BBBBAAAEE9kEgcAQ8ePBgO/XUU23atGnuV5EWLVrkfpTh+eef34fD8BQEEEAAAQQQ\nSBUIHAF36NDBXn/9dbvqqqtMv4B02223uQDcqVOn1OdzHwEEEEAAAQT2QSAwAO/atcvGjRtnd999\nt/sN4IqKCjv33HNt7dq1+3AYnoIAAggggAACqQKBAVjB9+WXX3ZT0HpCnz59rFWrVi4opxbAfQQQ\nQAABBBDYe4HAADx//ny77rrr7JBDDnGl1qpVy8rKylxQ3vvD8AwEEEAAAQQQSBUIDMCtW7c2BeHU\n9PTTT1vLli1Ts7iPAAIIIIAAAvsgELgKevjw4W718wsvvGCrVq1y3wtdXl7urgfvw3F4CgIIIIAA\nAgikCAQG4AYNGtjSpUtt8uTJbvVzz549TTetiCYhgAACCCCAQM0EAgPwiBEjrHnz5varX/2qZkfg\n2QgggAACCCCwh0DgNeA2bdrYkiVLbOfOnXs8iQwEEEAAAQQQqJlA4Ai4bt26NmPGDNNUtBZk+VPP\n+nasP/3pTzU7Ks9GAAEEEECgwAUCA3C/fv3smGOO2YOnadOme+SRgQACCCCAAAJ7JxAYgDUFrRsJ\nAQQQQAABBLIvsMc1YI18v/jiC3ekb775xj799NPsH5USEUAAAQQQKHCBPQKwfvVox44djuWNN96w\ngQMHFjgRzUcAAQQQQCD7AnsE4OwfghIRQAABBBBAoLIAAbiyCI8RQAABBBDYDwJpF2F99tlntnXr\nVlu9erVt27bNPv7442RV6tevb82aNUs+5g4CCCCAAAII7L1A2gB87LHH7lbSYYcdlnx8/vnn25Qp\nU5KPuYMAAggggAACey+wRwBes2ZNlaUUFRVVub2mGysqKmzz5s3WuHHjmhbF8xFAAAEEEIiswB7X\ngPWNV1XdDjhgj6fUuHHbt283ffe0vnGrdu3a1qRJE9NUd6dOnWz8+PE1Lp8CEEAAAQQQiJrAHiPg\nXFRw2LBh7nrzzJkzrV27di74btq0yf0aU1lZmbsePXTo0FxUjWMigAACCCAQikD2h7P7UM05c+bY\n2LFjrXPnzlZSUmKa5m7YsKH7DeIxY8bY9OnT96FUnoIAAggggEB0BSIRgDXVPHfu3LRK+kGI0tLS\ntNvIRAABBBBAIF8FIjEFPXLkSPeNW6NHj7b27du7X2DauHGjLVu2zLQoa9asWfnqS70RQAABBBBI\nKxCJANylSxdbvHixLVy40MrLy931YI16dd23R48ebko6be0rZY4bN84mTpxYKfefD9euXWvdu3dP\nu41MBBBAAAEE9rdAJAKwGl1cXGy9e/feo/07d+50o+A6derssa1yxpAhQ0y3dGnq1KmmIExCAAEE\nEEAgCgKRuAasX1waNGiQW4B1yimn2AcffJC0UeC87LLLko+5gwACCCCAQBwEIhGAde23ZcuWpl9i\n6tatm5t2fu+99+LgSxsQQAABBBBIKxCJKWgtstI14Lp165oWZB111FF26qmn2oIFC9JWmkwEEEAA\nAQTyXSASI2AFXI1+/XTRRReZvpyjf//+tn79ej+b/xFAAAEEEIiNQCQC8NVXX236kYdRo0YlYa+9\n9lobMGCADR8+PJnHHQQQQAABBOIiEIkp6L59+9qHH35oH3300W6ut9xyi/Xs2dNt220DDxBAAAEE\nEMhzgUgEYBnqxxeOPvroPTh79eplupEQQAABBBCIk0AkpqDjBEpbEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWIABnGZTiEEAAAQQQyESAAJyJEvsggAAC\nCCCQZQECcJZBKQ4BBBBAAIFMBAjAmSixDwIIIIAAAlkWiFwArqiosA0bNmS5mRSHAAIIIIBAtAQi\nEYC3b99uI0aMsNatW1vt2rWtSZMmVr9+fevUqZONHz8+WmLUBgEEEEAAgSwIHJSFMmpcxLBhw2z1\n6tU2c+ZMa9eunQu+mzZtsqVLl1pZWZlt3brVhg4dWuPjUAACCCCAAAJREYjECHjOnDk2duxY69y5\ns5WUlFhRUZE1bNjQunXrZmPGjLHp06dHxYt6IIAAAgggkBWBSARgTTXPnTs3bYNmzJhhpaWlabeR\niQACCCCAQL4KRGIKeuTIkTZw4EAbPXq0tW/f3ho0aGAbN260ZcuWmRZlzZo1K199qTcCCCCAAAJp\nBSIRgLt06WKLFy+2hQsXWnl5ubserFGvrvv26NHDTUmnrX2lzHHjxtnEiRMr5f7z4dq1a6179+5p\nt5GJAAIIIIDA/haIRABWo4uLi6137941av+QIUNMt3Rp6tSppiBMQgABBBBAIAoCkbgGHAUI6oAA\nAggggMD+FIjECPiuu+6yHTt2BLb7yCOPtLPPPjtwOxsQQAABBBDIN4FIBGBd973vvvvs8ssvd58B\nrozIKujKIjxGAAEEEMh3gUgE4Hvvvdd27drlbvfff3++m1J/BBBAAAEEqhWIzDXgUaNGmb79asuW\nLdVWmh0QQAABBBDId4FIjICFqG/Aeuyxx/Ldk/ojgAACCCCQkUBkRsAZ1ZadEEAAAQQQiIkAATgm\nHUkzEEAAAQTyS4AAnF/9RW0RQAABBGIiQACOSUfSDAQQQACB/BIgAOdXf1FbBBBAAIGYCBCAY9KR\nNAMBBBBAIL8ECMD51V/UFgEEEEAgJgIE4Jh0JM1AAAEEEMgvAQJwfvUXtUUAAQQQiIkAATgmHUkz\nEEAAAQTyS4AAnF/9RW0RQAABBGIiQACOSUfSDAQQQACB/BIgAOdXf1FbBBBAAIGYCBCAY9KRNAMB\nBBBAIL8ECMD51V/UFgEEEEAgJgIE4Jh0JM1AAAEEEMgvAQJwfvUXtUUAAQQQiIkAATgmHUkzEEAA\nAQTyS4AAnF/9RW0RQAABBGIiQACOSUfSDAQQQACB/BIgAOdXf1FbBBBAAIGYCBCAY9KRNAMBBBBA\nIL8ECMD51V/UFgEEEEAgJgIE4Jh0JM1AAAEEEMgvAQJwfvUXtUUAAQQQiIkAATgmHUkzEEAAAQTy\nS4AAnF/9RW0RQAABBGIiQACOSUfSDAQQQACB/BIgAOdXf1FbBBBAAIGYCBCAY9KRNAMBBBBAIL8E\nCMD51V/UFgEEEEAgJgIE4Jh0JM1AAAEEEMgvAQJwfvUXtUUAAQQQiIkAATgmHUkzEEAAAQTyS4AA\nnF/9RW0RQAABBGIiQACOSUfSDAQQQACB/BIgAOdXf1FbBBBAAIGYCBCAY9KRNAMBBBBAIL8ECMD5\n1V/UFgEEEEAgJgIE4Jh0JM1AAAEEEMgvAQJwfvUXtUUAAQQQiIkAATgmHUkzEEAAAQTyS+Cg/Kou\ntUUAAQQKT2DHjh32zDPPFF7D96LF3bt3t+bNm+/FM3K/KwE4931ADRBAAIEqBR566CF7+umn7Ywz\nzqhyv0Ld+P7779vkyZNtypQpeUVAAM6r7qKyCCBQiAK7du2yIUOG2IABAwqx+dW2+d1337UxY8ZU\nu1/UduAacNR6hPoggAACCBSEAAG4ILqZRiKAAAIIRE2AABy1HqE+CCCAAAIFIUAALohuppEIIIAA\nAlETIABHrUeoDwIIIIBAQQgQgAuim2kkAggggEDUBAjAUesR6oMAAgggUBACBOCC6GYaiQACCCAQ\nNYHIBeCKigrbsGFD1JyoDwIIIIAAAlkViEQA3r59u40YMcJat25ttWvXtiZNmlj9+vWtU6dONn78\n+Kw2mMIQQAABBBCIgkAkvopy2LBhtnr1aps5c6a1a9fOBd9NmzbZ0qVLrayszLZu3WpDhw6t1mvC\nhAk2bdq0tPutWLHCunbtmnZbdZkbN260q666yoqKiqrbtSC3v/TSS9aoUSO77bbbCrL9mTR68eLF\n1qVLl0x2Lch91qxZk3dfpL8/O2rBggV21FFH2XPPPbc/D5s3x9q2bZt7D8qbCv+rokUJL+W60m3b\ntrWFCxdaixYt9qjKa6+9ZrfccovNnj17j22VMxSodUuX9GsidevWtZKSknSbq8zTlPj69eur3KeQ\nN+p7avUHQAoWWLt2rZWWlgbvUOBb8Kn6BaATlMMOO6zqnQp8a6tWrdx7fD4xRGIErKnmuXPn2sUX\nX7yH3YwZMzJ+4youLjbdsp0aN25supEQQACBXAgcffTRuTgsxwxZIBIjYE3PDRw40A4++GBr3769\nNWjQwDTtu2zZMtOirFmzZlmbNm1CpqB4BBBAAAEE9p9AJAKwmqupY01Dl5eXu+vBmq474ogjrEeP\nHlx73X+vB46EAAIIILCfBCITgPdTezkMAggggAACkRCIxMeQIiFBJRBAAAEEENiPAgTg/YjNoRBA\nAAEEEPAFCMC+BP8jgAACCCCwHwUIwPsRm0MhgAACCCDgCxCAfQn+RwABBBBAYD8KEID3IzaHQgAB\nBBBAwBcgAPsS/I8AAggggMB+FIjEV1Hux/bu06H07Vz6pSZSegH90IW+vUzfZEbaU0BfMqPv8uXb\n3Pa08XOWL19u3/72t/2H/F9JQK+fOnXq5OUPDlRqSigP9V3/+rEc/WhFPiUCcAa9peA7b968DPYs\nzF1uvvlmO+WUU+zEE08sTIBqWq3gMnr0aHvwwQer2bNwN/fq1Yu/sSq6X68fDQTOPPPMKvYq3E2f\nf/656Vf18i0xBZ1vPUZ9EUAAAQRiIUAAjkU30ggEEEAAgXwTIADnW49RXwQQQACBWAgQgGPRjTQC\nAQQQQCDfBAjA+dZj1BcBBBBAIBYCBOBYdCONQAABBBDINwF+DziDHlu1apW1bNkygz0Lc5cNGzZY\n3bp1rbi4uDABqmm1PqO4ceNGa9asWTV7Fu5m/saq7nu9fmrVqmX16tWrescC3bpr1y5bt26dfetb\n38orAQJwXnUXlUUAAQQQiIsAU9Bx6UnagQACCCCQVwIE4LzqLiqLAAIIIBAXAQJwXHqSdiCAAAII\n5JUAATivuovKIoAAAgjERYAAHJeepB0IIIAAAnklQADOq+6isggggAACcREgAMelJ2kHAggggEBe\nCRCAK3VXIpGwnTt3VsrlYaqAvliCFCxQUVFheh2R0gvwN5beJTWXv7FUjfjeJwCn9K2+TeWCCy6w\nP/zhDym5u9+dN2+ede/e3dq2bWvnnHOO6VugCilNmjTJunXrFtjkpUuX2sUXX2zHHHOMnXTSSTZ5\n8uTAfeO44dNPP7U2bdrYRx99VG3zhgwZYj/96U+r3S9OO2TyN/b666/bsccea9/5znfs9NNPt2XL\nlsWJoNq2VPc39tlnn9lll11m3/3ud61///72yiuvVFtmHHbQSckvf/lL99rQ6+PGG2+07du3p23a\nHXfcYZ07d3bv07of2eSdjZI8gUWLFiW8wJpo3LhxwuuwtCZr165NeF9JmXjrrbcSXscnhg8fnrji\niivS7hu3zC+++CLx7//+74nS0tLE9773vcDmnXLKKYk///nPbvuKFSsS3lfDJVavXh24f5w2/Pd/\n/3eiffv2Ce8rAxMffPBBlU2bMWNGokmTJgkvCFe5X5w2ZvI3tnXr1kS7du0SCxcudE33glFiwIAB\ncWIIbEumf2ODBw9O/O53v3Pl/O1vf3NeXnAKLDcuGx566KGEN+hx7716/z3zzDMTyqucpkyZkjjh\nhBMSX375ZcL7itOENxhIzJo1q/JukXjMCPhfp0Ze0LCf//znbvQWdLbkvYFYx44d3ZmVvpd12LBh\nNm3atKDdY5X/0ksvue+hlVNQ0ujmmmuuSRoecsghdvDBB9ubb74Z9JTY5OtM3PvDN+8P3Ro1alRl\nu9avX2+33367e/1UuWPMNmbyNya/ww8/3I4//nj3/dkXXXSRPfHEEzGTSN+cTP7G9ExvIGC1a9d2\nhejvyzvBLYjLZppV0+yk3nt1O+qoo+yvf/3rHpjPP/+8XXrppdawYUNr0aKFez966qmn9tgvChkE\n4H/1wj333GPnn39+lX3yySef7PajDM2bN3dvEtu2bavyeXHYeN5559mdd97pfnQhqD0HHHCAnX32\n2e6PQ/voDUVT9FVNWQeVlW/5ekOcPXu2dejQodqqDx061H7zm99YSUlJtfvGaYdM/sY+/vhj82YG\nrEePHubNtpg3o2DvvPNOnBgC25LJ35ierJM3b+Rn2t+bcbIHHnjA6tSpE1huXDZ07drVvR7Unq++\n+somTpzoLlFUbl/l92kF4TVr1lTeLRKPCcB70Q0audSvXz/5DP0CkNLXX3+dzOPOPwXee+89d53q\nvvvuq3ZEWEhmetPQ6+bUU08tpGZn3FaN7jSTcPXVV5v+3vr162ejRo3K+PmFsKNGfd78qZuNa9Wq\nlWldihb+FUrSbJNmRhSQvcsTezS78vu0fkFKATuKiQC8F72in5PbtGlT8hmbN292P8HnXTdO5nHH\n7N1337VevXrZzTffnJyOxsVcQCkrK7M+ffqYdw3YLS7SiM+73gnPvwQ0fa/FVwMHDnSXL2644QZ7\n5plnAhfbFBqcAu31119vjz/+uN12221uCnbOnDm2YMGCgqBQ8D333HPdlLtOZtOlyu/Tes/W5bAo\npoOiWKmo1unQQw+18vLyZPV0v3Xr1snH3DG3+vfkk0+2m266yY1iMPn/At6iEHd9c+zYsS5z5cqV\n5i06sgkTJhTENP3/lwi+p78xXdf0k671ffPNN6b1BSRzl3T0MUldD1XSZZ/vf//79o9//MOd9MbZ\nSCcfGvmq/bqm618Hr9xmvYZ0YuunKL9PMwL2eyngf13DfPHFF91WjVz08RJd29R137vuuivtFEhA\nUbHN1hSYfgxbSR+PuOSSS9zI11vVabrprLWQkz5G8/bbb7vrV6+++qr5t5/97Gd21llnuWt4heyT\n+jemjx0tX77c3njjDUfy8MMPuwVZxcXFhUzkppn1N6br4lpTMXXqVOehwKvRr9ZexD3pctaHH35o\nek3osp/eW7Zs2eKa7f+N6YE+SvrII4+YTnAVfDVboI+MRjERgKvplSVLlrg3Se2mhQ56EejFrsUh\n+synRnqFnnRWqjdM7yMRLrhosVbTpk2TN32usZCTFsnoZI2UXiD1b0yjX73B6sREq6E1O6A300JP\n/t+YHLyPINmjjz7qRsF6L9LK4EK4DHb33Xfb3//+dzed7L+/XHjhhe6lkfo3pvUVmhXQpQydrGhA\noM8NRzEV6cNQUaxYlOukqRBd/y2EF32U+4G6xVdAb0v+iC++raxZy3Rts0GDBjUrJMbPlo8GTVFe\nIU4AjvELkKYhgAACCERXgCno6PYNNUMAAQQQiLEAATjGnUvTEEAAAQSiK0AAjm7fUDMEEEAAgRgL\nEIBj3Lk0DQEEEEAgugIE4Oj2DTVDAAEEEIixAAE4xp1L0xBAAAEEoitAAI5u31AzBBBAAIEYCxCA\nY9y5NA0BBBBAILoCBODo9g01QwABBBCIsQABOMadS9MQQAABBKIrQACObt9QMwQQQACBGAsQgGPc\nuTQNAQQQQCC6AgTg6PYNNUMAAQQQiLEAATjGnUvTEEAAAQSiK0AAjm7fUDMEEEAAgRgLEIBj3Lk0\nDQEEEEAgugIE4Oj2DTVDAAEEEIixAAE4xp1L0xBAAAEEoitAAI5u31AzBBBAAIEYCxCAY9y5NA0B\nBBBAILoCBODo9g01QyCrAnPmzLHzzjsvWWZFRYV17drV1q9fn8zjDgII7D8BAvD+s+ZICORU4Ic/\n/KE9//zztmLFClePuXPnWu3ata1p06Y5rRcHR6BQBQjAhdrztLvgBEpKSuy0006zp556yrV96tSp\ndtFFFxWcAw1GICoCBOCo9AT1QGA/CCjgPvnkk7Zz50575plndpuS3g+H5xAIIJAiQABOweAuAnEX\n0Aj4rbfesmeffdY6duxoLVu2jHuTaR8CkRUgAEe2a6gYAtkXKC4uttNPP91uvPFGu/DCC7N/AEpE\nAIGMBYoSXsp4b3ZEAIG8F3juuefszDPPtJUrV1ppaWnet4cGIJCvAoyA87XnqDcC+yigjx9pKprg\nu4+APA2BLAkclKVyKAYBBCIuoMmuG264waZNm2aPPPJIxGtL9RCIvwAj4Pj3MS1EwAkUFRW5RVdj\nx4617t27o4IAAjkW4BpwjjuAwyOAAAIIFKYAI+DC7HdajQACCCCQYwECcI47gMMjgAACCBSmAAG4\nMPudViOAAAII5FiAAJzjDuDwCCCAAAKFKUAALsx+p9UIIIAAAjkWIADnuAM4PAIIIIBAYQoQgAuz\n32k1AggggECOBQjAOe4ADo8AAgggUJgCBODC7HdajQACCCCQYwECcI47gMMjgAACCBSmAAG4MPud\nViOAAAII5FiAAJzjDuDwCCCAAAKFKUAALsx+p9UIIIAAAjkWIADnuAM4PAIIIIBAYQr8PxkrtxUI\n9YVfAAAAAElFTkSuQmCC\n" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "53\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAEJGlDQ1BJQ0MgUHJvZmlsZQAAOBGF\nVd9v21QUPolvUqQWPyBYR4eKxa9VU1u5GxqtxgZJk6XtShal6dgqJOQ6N4mpGwfb6baqT3uBNwb8\nAUDZAw9IPCENBmJ72fbAtElThyqqSUh76MQPISbtBVXhu3ZiJ1PEXPX6yznfOec7517bRD1fabWa\nGVWIlquunc8klZOnFpSeTYrSs9RLA9Sr6U4tkcvNEi7BFffO6+EdigjL7ZHu/k72I796i9zRiSJP\nwG4VHX0Z+AxRzNRrtksUvwf7+Gm3BtzzHPDTNgQCqwKXfZwSeNHHJz1OIT8JjtAq6xWtCLwGPLzY\nZi+3YV8DGMiT4VVuG7oiZpGzrZJhcs/hL49xtzH/Dy6bdfTsXYNY+5yluWO4D4neK/ZUvok/17X0\nHPBLsF+vuUlhfwX4j/rSfAJ4H1H0qZJ9dN7nR19frRTeBt4Fe9FwpwtN+2p1MXscGLHR9SXrmMgj\nONd1ZxKzpBeA71b4tNhj6JGoyFNp4GHgwUp9qplfmnFW5oTdy7NamcwCI49kv6fN5IAHgD+0rbyo\nBc3SOjczohbyS1drbq6pQdqumllRC/0ymTtej8gpbbuVwpQfyw66dqEZyxZKxtHpJn+tZnpnEdrY\nBbueF9qQn93S7HQGGHnYP7w6L+YGHNtd1FJitqPAR+hERCNOFi1i1alKO6RQnjKUxL1GNjwlMsiE\nhcPLYTEiT9ISbN15OY/jx4SMshe9LaJRpTvHr3C/ybFYP1PZAfwfYrPsMBtnE6SwN9ib7AhLwTrB\nDgUKcm06FSrTfSj187xPdVQWOk5Q8vxAfSiIUc7Z7xr6zY/+hpqwSyv0I0/QMTRb7RMgBxNodTfS\nPqdraz/sDjzKBrv4zu2+a2t0/HHzjd2Lbcc2sG7GtsL42K+xLfxtUgI7YHqKlqHK8HbCCXgjHT1c\nAdMlDetv4FnQ2lLasaOl6vmB0CMmwT/IPszSueHQqv6i/qluqF+oF9TfO2qEGTumJH0qfSv9KH0n\nfS/9TIp0Wboi/SRdlb6RLgU5u++9nyXYe69fYRPdil1o1WufNSdTTsp75BfllPy8/LI8G7AUuV8e\nk6fkvfDsCfbNDP0dvRh0CrNqTbV7LfEEGDQPJQadBtfGVMWEq3QWWdufk6ZSNsjG2PQjp3ZcnOWW\ning6noonSInvi0/Ex+IzAreevPhe+CawpgP1/pMTMDo64G0sTCXIM+KdOnFWRfQKdJvQzV1+Bt8O\nokmrdtY2yhVX2a+qrykJfMq4Ml3VR4cVzTQVz+UoNne4vcKLoyS+gyKO6EHe+75Fdt0Mbe5bRIf/\nwjvrVmhbqBN97RD1vxrahvBOfOYzoosH9bq94uejSOQGkVM6sN/7HelL4t10t9F4gPdVzydEOx83\nGv+uNxo7XyL/FtFl8z9ZAHF4bBsrEwAAO/VJREFUeAHt3Qm8VOP/wPHvbU+3RUmbpEVKyS8KkbTY\nyhZFhGxZoois8RORncr2U14kfopSikoLypolkmizXRHtaaG9+Z/v8/+f+c+dO2fu3NucOct8zus1\n3ZlzzjzL+zmd73me88xMTsRahAUBBBBAAAEEMipQIqO5kRkCCCCAAAIIGAECMAcCAggggAACHggQ\ngD1AJ0sEEEAAAQQIwBwDCCCAAAIIeCBAAPYAnSwRQAABBBAgAHMMIIAAAggg4IEAAdgDdLJEAAEE\nEECAAMwxgAACCCCAgAcCBGAP0MkSAQQQQAABAjDHAAIIIIAAAh4IEIA9QCdLBBBAAAEECMAcAwgg\ngAACCHggQAD2AJ0sEUAAAQQQIABzDCCAAAIIIOCBAAHYA3SyRAABBBBAgADMMYAAAggggIAHAgRg\nD9DJEgEEEEAAAQIwxwACCCCAAAIeCBCAPUAnSwQQQAABBAjAHAMIIIAAAgh4IEAA9gCdLBFAAAEE\nECAAcwwggAACCCDggQAB2AN0skQAAQQQQKAUBAjYArt375Yvv/xSFi5cKDt27JCDDz5YTjzxRClR\nIrPXaatWrZLPP/9catWqJa1bt7aLl9LfPXv2ZLy8TgWzy7I39XFKe2/Wf/TRR/L1119LzZo15bTT\nTpPc3Nx8yf39998yffp0WbFihTRv3lyaNWtW5PaYP3++/Pbbb3LkkUdKnTp18qWf6IWW5/fff5dW\nrVpJ7dq1E+1SrHWffPKJrFu3Ttq1aydVqlQpVhp+f5N9nPm9nJQvgUCEBQFLwDpJRTp16hSxDpF8\nj0MPPTTyxx9/ZNTo7bffNmU455xzUs73r7/+itx4442Rp59+OuX3uLXjggULIu3bt49YAcVkUZz6\nuFW2559/Pl/7rl27tkBWJ598cnSfDh06RIpT/osvvtik8dprrxVIP9GKiy66yOw/bty4RJuLve74\n44836X722WfFTsOvb/TTMe9XI7+XK7NdmwQXAKzyh8CTTz4p7733nlgnLHnllVfkxRdfND2fRYsW\nyU033ZTRQmrPe+DAgdK9e/eU8x0yZIgMHTpUdu7cmfJ73NrxrLPOkjlz5kSTL059om9O85OZM2ea\nFNVKe+bVqlXLl8OuXbvk/fffl1KlSsmPP/4oEyZMMCMhRW2PM88807ShdQGXL31epE/AT8d8+mqV\nXSkxBJ1d7e1Y2y+++MJsu+yyy8TqjZjnGjgefvhhqV69unltXU3KI488Yk7OAwYMMOtWr14to0aN\nMsOGVq/HDGHrCVyHNn/99VfRE/5BBx0kV199tRkK1H11iLNbt25y1FFHmTTi/9GTf6VKlaR8+fJm\n0w8//CATJ06UNm3amOFSDQo6XN6zZ09p0aKFyVOHrHXRi4iqVatKr169zOtly5bJ2LFjxerpmeFQ\nLWPJkiXNtvHjx8vPP/8s5557rowYMcIMeV933XUmMGkd1GT//feXY445RqxeoXmP/Y/mN2XKFNm6\ndat07NhRrB6v7LPPPubiZePGjWa3Z555Rrp27WqCXGx97DQ+/PBD+eCDD2T9+vXGokePHtHhc6vX\nKXrxc+mll5pg/vHHH0vdunXlmmuuMTZ2GvF/N2/eLDNmzBAdeq1cubJ06dIl6vzCCy+IDg3rsmTJ\nEpO31t1edKj2qaeeEg3COiz9xhtvmPdrvWLLX1h7aHradvoebUtdtL2s3rBpq9KlSxtTq3dt2srs\n8H//6DH2+uuvi9a3fv365ripUKFCdJdk7ak7fffdd6a99ULswgsvjL4v0RO9zaIXIjrk3aBBA9Hj\n4dRTTzUPbVf10jbQcmhasUPj27dvF2s0wTgeffTR5sJVy623TPR4mDRpkixdutRcRDZs2NBkP3Lk\nSNmwYYNce+21UrFiRbMuWX2SmemtokTH/Jo1a8z/Rz2u9f+dHrs6/J7p20iJvFmXQMDvXXTKlxkB\n62raDNVZwSliBc/If/7zn8jKlSvzZW6dEMw+5cqVi6637t2ZddZJyKx7/PHHzWsrMEasE21E97UO\nu0jbtm0jNWrUiFgnc/PaOkFHvv3222g6sU/ihzzffPNN8x7r/mCkbNmyESs4mNf63DqBRew8NR99\nWCdBk5wVjPPlp9usk1HECjBmu3WyNfs3btw4+tcKhqacuq91z9Cs1+fPPvtstIjWaEHEOqGZbVaA\nMX+tk67Zrg66v/2wLlgSDuHedttt0X3sfdXon3/+MelYFxdm+3HHHWfqrJa6n+0cLUzME+vkHjni\niCPypavlfOCBB8xe1r3cfNu0/rHL999/n2+75mcFoQLlL6w9NM34Ieh///vfJm3rvnPkwAMPNM+1\nnaxAaYpgD0FbF33mmClTpozZ54QTTjDb9Z/C2tMadYgeb3rc6fFh9fBNOomGoK2LFbPNmmsQPabu\nvPPOyKZNmyJ660Xrr8ep/tV09NaCLlpmu53VVx96bOp+ehtEF+sC07zWY9leGjVqZNYtX77crCqs\nPsnMEh3z1r3gSNOmTU159Ji2LoBMfnb72+Xgr38ExD9FoSReCli9gcgFF1xg/sPqiUQfemLR+4HW\nUKUpWlECsJ5kravxiNULjqY5ePBgc/I6++yzzTqr95Gwyk4BWIO31YOLaDk04GkZ9Z6vnkitnqF5\nPWjQoIjVKzfpHnLIIWad1bOJWD2aaP1Gjx5tttsBuGXLlpG5c+dGPv3004jV841YQ8gRe5///ve/\nJo3OnTub9+hFiZ6U9UJFT/hWbz5yyimnRKxed2T27Nkm7wMOOMC8x+qlmLLF18fqHZntVg8lYvWA\nI1Yvy1ygaH2soV6TT2wA1vqpox0M7PYwO8b8Y/XSTLrW0L3ZX/PRk7C241dffWXu8+sFiOYzefLk\niN5DjF30wkQvaHS7Neph2l3d4stvB2Cn9tA0YwOwtte+++4bsUYTInqRoItemNx9993R++R2ANYL\nDr0I+fPPP6NBUY8jXQprT2uExJT95ptvNu1tjbaY11qfZAFYt99www2mLayJY5G77rrLvE/roPW3\nRlDM69NPP92UQy9K9D16sbB48eKINZoQsXq5Zl1RAnCy+hRmluiYt0abouXW9+uFhDXy5It5EQaO\nfwoIcA/Y+p/EIqLDgmPGjDFDag8++KAZRtOhWh1C1mG5oi7WhC7Zb7/9xArE0aFkHTLWIUmd6aqL\nFcyKlKzOqP3Xv/5lhtOs3qJ5rw7p6XCpPaSnM111yFyHxnUI0OoJyZYtW8ywpg4n62IFSvPX/keH\nnXWoToe4dVjUmghkhqOtE7EMHz7c7KbD5rrobF0dnrR6mmL1zsyw81tvvWWG13UYWvO2h111Fnf8\nDGNNQ4eIddFhch0etHotYg/p67B27KLD0pqGOtarV89s0jrHL9b/bNNWut66CDH7671ovRWgs2Sn\nTZtmhnutnqV5qxUQzRB1bDra3tpmulhB2wy/q5/T4tQe8ftrWjocqm2ibaDzDHT49/LLLy8wQ/q8\n884zx4vO0NY666L1Law9tf7aNrpcf/31pt31doMOw6eyWBeHpi2siyfRWwO6aFvqsLK2t9Wbjh43\n9u0aa5KgNGnSRKxAKvq8sEXLaC+F1acws0THvJZdjz2dw6Fl19tJelxfccUVdrb89ZkA94B91iBe\nFEdPMHpvVu8f6WSb22+/3Tz0/tThhx9u7hvqR0Tse2DW1XW0mHoiTbTYwU636Ulc87CGoM2uek+x\nOIueVOzFDiQaXBItGnR10e1639peNNjpxUbsooHSXvTemt431fuyVm/MBHxdpydEXXS9Lnqf2V7s\nstivC/urJ19d9B67vdj3CfU+bOySqM6xJ3J7X20Hq0dr7m/rPUt7sYY9zdP4dO3te/M3Udmc2sPq\ncZsLA6v3bO7v6j3e++67T7755hsTxOxyaOC1F7ud9HgrrD31nqw+9CLCLpc+149A2ffk7XTj/+o9\nZr1fbS92Xnof95133jGr9R6xLnohZm+31+n62ONdX9tL7P+V2AmCdhrJjs9Uzey89NieOnWq6AW0\n+upcCX3oXAQ9hln8J/C/ZxX/lYsSZVBAA6T2AO655x4z+9nOWq/69QSRk5NjgpYGIWsY1Mw01oCq\ni060SrToe+IXO4jZ6xMFEntbor92zzLRNjttnUCki54ctdeleejJSCfT6AlVJ1vFBmTdV+tpLxoU\ndMKWThjSnpD22mMXO6BZQ9bGRrfpCc4ahjYnP30dXxZdF7tY9w/NS+2V2ot9oj/ssMPsVeZvsjrH\n7qh10NEBPeHbM511u51HfLqx7y3u81TLpkFLZ1TrhDS9ENAepHUbwgRMnW0fu8QeN7HHR2Htqcew\nXiBq/e2esM7ytoaIY5NP+Dz+Ako/+66LjoDocaPpPfroo8ZSg7V9sWT3lHXfWHN9bU8cs4aB9aW5\nALUvvPR1YfVJxSz+ONPPXW/btk2GDRtmLhQ1gOuoybx588xD82XxlwAB2F/t4Ulp9KRn3QMzeffp\n00eOPfZYc4LUGcbas7Lut0Z7r3qVrUvv3r3Nf3R76NSs9PAfewhar/h15rYuOvyqvQ6d6aszUHVI\nVoeN43sDsSd9+0sj9OSls2Ltj2DZJ1Kd5apD6PpaA6l1v1GsyTJi3T82w9Kar10WvaiJH1LW7Rp8\ndKhXg7z2ti+55BKThp5QrfuiukuxliuvvNK8T4e2daattqN171esCTkFLiSKlUEx36S+OgteA7A1\nIUjy8vJMb12T04ukVJfC2tMearXu14s1yU30Nkgqix3I7H21TXTRoXydJa1Dudb9X3nooYfMevXV\n3rkeH1ovHX6eNWuW2Wb/Y/8/0fc899xz5v3xo0XJ6pOKmX2c2ce8XgzrsaXl0XV6i8e6ny56gRE7\nsmCXkb8+ELCuMlkQiFg93YjV+4tY98zMRA7r0IxY/8EjOrHHGi6LClm9yYgVPMw+OqtZv2hB97Vn\n59qzM61h7Oh7dAKO7mNd1Zt1OvlKX996663RfWKfOE36se4PRne7//77TRr33nuvWWd9/MRMhNJ0\nrSFYs04nqujEMusEZPbV9bETv+xJWDob1V6s+8YRnQhknQDNLFqdiWoNaZoJUDqpRZdffvklol9Q\noftYJ++IdZ8tYt0rtJOIWD0Qs82uY3x9dEedcazvs3qRpmxWTyViBetoGvYkLJ1AZi86s1zT1Ik/\nTot1oWHqr/tp2XQSnRXwortbvTuThtV7i66LfaKzwPW92rb2El9+exJWsvaInYSl6Vi9MDNZzeoZ\nmvS1TXTik9VjNdnYk7Biv4gjvr6FtadO3rKCY7RdtO3tiYXJJmHpDOf4RT8FYB+3OpFN62rPUNd9\nX3755YhdF52AZV2QmnrZk7CsYe/oxDqrd25mR5900klmH3sWdGH1Kcws0TGvs/V1UqG2vbajdUEZ\nsYJxfPV47ROBHC2H1VAsCBgBPRysGahmKE8/d5po0X2sb8cqMIEm0b6ZXKc9DL3q18kosb0a7QXr\n/W37HnYqZdLhQp3QFT88Gfte6wRqRgjiv8xC99GJQzocbt+PjH1f7HP7nqJ9fzx22948VwftIdlD\noXuTVjrfq22hX3GpIw32Pd6ipl9Ye+rohN46ScdXT2pZtW0SDbdrOfQ40brobYi+ffuKFYDliSee\niFZJt+tEsNjbHNGN//eksPokM3M65vX403viWnbtTbP4U4AA7M92oVQIIBAgAacAHKAqUFQPBLgH\n7AE6WSKAQLgE9GNd+pGkdI9khEuJ2sQL0AOOF+E1AggggAACGRCgB5wBZLJAAAEEEEAgXoAAHC/C\nawQQQAABBDIgQADOADJZIIAAAgggEC9AAI4X4TUCCCCAAAIZECAAZwCZLBBAAAEEEIgXIADHi/Aa\nAQQQQACBDAgQgDOATBYIIIAAAgjECxCA40V4jQACCCCAQAYECMAZQCYLBBBAAAEE4gUIwPEivEYA\nAQQQQCADAgTgDCCTBQIIIIAAAvECBOB4EV4jgAACCCCQAQECcAaQyQIBBBBAAIF4AQJwvAivEUAA\nAQQQyIAAATgDyGSBAAIIIIBAvAABOF6E1wgggAACCGRAgACcAWSyQAABBBBAIF6AABwvwmsEEEAA\nAQQyIEAAzgAyWSCAAAIIIBAvQACOF+E1AggggAACGRAgAGcAmSwQQAABBBCIFyAAx4vwGgEEEEAA\ngQwIEIAzgEwWCCCAAAIIxAsQgONFeI0AAggggEAGBAjAGUAmCwQQQAABBOIFCMDxIrxGAAEEEEAg\nAwIE4AwgkwUCCCCAAALxAgTgeBFeI4AAAgggkAEBAnAGkMkCAQQQQACBeAECcLwIrxFAAAEEEMiA\nAAE4A8hkgQACCCCAQLwAAThehNcIIIAAAghkQKBUBvIgCwQQQCBQAkuXLpW3335bSpYs6YtyRyIR\n6du3r5QpU8YX5aEQ6RHIsRo2kp6kSAUBBBAIh0C/fv2kTZs2kpub64sKffPNN9KsWTPp1q2bL8pD\nIdIjQA84PY6kggACIRIoXbq0NG3aVFq2bOmLWi1fvtwX5aAQ6RXgHnB6PUkNAQQQQACBlAQIwCkx\nsRMCCCCAAALpFSAAp9eT1BBAAAEEEEhJgACcEhM7IYAAAgggkF4BAnB6PUkNAQQQQACBlAQIwCkx\nsRMCCCCAAALpFSAAp9eT1BBAAAEEEEhJgACcEhM7IYAAAgggkF4BAnB6PUkNAQQQQACBlAQIwCkx\nsRMCCCCAAALpFSAAp9eT1BBAAAEEEEhJgACcEhM7IYAAAgggkF4BAnB6PUkNAQQQQACBlAQIwCkx\nsRMCCCCAAALpFSAAp9eT1BBAAAEEEEhJgACcEhM7IYAAAgggkF4BAnB6PUkNAQQQQACBlAQIwCkx\nsRMCCCCAAALpFSAAp9eT1BBAAAEEEEhJoFRKe7ETAgES2LJlizzwwANSvnx5X5R6+/btcu6558rh\nhx/ui/JQCAQQ8IcAAdgf7UAp0igwdepUqVixohx99NFpTLX4SW3evFlGjx4tTzzxRPET4Z0IIBA6\nAd8F4F27domesPbdd9/QYVOhzAlUqVJFOnbsmLkMk+T05ZdfSqlSvvuvlqTEbEIAgUwI+OIe8I4d\nO2TgwIFSt25dKVOmjFStWlUqVKggzZs3l1GjRmXCgTwQQAABBBDIqIAvLsv79esnK1euFB06bNCg\ngQm+mzZtkkWLFkn//v1l27Zt0qdPn4zCkBkCCCCAAAJuCviiBzxz5kwZMWKEtGjRQnJzcyUnJ0cq\nV64sbdq0keHDh8ukSZPcNCBtBBBAAAEEMi7giwCsQ82zZ89OWPkpU6ZI9erVE25jJQIIIIAAAkEV\n8MUQ9ODBg6Vnz54ydOhQadiwoVSqVEk2btwoixcvFp2UNW3atJR8f//9d/njjz8S7qvp1a5dW5o1\na5ZwOysRQAABBBDIpIAvAnDLli1l/vz5MnfuXMnLyzP3g3UWa69evaRz585mSDoVlIULF8qcOXMS\n7rpkyRJp3LixPProowm3sxIBBBBAAIFMCvgiAGuFy5UrJx06dIjW/dVXX5WJEydKly5dousKe6LB\nWh+JlvHjx8uaNWsSbWIdAggggAACGRfwRQA++OCDZe3atfkqrx9N0uHnCRMmSNeuXfk4Uj4dXiCA\nAAIIBF3AFwFYP+t7+eWXy0UXXSSXXHKJMdWZzzok/fDDD5uPJQUdmvIjgAACCCAQK+CLWdBt27aV\nefPmyY8//ig33XSTCbj77bef+UhSvXr1RJ+zIIAAAgggECYBX/SAFVRnPr/88ssybtw4adeunfke\n35IlS4bJmroggAACCCAQFfBFDzhaGuvJeeedJ/rFHHpPuGbNmrGbeI4AAggggEBoBHzTA44VPeCA\nA+Ttt9+OXcVzBBBAAAEEQiXgux5wqHSpDAIIIIAAAg4CBGAHGFYjgAACCCDgpgAB2E1d0kYAAQQQ\nQMBBgADsAMNqBBBAAAEE3BQgALupS9oIIIAAAgg4CBCAHWBYjQACCCCAgJsCBGA3dUkbAQQQQAAB\nBwECsAMMqxFAAAEEEHBTgADspi5pI4AAAggg4CBAAHaAYTUCCCCAAAJuChCA3dQlbQQQQAABBBwE\nCMAOMKxGAAEEEEDATQECsJu6pI0AAggggICDAAHYAYbVCCCAAAIIuClAAHZTl7QRQAABBBBwECAA\nO8CwGgEEEEAAATcFCMBu6pI2AggggAACDgIEYAcYViOAAAIIIOCmAAHYTV3SRgABBBBAwEGAAOwA\nw2oEEEAAAQTcFCAAu6lL2ggggAACCDgIEIAdYFiNAAIIIICAmwIEYDd1SRsBBBBAAAEHAQKwAwyr\nEUAAAQQQcFOAAOymLmkjgAACCCDgIEAAdoBhNQIIIIAAAm4KEIDd1CVtBBBAAAEEHAQIwA4wrEYA\nAQQQQMBNAQKwm7qkjQACCCCAgIMAAdgBhtUIIIAAAgi4KUAAdlOXtBFAAAEEEHAQIAA7wLAaAQQQ\nQAABNwUIwG7qkjYCCCCAAAIOAgRgBxhWI4AAAggg4KYAAdhNXdJGAAEEEEDAQYAA7ADDagQQQAAB\nBNwUIAC7qUvaCCCAAAIIOAgQgB1gWI0AAggggICbAgRgN3VJGwEEEEAAAQcBArADDKsRQAABBBBw\nU4AA7KYuaSOAAAIIIOAgQAB2gGE1AggggAACbgoQgN3UJW0EEEAAAQQcBAjADjCsRgABBBBAwE0B\nArCbuqSNAAIIIICAgwAB2AGG1QgggAACCLgpQAB2U5e0EUAAAQQQcBAgADvAsBoBBBBAAAE3BQjA\nbuqSNgIIIIAAAg4CBGAHGFYjgAACCCDgpgAB2E1d0kYAAQQQQMBBgADsAMNqBBBAAAEE3BQgALup\nS9oIIIAAAgg4CBCAHWBYjQACCCCAgJsCBGA3dUkbAQQQQAABBwECsAMMqxFAAAEEEHBTgADspi5p\nI4AAAggg4CBAAHaAYTUCCCCAAAJuChCA3dQlbQQQQAABBBwEfBeAd+3aJRs2bHAoLqsRQAABBBAI\nh4AvAvCOHTtk4MCBUrduXSlTpoxUrVpVKlSoIM2bN5dRo0aFQ5paIIAAAgggECNQKua5Z0/79esn\nK1eulKlTp0qDBg1M8N20aZMsWrRI+vfvL9u2bZM+ffp4Vj4yRgABBBBAIN0CvugBz5w5U0aMGCEt\nWrSQ3NxcycnJkcqVK0ubNm1k+PDhMmnSpHTXm/QQQAABBBDwVMAXAViHmmfPnp0QYsqUKVK9evWE\n21iJAAIIIIBAUAV8MQQ9ePBg6dmzpwwdOlQaNmwolSpVko0bN8rixYtFJ2VNmzYtJd9//vlH9JFo\n0SHtnTt3JtrEOgQQQAABBDIu4IsA3LJlS5k/f77MnTtX8vLyzP3gatWqSa9evaRz585mSDoVmTff\nfNNxuPr333+XI488MpVk2AcBBBBAAAHXBXwRgLVnqr3fH374Qfr27Svly5c3f9evXy9du3aVsWPH\nStmyZQvFuPDCC0UfiZbx48fLmjVrEm1iHQIIIIAAAhkX8MU94FtuuUXmzJkjNWrUkB49esi9994r\nEyZMMAFZh6CZhJXx44IMEUAAAQRcFvBFD1jv8c6bN8/c+9Xe7+rVq+WEE04wVb///vvlrrvuMoHZ\nZQuSRwABBBBAIGMCvgjA+tnfJUuWyFFHHSW9e/cWvV9rLwsXLpRGjRrZL/mLAAIIIIBAKAR8MQR9\n0003yVlnnSWTJ0+W2rVrm0CsuvrtWAMGDJDLL788FNhUAgEEEEAAAVvAFwH45JNPlqVLl0YDr124\nM844Q37++WfzlZT2Ov4igAACCCAQBgFfDEErpH72Vx+xi34TFgsCCCCAAAJhFPBFDziMsNQJAQQQ\nQACBZAIE4GQ6bEMAAQQQQMAlAQKwS7AkiwACCCCAQDIBAnAyHbYhgAACCCDgkgAB2CVYkkUAAQQQ\nQCCZAAE4mQ7bEEAAAQQQcEmAAOwSLMkigAACCCCQTIAAnEyHbQgggAACCLgkQAB2CZZkEUAAAQQQ\nSCZAAE6mwzYEEEAAAQRcEiAAuwRLsggggAACCCQTIAAn02EbAggggAACLgkQgF2CJVkEEEAAAQSS\nCRCAk+mwDQEEEEAAAZcECMAuwZIsAggggAACyQQIwMl02IYAAggggIBLAgRgl2BJFgEEEEAAgWQC\nBOBkOmxDAAEEEEDAJQECsEuwJIsAAggggEAyAQJwMh22IYAAAggg4JIAAdglWJJFAAEEEEAgmQAB\nOJkO2xBAAAEEEHBJgADsEizJIoAAAgggkEyglNPGYcOGycaNG6VXr15Sv359p91YjwACCCCAAALF\nEHDsAZ922mmyefNmadu2rbRv315eeukl2bJlSzGy4C0IIIAAAgggEC/gGIAPPvhgeeyxx2T58uVy\nxx13yIcffihNmzaVSy+9VD777LP4dHiNAAIIIIAAAkUQcAzAdhrr16+XZcuWmUepUqWkWrVq0r9/\nfzn//PPtXfiLAAIIIIAAAkUUcLwH/NFHH8lDDz0k+vf000+XQYMGSadOnaREiRKyZ88eqVOnjuTl\n5clBBx1UxCzZHQEEEEAAAQQcA7D2es844wwZM2aMVK5cOZ+UBuFRo0aZIJxvAy8QQAABBBBAICUB\nxyHoyy+/3ATeBQsWmISeffZZE3R3795tXp966qlSunTplDJhJwQQQAABBBDIL+AYgCdOnChDhw6V\nmjVrmne0a9dOxo4dK6NHj86fAq8QQAABBBBAoMgCjgH4nXfekSFDhkjjxo1Nos2bNzcB+Y033ihy\nJrwBAQQQQAABBPILOAbgevXqyYwZM/Lt/cEHH0ilSpXyreMFAggggAACCBRdwHESlt4DPvHEE2Xq\n1KlyzDHHyLfffiurVq0S7RmzIIAAAggggMDeCTgGYP2YkX7hxrvvvis//PCD9O7dW9q0aWM+hrR3\nWfJuBBBAAAEEEHAMwEqjHz/q1q0bSggggAACCCCQZgHHAPzXX3/JtddeKwsXLpQdO3ZEs+3cubPo\nDzWwIIAAAggggEDxBRwD8COPPGJ+DenJJ5+U3NzcaA5Vq1aNPucJAggggAACCBRPwDEAr1ixwvSA\nO3ToULyUeRcCCCCAAAIIOAo4fgzpnHPOkVdeeUVWr17t+GY2IIAAAggggEDxBBwD8B9//CHTpk2T\nWrVqif40YZMmTcxDfwmJBQEEEEAAAQT2TsBxCFp/AalVq1Ym9bVr10qVKlVEf46Qe8B7B867EUAA\nAQQQUAHHHrB+Dli/CeuKK66QW2+9VTZt2mS+mpJvwuLAQQABBBBAYO8FHAPwyJEj5f333xf9UQZd\nOnbsaH5+UNezIIAAAggggMDeCTgG4I8++khuvvlmqV27tslBf3pQ7/9qUGZBAAEEEEAAgb0TcAzA\ndevWFQ3CscvkyZPNpKzYdTxHAAEEEEAAgaILOE7CuvHGG6V169Yya9Ys+fPPP833QOfl5Znvhi56\nNrwDAQQQQAABBGIFHANwjRo1ZNGiRfL666/L8uXL5YQTTjCPkiVLxr6f5wgggAACCCBQDAHHAKxp\n6VdQ6ixoFgQQQAABBBBIr4BjAH788cfNN2HFZ3fyySeLfk80CwIIIIAAAggUX8AxAJ999tly1FFH\nmZQjkYjoN2MNHz5cunTpUvzceCcCCCCAAAIIGAHHANygQQPRR+yirx977DFp37597GqeI4AAAggg\ngEARBRw/hpQonV9++cX8RGGibaxDAAEEEEAAgdQFHHvA2tN9+eWXoylt3bpVfvvtNxk7dmx0HU8Q\nQAABBBBAoHgCjgG4W7du5rO/drL6Qww6BF29enV7FX8RQAABBBBAoJgCjgG4fv36og8WBBBAAAEE\nEEi/gGMAdvoYUmwRPv30U9lnn31iV/EcAQQQQAABBFIQcAzAxx13nLz44ovmiziOP/54+e677+Sp\np54SHZpu166dSbps2bIpZMEuCCCAAAIIIBAv4BiAdQLWvffeK927dzfv0e+Fbtq0qQwePFjuvPPO\n+HR4jQACCCCAAAJFEHD8GJJ+DaV+7Ch2+frrr6VChQqxq9L+fNeuXbJhw4a0p0uCCCCAAAII+EnA\nsQfcu3dvOeWUU2TixInmV5HmzZtnfpRh+vTpaS//jh075J577jFffblixQrRb97Se8s6CWzAgAFy\n2WWXpT1PEkQAAQQQQMBLAccA3LhxY/n8889lypQpsnDhQrnvvvukQ4cOUqKEY6e52PXo16+frFy5\nUqZOnWo+6qS97E2bNplfY+rfv79s27ZN+vTpU+z0eSMCCCCAAAJ+E3CMpnv27JGRI0fKsGHDzG8A\n69DwOeecI2vWrEl7HWbOnCkjRoyQFi1amF9gysnJkcqVK5vPIev3T0+aNCnteZIgAggggAACXgo4\nBmANvu+//74ZgtYCduzYUerUqWOCcroL3Lx5c5k9e3bCZLUHzpd/JKRhJQIIIIBAgAUch6A/+ugj\nufnmm6V27dqmeqVLlxYdDr7mmmvSPgtaZ1b37NlThg4dKg0bNpRKlSqZ75xevHixaM972rRpASam\n6AgggAACCBQUcAzAdevWFQ3Csb98NHnyZKlVq1bBVPZyTcuWLWX+/Pkyd+5cycvLM/eDtder9331\nM8c6JJ3Kor32MWPGJNxVh87btm2bcBsrEUAAAQQQyLSAYwC+8cYbzeznWbNmyZ9//mnux2pwfPfd\nd10pY7ly5cwkr/jEd+/ebXrBqXzpx1VXXSX6SLSMHz/elfvXifJiHQIIIIAAAoUJON4D1mHgRYsW\nmV7oddddJ0OGDJHff/9dmjVrVliaRd6uv7LUq1cvMwHrpJNOkh9//DGahgbOiy++OPqaJwgggAAC\nCIRBwLEHPHDgQKlRo4bcfvvtrtdT7/3q0LZ+1liHkHXYec6cOaIfhWJBAAEEEEAgjAKOAbhevXry\n5Zdfig4BlyxZ0tW66yQrvQdcvnx581WXhx56qPkSkI8//tjVfEkcAQQQQAABrwQch6A1GOpHgHQo\nukmTJmboWYefb7rpprSXVQOu9n7t5fzzzxf9co7OnTvLunXr7NX8RQABBBBAIDQCjj3gU089VQ4/\n/PACFa1WrVqBdXu7Qj/adO6554pO/LrttttMchroN2/ebNZ17dp1b7Pg/QgggAACCPhKwDEA6xC0\nPjKxnHzyyfLTTz/Jzz//nC+7QYMGyQknnGC25dvACwQQQAABBAIuUGAIWnu+69evN9XaunWr6Azl\nTCz6/c+HHXZYgaz0c8hXXHFFgfWsQAABBBBAIMgCBQKw3ovduXOnqdMXX3xhvqEqyBWk7AgggAAC\nCPhRoEAA9mMhKRMCCCCAAAJhEyAAh61FqQ8CCCCAQCAEEk7C0m+80t/g1d/o3b59u/z666/Ryui9\n2v322y/6micIIIAAAgggUHSBhAG4VatW+VI66KCDoq/140Ljxo2LvuYJAggggAACCBRdoEAAXrVq\nVdJUUv1loqSJsBEBBBBAAIEsFygQgN3+2sks96b6CCCAAAIIGAEmYXEgIIAAAggg4IEAAdgDdLJE\nAAEEEECAAMwxgAACCCCAgAcCBGAP0MkSAQQQQAABAjDHAAIIIIAAAh4IEIA9QCdLBBBAAAEECMAc\nAwgggAACCHggQAD2AJ0sEUAAAQQQIABzDCCAAAIIIOCBAAHYA3SyRAABBBBAgADMMYAAAggggIAH\nAgRgD9DJEgEEEEAAAQIwxwACCCCAAAIeCBCAPUAnSwQQQAABBAjAHAMIIIAAAgh4IEAA9gCdLBFA\nAAEEECAAcwwggAACCCDggQAB2AN0skQAAQQQQIAAzDGAAAIIIICABwIEYA/QyRIBBBBAAAECMMcA\nAggggAACHggQgD1AJ0sEEEAAAQQIwBwDCCCAAAIIeCBAAPYAnSwRQAABBBAgAHMMIIAAAggg4IEA\nAdgDdLJEAAEEEECAAMwxgAACCCCAgAcCBGAP0MkSAQQQQAABAjDHAAIIIIAAAh4IEIA9QCdLBBBA\nAAEECMAcAwgggAACCHggQAD2AJ0sEUAAAQQQIABzDCCAAAIIIOCBAAHYA3SyRAABBBBAgADMMYAA\nAggggIAHAgRgD9DJEgEEEEAAAQIwxwACCCCAAAIeCBCAPUAnSwQQQAABBAjAHAMIIIAAAgh4IEAA\n9gCdLBFAAAEEECAAcwwggAACCCDggQAB2AN0skQAAQQQQIAAzDGAAAIIIICABwIEYA/QyRIBBBBA\nAAECMMcAAggggAACHggQgD1AJ0sEEEAAAQQIwBwDCCCAAAIIeCBAAPYAnSwRQAABBBAgAHMMIIAA\nAggg4IEAAdgDdLJEAAEEEECAAMwxgAACCCCAgAcCvgvAu3btkg0bNnhAQZYIIIAAAghkTsAXAXjH\njh0ycOBAqVu3rpQpU0aqVq0qFSpUkObNm8uoUaMyp0FOCCCAAAIIZEigVIbySZpNv379ZOXKlTJ1\n6lRp0KCBCb6bNm2SRYsWSf/+/WXbtm3Sp0+fpGmwEQEEEEAAgSAJ+KIHPHPmTBkxYoS0aNFCcnNz\nJScnRypXrixt2rSR4cOHy6RJk4JkSlkRQAABBBAoVMAXAViHmmfPnp2wsFOmTJHq1asn3MZKBBBA\nAAEEgirgiyHowYMHS8+ePWXo0KHSsGFDqVSpkmzcuFEWL14sOilr2rRpQfWl3AgggAACCCQU8EUA\nbtmypcyfP1/mzp0reXl55n6w9nr1vm+7du3MkHTC0setHDlypIwZMyZu7f++XLNmjbRt2zbhNlYi\ngAACCCCQaQFfBGCtdLly5aRDhw57Vf+rrrpK9JFoGT9+vGgQZkEAAQQQQMAPAr64B+wHCMqAAAII\nIIBAJgV80QN+/PHHZefOnY71btKkiXTt2tVxOxsQQAABBBAImoAvArDe93366aflkksuMZ8Bjkdk\nFnS8CK8RQAABBIIu4IsA/NRTT8mePXvM45lnngm6KeVHAAEEEECgUAHf3AN++OGHRb/9asuWLYUW\nmh0QQAABBBAIuoAvesCKqN+A9eqrrwbdk/IjgAACCCCQkoBvesAplZadEEAAAQQQCIkAATgkDUk1\nEEAAAQSCJUAADlZ7UVoEEEAAgZAIEIBD0pBUAwEEEEAgWAIE4GC1F6VFAAEEEAiJAAE4JA1JNRBA\nAAEEgiVAAA5We1FaBBBAAIGQCBCAQ9KQVAMBBBBAIFgCBOBgtRelRQABBBAIiQABOCQNSTUQQAAB\nBIIlQAAOVntRWgQQQACBkAgQgEPSkFQDAQQQQCBYAgTgYLUXpUUAAQQQCIkAATgkDUk1EEAAAQSC\nJUAADlZ7UVoEEEAAgZAIEIBD0pBUAwEEEEAgWAIE4GC1F6VFAAEEEAiJAAE4JA1JNRBAAAEEgiVA\nAA5We1FaBBBAAIGQCBCAQ9KQVAMBBBBAIFgCBOBgtRelRQABBBAIiUCpkNSDaiCAQBEEnnzySVm9\nenUR3uHurjVr1pS+ffu6mwmpI+AzAQKwzxqE4iCQCYHp06fLnXfemYmsUspj8ODBBOCUpNgpTAIE\n4DC1JnVBIEWB8uXLy3HHHZfi3u7vVq5cOfczIQcEfCbAPWCfNQjFQQABBBDIDgECcHa0M7VEAAEE\nEPCZAAHYZw1CcRBAAAEEskOAAJwd7UwtEUAAAQR8JkAA9lmDUBwEEEAAgewQIABnRztTSwQQQAAB\nnwkQgH3WIBQHAQQQQCA7BAjA2dHO1BIBBBBAwGcCBGCfNQjFQQABBBDIDgECcHa0M7VEAAEEEPCZ\nAAHYZw1CcRBAAAEEskOAAJwd7UwtEUAAAQR8JkAA9lmDUBwEEEAAgewQIABnRztTSwQQQAABnwkQ\ngH3WIBQHAQQQQCA7BAjA2dHO1BIBBBBAwGcCBGCfNQjFQQABBBDIDgECcHa0M7VEAAEEEPCZAAHY\nZw1CcRBAAAEEskOAAJwd7UwtEUAAAQR8JkAA9lmDUBwEEEAAgewQIABnRztTSwQQQAABnwkQgH3W\nIBQHAQQQQCA7BAjA2dHO1BIBBBBAwGcCBGCfNQjFQQABBBDIDgECcHa0M7VEAAEEEPCZAAHYZw1C\ncRBAAAEEskOAAJwd7UwtEUAAAQR8JkAA9lmDUBwEEEAAgewQIABnRztTSwQQQAABnwkQgH3WIBQH\nAQQQQCA7BAjA2dHO1BIBBBBAwGcCBGCfNQjFQQABBBDIDgECcHa0M7VEAAEEEPCZQCmflceXxTn2\n2GPlwAMP9E3ZZs2aJU2bNpUDDjjAF2X66quvZNKkSdKsWTNflIdCIICAuwILFy6Us88+W1q1auVu\nRimmvnLlSlOWxx57LMV3+GM3AnAK7VC+fHkZM2aMlCjhjwGDJk2ayL333iudOnVKofTu7/Lggw/K\nihUrCMDuU5MDAr4Q+O233+Tqq6+WW265xRflWbJkiQwfPtwXZSlKIfwRUYpSYvZFAAEEEEAgBAIE\n4BA0IlVAAAEEEAieAAE4eG1GiRFAAAEEQiDguwC8a9cu2bBhQwhoqQICCCCAAALOAr4IwDt27JCB\nAwdK3bp1pUyZMlK1alWpUKGCNG/eXEaNGuVcerYggAACCCAQUAFfzILu16+f6DTyqVOnSoMGDUzw\n3bRpkyxatEj69+8v27Ztkz59+hRK/Morr8jEiRMT7qezdFu3bp1wW2ErN27cKFdeeaXk5OQUtmtG\ntq9atUp05vHYsWMzkl9hmbz33ntSpUoVue+++wrbNSPb9djZvHmz6Mej/LBs3bpVJkyYIHPnzvVD\ncUwZli1bJr179/ZNeT777DM5/vjjfVMePXYWLFgg9evX90WZZs+eLbm5uTJs2DBflGfLli3y119/\nydKlS31Rnu3bt5tzkC8KU4RC5ESspQj7u7KrHuR6cqpZs2aB9PU/5qBBg2TGjBkFtsWv0ECtj0TL\nzp07RT9OpAdxURcdEl+3bl1R3+ba/vpxqD179riWflET1rLofwA/Lfvss4/44NCOkugFZuXKlaOv\nvX6ibaajTH5Z9IResmRJvxTHBJdatWr5pjx6LDud27wqZLly5XzTKVGDOnXqmHO8Vx7FydcXPWAd\natYrvAsuuKBAHaZMmSLVq1cvsD7RCj0g9JHuZd999xV9sCBQXIFGjRoV9628DwEEQirgix7w/Pnz\npWfPnlKxYkVp2LChVKpUSXTYd/HixaKTsqZNmyb16tULaRNQLQQQQACBbBTwRQBWeB1e0WHovLw8\ncz9Ye70HH3ywtGvXzlfDHNl4kFBnBBBAAIH0C/gmAKe/aqSIAAIIIICAfwV88TEk//JQMgQQQAAB\nBNwRIAC740qqCCCAAAIIJBUgACflYSMCCCCAAALuCBCA3XElVQQQQAABBJIKEICT8rARAQQQQAAB\ndwQIwO64kioCCCCAAAJJBQjASXnYiAACCCCAgDsCvvgqSneqlr5U9du59JeaWBIL6A9d6LeX6TeZ\nsRQU0C+Z0R/Q4NvcCtrYa/RL/Q855BD7JX/jBPT4KVu2bCB/cCCuKq681O/61x/L+fjjj11J361E\nCcApyGrwnTNnTgp7Zucud999t5x00km++jUbP7WEBpehQ4fKc88956di+aos7du35/9YkhbR40c7\nAmeeeWaSvbJ30+rVq0V/VS9oC0PQQWsxyosAAgggEAoBAnAompFKIIAAAggETYAAHLQWo7wIIIAA\nAqEQIACHohmpBAIIIIBA0AQIwEFrMcqLAAIIIBAKAQJwKJqRSiCAAAIIBE2A3wNOocX+/PNPqVWr\nVgp7ZucuGzZskPLly0u5cuWyE6CQWutnFDdu3Cj77bdfIXtm72b+jyVvez1+SpcuLfvss0/yHbN0\n6549e2Tt2rWy//77B0qAAByo5qKwCCCAAAJhEWAIOiwtST0QQAABBAIlQAAOVHNRWAQQQACBsAgQ\ngMPSktQDAQQQQCBQAgTgQDUXhUUAAQQQCIsAATgsLUk9EEAAAQQCJUAADlRzUVgEEEAAgbAIEIDD\n0pLUAwEEEEAgUAIE4EA1F4UNusCuXbskEokEvRqU3wMB/UIXlnAJEIBTaM/XXntN2rZtK4ceeqhc\ncMEF5luNUnhb1uyyaNEi43L44YdLp06d5PXXX8+auhelor/99pvUq1dPfv7556K8LdT7zpkzx/zf\nql+/vpx99tmi36rGUlBg7Nix0qZNm4IbsnyNXpTccsst0qpVK/O44447ZMeOHYFRIQAX0lR6srzx\nxhvlzTffFA00ubm5Mnjw4ELelV2b+/fvL507d5YFCxbIK6+8Itdff72sWrUquxAKqe0LL7wgHTp0\nkDVr1hSyZ/Zs1q8O7Nmzpzz77LOybNky0SA8YMCA7AFIoaZ6QdK3b1+54YYbGDlJ4DV69Gj56aef\nZO7cueah5+iXX345wZ7+XEUALqRd9KTw3XffSfXq1c2eOoS4e/fuQt6VPZv1O1ivvfZa0wPWWteu\nXVsqVqwoX3/9dfYgFFJTvSIfN26cTJs2TapUqVLI3tmzed68edK0aVNp0aKF+Z7jfv36ycSJE7MH\nIIWavvfee+b7nzXQsBQU0FG3Rx991Bw/+l3ZOkr5ySefFNzRp2tK+bRcvilWTk6OVKtWTZYsWSL/\n/ve/5fvvv5cZM2b4pnxeF6REiRLStWvXaDH0hKFX7QyXRUmkTJkyHDP/zxF9tnz58nw/clKjRg1z\ne2f79u1StmzZ6H7Z/KR79+6iDx2qZyko0Lp16+jKv//+W8aMGSNPPPFEdJ3fn9ADTrGFtm7dKo0b\nN5Zt27ZxMnUw02HEiy++WJ5++ml6eg5GrP5/gXXr1kmFChWiK/QXtXT5559/out4gkAqAjrKdP75\n54sG5G7duqXyFl/sQwCOa4Yrr7zS9Fi016LP7aVly5YyZMgQef7550Vv9GfrTFbt/auNPvbdd1+b\nx4wQtG/fXu6+++7ocHR0Y5Y9qVq1atRo+vTpWVb71KurP8+4adOm6Bs2b95sftIy9riKbuQJAg4C\nGnzPOeccc2tQe8BBWhiCjmstHWbu06ePWatDz1999ZXovaqrr77arNN7DDp55K+//soXgOKSCe1L\nHVr+7LPPTP1Klixp/upEtRNPPFHuvPNOueaaa0Jb91QrNnv27Og8gUaNGqX6tqzb74ADDpC8vLxo\nvfV53bp1o695gkBhAjonR3u+Oi9HJ8pqxyBICwE4rrUOPPBA0Ye9aIPedtttctppp5kJRjq8qpNG\nsvUqvVKlSnLEEUfYPOavDjtfeOGFpue7fv16s05niwftP0O+Su3FC50YwlK4QMeOHeXSSy8VnTeg\nH/N7/PHHAzV8WHgN2cNtAT0f6yxoHWnSWxf60POOnn+CsDAEXUgr1apVy3zsSE8WTZo0kR9++MHc\n6C/kbVmz+csvv5RPP/1UHnnkETNZTUcN9KGfW2RBIJmATrTSE6hO4mvYsKHo56R1FIUFgVQFhg0b\nJt9++63pHNnnnh49eqT6ds/3y7HuZfK1PCk0gzLpPSrtAbIggED6BHQYUf9vZeuoUvokSSloAgTg\noLUY5UUAAQQQCIUAQ9ChaEYqgQACCCAQNAECcNBajPIigAACCIRCgAAcimakEggggAACQRMgAAet\nxSgvAggggEAoBAjAoWhGKoEAAgggEDQBAnDQWozyIoAAAgiEQoAAHIpmpBIIIIAAAkETIAAHrcUo\nLwIIIIBAKAQIwKFoRiqBAAIIIBA0AQJw0FqM8iKAAAIIhEKAAByKZqQSCCCAAAJBEyAAB63FKC8C\nCCCAQCgECMChaEYqgQACCCAQNAECcNBajPIigAACCIRCgAAcimakEggggAACQRMgAAetxSgvAggg\ngEAoBAjAoWhGKoEAAgggEDQBAnDQWozyIoAAAgiEQoAAHIpmpBIIIIAAAkETIAAHrcUoLwIIIIBA\nKAQIwKFoRiqBQOECM2fOlO7du0d33LVrl7Ru3VrWrVsXXccTBBDInAABOHPW5ISApwLHHnusTJ8+\nXVasWGHKMXv2bClTpoxUq1bN03KROQLZKkAAztaWp95ZJ5CbmytdunSRN99809R9/Pjxcv7552ed\nAxVGwC8CBGC/tATlQCADAhpwJ0yYILt375a33nor35B0BrInCwQQiBEgAMdg8BSBsAtoD3jBggXy\n9ttvS9OmTaVWrVphrzL1Q8C3AgRg3zYNBUMg/QLlypWT008/Xe644w7p0aNH+jMgRQQQSFkgJ2It\nKe/NjgggEHiBd955R84880z5448/pHr16oGvDxVAIKgC9ICD2nKUG4FiCujHj3QomuBbTEDehkCa\nBEqlKR2SQQABnwvoYNdtt90mEydOlJdeesnnpaV4CIRfgB5w+NuYGiJgBHJycsykqxEjRkjbtm1R\nQQABjwW4B+xxA5A9AggggEB2CtADzs52p9YIIIAAAh4LEIA9bgCyRwABBBDITgECcHa2O7VGAAEE\nEPBYgADscQOQPQIIIIBAdgoQgLOz3ak1AggggIDHAgRgjxuA7BFAAAEEslOAAJyd7U6tEUAAAQQ8\nFiAAe9wAZI8AAgggkJ0CBODsbHdqjQACCCDgsQAB2OMGIHsEEEAAgewUIABnZ7tTawQQQAABjwUI\nwB43ANkjgAACCGSnAAE4O9udWiOAAAIIeCxAAPa4AcgeAQQQQCA7Bf4HegoFjlxaxWYAAAAASUVO\nRK5CYII=\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 7, | |
"text": "array([<rpy2.rinterface.SexpVector - Python:0x110d91c48 / R:0x7fa1747cb5f0>,\n <rpy2.rinterface.SexpVector - Python:0x110d91e10 / R:0x7fa174332b88>,\n <rpy2.rinterface.SexpVector - Python:0x110d91fd8 / R:0x7fa1747cb3f8>,\n <rpy2.rinterface.SexpVector - Python:0x110d91cd8 / R:0x7fa1747cb158>,\n <rpy2.rinterface.SexpVector - Python:0x110d912b8 / R:0x7fa17625a9f0>,\n <rpy2.rinterface.SexpVector - Python:0x110d91978 / R:0x7fa176429138>,\n <rpy2.rinterface.SexpVector - Python:0x110d91948 / R:0x7fa176523298>], dtype=object)" | |
} | |
], | |
"prompt_number": 7 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 6, | |
"metadata": {}, | |
"source": "Select all favors and examine the balance of open/closed favors per user" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "authors = {}\nAll = {}\n\n# sqlite> select * from categories where name == \"favor\";\n# 17|favor||favor|2013-04-01 21:37:44|2013-04-01 21:37:44\n\nfor row in data.execute('select * from listings where category_id == 17'):\n author = row['author_id']\n if author not in authors:\n authors[ author ] = 0\n authors[ author ] += (1 if row['open'] else -1)\n \n if author not in All:\n All[ author ] = 0\n All[ author ] += 1\n\n## generate two vectors\nx = map( lambda x: x, authors)\ny = map( lambda x: authors[x], authors)\n\ny.sort()\n\nprint len(y)\n%Rpush y\n%R plot(y)\n\n## generate two vectors\nx = map( lambda x: x, All)\ny = map( lambda x: All[x], All)\n\ny.sort()\n%Rpush y\n%R hist(y)\n\n## people who have zero\nprint y\nprint sum( ( map( lambda a: 1 if a == 0 else 0, y ) ) )", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "742\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAEJGlDQ1BJQ0MgUHJvZmlsZQAAOBGF\nVd9v21QUPolvUqQWPyBYR4eKxa9VU1u5GxqtxgZJk6XtShal6dgqJOQ6N4mpGwfb6baqT3uBNwb8\nAUDZAw9IPCENBmJ72fbAtElThyqqSUh76MQPISbtBVXhu3ZiJ1PEXPX6yznfOec7517bRD1fabWa\nGVWIlquunc8klZOnFpSeTYrSs9RLA9Sr6U4tkcvNEi7BFffO6+EdigjL7ZHu/k72I796i9zRiSJP\nwG4VHX0Z+AxRzNRrtksUvwf7+Gm3BtzzHPDTNgQCqwKXfZwSeNHHJz1OIT8JjtAq6xWtCLwGPLzY\nZi+3YV8DGMiT4VVuG7oiZpGzrZJhcs/hL49xtzH/Dy6bdfTsXYNY+5yluWO4D4neK/ZUvok/17X0\nHPBLsF+vuUlhfwX4j/rSfAJ4H1H0qZJ9dN7nR19frRTeBt4Fe9FwpwtN+2p1MXscGLHR9SXrmMgj\nONd1ZxKzpBeA71b4tNhj6JGoyFNp4GHgwUp9qplfmnFW5oTdy7NamcwCI49kv6fN5IAHgD+0rbyo\nBc3SOjczohbyS1drbq6pQdqumllRC/0ymTtej8gpbbuVwpQfyw66dqEZyxZKxtHpJn+tZnpnEdrY\nBbueF9qQn93S7HQGGHnYP7w6L+YGHNtd1FJitqPAR+hERCNOFi1i1alKO6RQnjKUxL1GNjwlMsiE\nhcPLYTEiT9ISbN15OY/jx4SMshe9LaJRpTvHr3C/ybFYP1PZAfwfYrPsMBtnE6SwN9ib7AhLwTrB\nDgUKcm06FSrTfSj187xPdVQWOk5Q8vxAfSiIUc7Z7xr6zY/+hpqwSyv0I0/QMTRb7RMgBxNodTfS\nPqdraz/sDjzKBrv4zu2+a2t0/HHzjd2Lbcc2sG7GtsL42K+xLfxtUgI7YHqKlqHK8HbCCXgjHT1c\nAdMlDetv4FnQ2lLasaOl6vmB0CMmwT/IPszSueHQqv6i/qluqF+oF9TfO2qEGTumJH0qfSv9KH0n\nfS/9TIp0Wboi/SRdlb6RLgU5u++9nyXYe69fYRPdil1o1WufNSdTTsp75BfllPy8/LI8G7AUuV8e\nk6fkvfDsCfbNDP0dvRh0CrNqTbV7LfEEGDQPJQadBtfGVMWEq3QWWdufk6ZSNsjG2PQjp3ZcnOWW\ning6noonSInvi0/Ex+IzAreevPhe+CawpgP1/pMTMDo64G0sTCXIM+KdOnFWRfQKdJvQzV1+Bt8O\nokmrdtY2yhVX2a+qrykJfMq4Ml3VR4cVzTQVz+UoNne4vcKLoyS+gyKO6EHe+75Fdt0Mbe5bRIf/\nwjvrVmhbqBN97RD1vxrahvBOfOYzoosH9bq94uejSOQGkVM6sN/7HelL4t10t9F4gPdVzydEOx83\nGv+uNxo7XyL/FtFl8z9ZAHF4bBsrEwAAOutJREFUeAHt3QlwFGXawPEnchMkEgyCgAoBBcVodD3i\ngRzeYIkHiqiArAespownipYouioKIopYYCmICB6oqCEqirjqguuieBUgAgYUDSJHuAznfHnerZ5v\nMkw6PTM9M92Tf1cN0/Ne/favJzzTb18ZgcpJmBBAAAEEEEAgqQL7JXVpLAwBBBBAAAEEjAABmC8C\nAggggAACKRAgAKcAnUUigAACCCBAAOY7gAACCCCAQAoECMApQGeRCCCAAAIIEID5DiCAAAIIIJAC\nAQJwCtBZJAIIIIAAAgRgvgMIIIAAAgikQIAAnAJ0FokAAggggAABmO8AAggggAACKRAgAKcAnUUi\ngAACCCBAAOY7gAACCCCAQAoECMApQGeRCCCAAAIIEID5DiCAAAIIIJACAQJwCtBZJAIIIIAAAgRg\nvgMIIIAAAgikQIAAnAJ0FokAAggggAABmO8AAggggAACKRAgAKcAnUUigAACCCBAAOY7gAACCCCA\nQAoECMApQGeRCCCAAAIIEID5DiCAAAIIIJACAQJwCtBZJAIIIIAAAgRgvgMIIIAAAgikQIAAnAJ0\nFokAAggggAABmO8AAggggAACKRAgAKcAnUUigAACCCBAAOY7gAACCCCAQAoECMApQGeRCCCAAAII\nEID5DiCAAAIIIJACAQJwCtBZJAIIIIAAAgRgvgMIIIAAAgikQIAAnAJ0FokAAggggAABmO8AAggg\ngAACKRAgAKcAnUUigAACCCBAAOY7gAACCCCAQAoECMApQGeRCCCAAAIIEID5DiCAAAIIIJACAQJw\nCtBZJAIIIIAAAgRgvgMIIIAAAgikQIAAnAJ0FokAAggggAABmO8AAggggAACKRAgAKcAnUUigAAC\nCCBAAOY7gAACCCCAQAoECMApQGeRCCCAAAIIEID5DiCAAAIIIJACAQJwCtBZJAIIIIAAAgRgvgMI\nIIAAAgikQIAAnAJ0FokAAggggAABmO8AAggggAACKRAgAKcAnUUigAACCCBAAOY7gAACCCCAQAoE\nCMApQGeRCCCAAAIIEID5DiCAAAIIIJACAQJwCtBZJAIIIIAAAgRgvgMIIIAAAgikQIAAnAJ0FokA\nAggggEDd2kQwc+ZM2b17d21aZdYVAQQQQMBGoEWLFtKjRw+bEonLyghUTolrPvqWNUBu2bJFmjVr\nFn1lmxpvvPGGjBkzRgYOHGhTiiwEEEAAgdok8NRTT8nLL78sxx57bNJX2xN7wDt37pT7779fXnrp\nJVmzZo3ob4LGjRtLu3bt5LbbbpNrrrkmbhgN7AMGDJAbbrgh7rZoAAEEEEAgPQSWLVsme/fuTcnK\neCIAFxYWSllZmcyePVvat28vmZmZsnnzZlm8eLEUFRVJRUWFDB06NCVALBQBBBBAAIFECHjiJKw5\nc+bIxIkTJS8vT5o0aSIZGRmSlZUlBQUFMm7cOJk1a1Yi1p02EUAAAQQQSJmAJwJwly5dZN68eRER\niouLJScnJ2IeiQgggAACCPhVwBND0CNHjpT+/fvL2LFjJTc3V5o2bSrl5eWyZMkSc9ZySUmJX33p\nNwIIIIAAAhEFPBGA8/PzZdGiRbJgwQIpLS01x4N1r1eP+3bt2tUMSUfsfVjipEmTZPr06WGp//u4\nYsUK6dixowwZMiRiPokIIIAAAggkU8ATAVhXuGHDhtK9e/fguuuJV3p2tB4Pdjpdf/31oq9I0y23\n3GICe6Q80hBAAAEEEEi2gCeOAUdaab1u99Zbb42URRoCCCCAAAK+F/DEHrAODf/5559VMHXvV6/d\n1UDcp08fmTx5cpV8PiCAAAIIIKACesmqnjd0xBFHSHZ2tm9QPBGANbgOHjxYrrrqquCdqvTSIz0m\nPGrUKHNdsG9E6SgCCCCAQFIE9KZNI0aMkJ9++klat24tEyZMkLlz55pLWJPSgTgX4okh6NNOO00W\nLlwoy5cvN8POeiOOAw880FwTfOihh5r5ONeT6ggggAACaSbw0EMPybZt22TGjBkyevRo+frrr+Xm\nm2+WVatW+WJNPRGAVUovPZo6dapcfvnl5sznjz76yBeAdBIBBBBAIDUCuuN21113BRfeqVMnM5r6\n73//O5jm5RnPBGAL6bLLLhO9M5YeE27ZsqWVzDsCCCCAAAJVBPTOiXrFTOi0adMmqVevXmiSZ+c9\ncQw4XKdNmzby7rvvhifzGQEEEEAAgaDARRddJHfeeae88MIL0qhRI3Pb4rvvvts8SyBYyMMzngzA\nHvaiawgggAACHhG49NJLZd26dXLcccfJ4Ycfbs4b0uO/+++/v0d6aN8NArC9D7kIIIAAAh4W0Dsm\n+vVpeZ47Buzh7UzXEEAAAQQQcE2AAOwaJQ0hgAACCCDgXIAA7NyKkggggAACCLgmQAB2jZKGEEAA\nAQQQcC5AAHZuRUkEEEAAAQRcEyAAu0ZJQwgggAACCDgXIAA7t6IkAggggAACrgkQgF2jpCEEEEAA\nAQScCxCAnVtREgEEEEAAAdcECMCuUdIQAggggAACzgUIwM6tKIkAAggggIBrAgRg1yhpCAEEEEAA\nAecCBGDnVpREAAEEEEDANQECsGuUNIQAAggggIBzAQKwcytKIoAAAggg4JoAAdg1ShpCAAEEEEDA\nuQAB2LkVJRFAAAEEEHBNgADsGiUNIYAAAggg4FyAAOzcipIIIIAAAgi4JkAAdo2ShhBAAAEEEHAu\nQAB2bkVJBBBAAAEEXBMgALtGSUMIIIAAAgg4FyAAO7eiJAIIIIAAAq4JEIBdo6QhBBBAAAEEnAsQ\ngJ1bURIBBBBAAAHXBAjArlHSEAIIIIAAAs4FCMDOrSiJAAIIIICAawIEYNcoaQgBBBBAAAHnAgRg\n51aURAABBBBAwDUBArBrlDSEAAIIIICAcwECsHMrSiKAAAIIIOCaAAHYNUoaQgABBBBAwLkAAdi5\nFSURQAABBBBwTYAA7BolDSGAAAIIIOBcgADs3IqSCCCAAAIIuCZAAHaNkoYQQAABBBBwLkAAdm5F\nSQQQQAABBFwTIAC7RklDCCCAAAIIOBcgADu3oiQCCCCAAAKuCRCAXaOkIQQQQAABBJwLEICdW1ES\nAQQQQAAB1wQIwK5R0hACCCCAAALOBQjAzq0oiQACCCCAgGsCBGDXKGkIAQQQQAAB5wIEYOdWlEQA\nAQQQQMA1AQKwa5Q0hAACCCCAgHMBArBzK0oigAACCCDgmoDnAvDu3btl48aNrq0gDSGAAAIIIOBF\nAU8E4J07d8rw4cOlbdu2Ur9+fcnOzpbMzEzp0qWLTJ482Ytu9AkBBBBAAIG4BOrGVdulyoWFhVJW\nViazZ8+W9u3bm+C7efNmWbx4sRQVFUlFRYUMHTrUpaXRDAIIIIAAAqkX8MQe8Jw5c2TixImSl5cn\nTZo0kYyMDMnKypKCggIZN26czJo1K/VS9AABBBBAAAEXBTwRgHWoed68eRFXq7i4WHJyciLmkYgA\nAggggIBfBTwxBD1y5Ejp37+/jB07VnJzc6Vp06ZSXl4uS5YsET0pq6SkxK++9BsBBBBAAIGIAp4I\nwPn5+bJo0SJZsGCBlJaWmuPButerx327du1qhqQj9j4sUQN1dXvSn376qTm5K6wKHxFAAAEEEEiJ\ngCcCsK55w4YNpXv37kGEPXv2yLZt2xwHX614zDHHSIsWLYJthM78+uuv5mSu0DTmEUAAAQQQSJWA\nJwLwrl27ZPTo0fLTTz/JTTfdJMuWLTPvGzZskD59+siMGTOkQYMGNRq1bt1a9BVpatmypdmzjpRH\nGgIIIIAAAskW8MRJWHfccYd88sknctBBB8nll18uDzzwgLzxxhsmIOsxYM6CTvbXguUhgAACCCRa\nwBN7wHrsduHChebkq0aNGskff/whZ5xxhln3hx56SO69914TmBONQfsIIIAAAggkS8ATAVhvvrF0\n6VI58cQT5dprrxU9XmtN33//vXTo0MH6yDsCCCCAAAJpIeCJIehbb71VLrzwQnn77bfl4IMPNoFY\ndfX2lLfddpsMHjw4LbBZCQQQQAABBCwBTwTgs88+W3788cdg4LU6d8EFF8jKlSvNPaGtNN4RQAAB\nBBBIBwFPDEErpN58Q1+hk96KkgkBBBBAAIF0FPDEHnA6wrJOCCCAAAII2AkQgO10yEMAAQQQQCBB\nAgTgBMHSLAIIIIAAAnYCBGA7HfIQQAABBBBIkAABOEGwNIsAAggggICdAAHYToc8BBBAAAEEEiRA\nAE4QLM0igAACCCBgJ0AAttMhDwEEEEAAgQQJEIATBEuzCCCAAAII2AkQgO10yEMAAQQQQCBBAgTg\nBMHSLAIIIIAAAnYCBGA7HfIQQAABBBBIkAABOEGwNIsAAggggICdAAHYToc8BBBAAAEEEiRAAE4Q\nLM0igAACCCBgJ0AAttMhDwEEEEAAgQQJEIATBEuzCCCAAAII2AkQgO10yEMAAQQQQCBBAgTgBMHS\nLAIIIIAAAnYCBGA7HfIQQAABBBBIkAABOEGwNIsAAggggICdAAHYToc8BBBAAAEEEiRAAE4QLM0i\ngAACCCBgJ0AAttMhDwEEEEAAgQQJEIATBEuzCCCAAAII2AkQgO10yEMAAQQQQCBBAgTgBMHSLAII\nIIAAAnYCBGA7HfIQQAABBBBIkAABOEGwNIsAAggggICdAAHYToc8BBBAAAEEEiRAAE4QLM0igAAC\nCCBgJ0AAttMhDwEEEEAAgQQJEIATBEuzCCCAAAII2AkQgO10yEMAAQQQQCBBAgTgBMHSLAIIIIAA\nAnYCBGA7HfIQQAABBBBIkAABOEGwNIsAAggggICdAAHYToc8BBBAAAEEEiRAAE4QLM0igAACCCBg\nJ0AAttMhDwEEEEAAgQQJEIATBEuzCCCAAAII2AkQgO10yEMAAQQQQCBBAgTgBMHSLAIIIIAAAnYC\nBGA7HfIQQAABBBBIkAABOEGwNIsAAggggICdAAHYToc8BBBAAAEEEiRAAE4QLM0igAACCCBgJ0AA\nttMhDwEEEEAAgQQJEIATBEuzCCCAAAII2AkQgO10yEMAAQQQQCBBAp4LwLt375aNGzcmaHVpFgEE\nEEAAAW8IeCIA79y5U4YPHy5t27aV+vXrS3Z2tmRmZkqXLl1k8uTJ3pCiFwgggAACCLgoUNfFtmJu\nqrCwUMrKymT27NnSvn17E3w3b94sixcvlqKiIqmoqJChQ4fG3D4VEUAAAQQQ8JqAJ/aA58yZIxMn\nTpS8vDxp0qSJZGRkSFZWlhQUFMi4ceNk1qxZXnOjPwgggAACCMQl4IkArEPN8+bNi7gixcXFkpOT\nEzGPRAQQQAABBPwq4Ikh6JEjR0r//v1l7NixkpubK02bNpXy8nJZsmSJ6ElZJSUljnx///13Wbt2\nbcSyf/zxh+zYsSNiHokIIIAAAggkW8ATATg/P18WLVokCxYskNLSUnM8WPd69bjvqaeeKnv27HHk\n8tVXX8ncuXMjltXjyc2bN4+YRyICCCCAAALJFvBEAP7ll1/knnvukTfffNMc93322WelQ4cOxuKV\nV14x6a+99lqNNr179xZ9RZpuueUWE9gj5ZGGAAIIIIBAsgU8cQxYh55btWolCxcuNAG4a9eusmzZ\nsmRbsDwEEEAAAQSSJuCJPWA9xqtD0I0aNRI9HnzkkUfKOeecI59//nnSIFgQAggggAACyRTwxB6w\nBlzd+7Wmfv36iV4bfN5558n69eutZN4RQAABBBBIGwFPBOAhQ4ZI3759ZdSoUUHYW2+9VS655BLR\nY7dMCCCAAAIIpJuAJ4agzz77bFmxYoWsXLmyiu+IESPkjDPOMHlVMviAAAIIIICAzwU8EYDVUO/9\nfPTRR+/D2a1bN9EXEwIIIIAAAukk4Ikh6HQCZV0QQAABBBBwIkAAdqJEGQQQQAABBFwWIAC7DEpz\nCCCAAAIIOBEgADtRogwCCCCAAAIuCxCAXQalOQQQQAABBJwIEICdKFEGAQQQQAABlwUIwC6D0hwC\nCCCAAAJOBAjATpQogwACCCCAgMsCBGCXQWkOAQQQQAABJwIEYCdKlEEAAQQQQMBlAQKwy6A0hwAC\nCCCAgBMBArATJcoggAACCCDgsgAB2GVQmkMAAQQQQMCJAAHYiRJlEEAAAQQQcFmAAOwyKM0hgAAC\nCCDgRIAA7ESJMggggAACCLgsQAB2GZTmEEAAAQQQcCJAAHaiRBkEEEAAAQRcFiAAuwxKcwgggAAC\nCDgRIAA7UaIMAggggAACLgsQgF0GpTkEEEAAAQScCBCAnShRBgEEEEAAAZcFCMAug9IcAggggAAC\nTgQIwE6UKIMAAggggIDLAgRgl0FpDgEEEEAAAScCBGAnSpRBAAEEEEDAZQECsMugNIcAAggggIAT\nAQKwEyXKIIAAAggg4LJA3erae/LJJ6W8vFwGDBgg7dq1q64Y6QgggAACCCAQg0C1e8C9evWSLVu2\nyGmnnSbdunWTKVOmyNatW2NYBFUQQAABBBBAIFyg2gDcsWNHGT16tKxevVruvvtu+fTTT6Vz584y\naNAg+eKLL8Lb4TMCCCCAAAIIRCFQbQC22tiwYYMsW7bMvOrWrSvNmzeXoqIi6devn1WEdwQQQAAB\nBBCIUqDaY8CfffaZPProo6LvvXv3lhEjRkjPnj1lv/32k71790rr1q2ltLRUDjvssCgXSXEEEEAA\nAQQQqDYA617vBRdcINOnT5esrKwqUhqEJ0+ebIJwlQw+IIAAAggggIAjgWoD8N///nfbBs4991zb\nfDIRQAABBBBAoHqBGo8BV1+VHAQQQAABBBCIVYAAHKsc9RBAAAEEEIhDgAAcBx5VEUAAAQQQiFWA\nAByrHPUQQAABBBCIQ4AAHAceVRFAAAEEEIhVgAAcqxz1EEAAAQQQiEOAABwHHlURQAABBBCIVYAA\nHKsc9RBAAAEEEIhDgAAcBx5VEUAAAQQQiFWAAByrHPUQQAABBBCIQ4AAHAceVRFAAAEEEIhVgAAc\nqxz1EEAAAQQQiEOAABwHHlURQAABBBCIVYAAHKsc9RBAAAEEEIhDgAAcBx5VEUAAAQQQiFXAcwF4\n9+7dsnHjxljXh3oIIIAAAgj4QsATAXjnzp0yfPhwadu2rdSvX1+ys7MlMzNTunTpIpMnT/YFJJ1E\nAAEEEEAgGoG60RROVNnCwkIpKyuT2bNnS/v27U3w3bx5syxevFiKioqkoqJChg4dmqjF0y4CCCCA\nAAJJF/DEHvCcOXNk4sSJkpeXJ02aNJGMjAzJysqSgoICGTdunMyaNSvpMCwQAQQQQACBRAp4IgDr\nUPO8efMirmdxcbHk5OREzCMRAQQQQAABvwp4Ygh65MiR0r9/fxk7dqzk5uZK06ZNpby8XJYsWSJ6\nUlZJSYlffek3AggggAACEQU8EYDz8/Nl0aJFsmDBAiktLTXHg3WvV4/7du3a1QxJR+x9WOKkSZNk\n+vTpYan/+7h8+XJp165dxDwSEUAAAQQQSLaAJwKwrnTDhg2le/fuca3/9ddfL/qKNN1yyy0msEfK\nIw0BBBBAAIFkC3jiGHCyV5rlIYAAAgggkGoBT+wBjxkzRnbt2lWtRadOnaRPnz7V5pOBAAIIIFA7\nBfQy1ZUrV0rjxo3lsMMO8xWCJwKwHvcdP368DBw40FwDHC7IWdDhInxGAAEEEFi9erXcdttt5rLV\nH3/80QTgKVOmSJ06dXyB44kA/PTTT8vevXvN65lnnvEFHJ1EAAEEEEidwNatW+XQQw81N3A6//zz\nTUd69eolTz75pAnKqeuZ8yV75hjwqFGjRO9+pahMCCCAAAII2Al88cUXct9994kVfLXszJkzZe7c\nuXbVPJXniT1gFdE7YL388suewqEzCCCAAALeFNA7JoYPNQcCAdmxY4c3OxyhV57ZA47QN5IQQAAB\nBBCIKHDSSSfJZ599JtOmTQvm602dTj311OBnr894Zg/Y61D0DwEEEEDAOwI6ajp16lT529/+JnrL\nYj18edppp8mdd97pnU7W0BP2gGsAIhsBBBBAwJsC27dvl759+5oTeE855RQZNmyY7Leff8Kaf3rq\nze1PrxBAAAEEUiCwZs0aGTBggJx55pnywAMPyPz58828XlHjl4kA7JctRT8RQAABBIICOtT88MMP\nS+/evaVz585mGFqfrPfOO+8Ey3h9hgDs9S1E/xBAAAEE9hHQJ+UdddRRVdJPOOEE2bBhQ5U0L38g\nAHt569A3BBBAAIGIAvp0u1mzZgXz9BKkxx57zFdPveMs6ODmYwYBBBBAwC8Cd9xxh7Rt21Z++eUX\nOfHEE80Z0T179oz7qXrJXH8CcDK1WRYCCCCAgCsCzZs3l9dff130OfD6vPerr77aHA92pfEkNUIA\nThI0i0EAAQQQcE/gmmuukTlz5kiHDh2kpKREPv/8c+nRo4d5KpJ7S0lsSxwDTqwvrSOAAAIIuCxw\n//33iz71SG/A8a9//Uv0kiR9pG1hYaHLS0pscwTgxPrSOgIIIICAywL6wIWbb75Z8vPzTcstWrSQ\nf/7zn+bWlC4vKqHNEYATykvjCCCAAAJuC+y///6ycePGKs3qyVh79uypkub1DwRgr28h+ocAAggg\nUEWgqKhIPvroI5kwYYJJnz59uowYMUKGDBlSpZzXP3ASlte3EP1DAAEEEKgicPbZZ8u4ceNk0KBB\ncs8990ijRo3MNcB6aZKfJgKwn7YWfUUAAQQQMAKXXnqp6MvPE0PQft569B0BBBBAwLcCBGDfbjo6\njgACCCDgZwECsJ+3Hn1HAAEEEPCtAAHYt5uOjiOAAAII+FmAAOznrUffEUAAAQR8K0AA9u2mo+MI\nIIBA7RNYuXKlDB48WDp37izHH3+8PPjgg/LXX3/5EoLLkHy52eg0AgggUPsE9IELvXr1kq1bt8p+\n++0nu3fvlq+//lr03tC///676C0p/TSxB+ynrUVfEUAAgVoq8Oeff8oZZ5whmzdvNgIrVqyQadOm\nSbNmzSQzM1OuvfZa38kQgH23yegwAgggUPsEli5dKm3atJFWrVqZpx4dcsghcuWVV0q7du1MANZ8\nv00MQftti9FfBBBAoBYK6AMYdNJh52XLlpl5Pfa7atUqcwy4Tp06Js1P/7AH7KetRV8RQACBWipw\nzDHHiN4DWo//fvLJJ9KnTx857rjjZP369VJRUSGPPPKI72TYA/bdJqPDCCCAQO0UmDhxouie7pQp\nU+Ttt982J2K1bNlSnnjiCbniiit8h0IA9t0mo8MIIIBA7RDYtWuX3HTTTfLiiy/Kjh07giudkZFh\nznhesGCBtG/fPpjutxmGoP22xegvAgggUEsELrroIpk0aVIw+DZs2FD01aBBAzMU3aNHD3P5kV85\nCMB+3XL0GwEEEEhjgV9++UUWLVok2dnZ0rx5c3P288cffyx5eXnStGlTc+aznoQ1c+ZM3yowBO3b\nTUfHEUAAgfQV0ODaqFGj4ArqvBV49SYcOgUCAd/eBUv7TwBWBSYEEEAAAU8J6PW9Bx10kLnTlXZM\nj/vqXbD0sqPQ6fTTTw/96Kt5hqB9tbnoLAIIIFA7BOrVqydvvPGGucRILzOyrvnVtdczobOysszx\n4YKCAt+CsAfs201HxxFAAAF/CZSXl8udd94pxcXFsnHjxn06r0PKuqerk/WuN+DQW03m5OSYM581\nMB977LEycOBA6dSp0z5t+CmBAOynrUVfEUAAAZ8K6D2c8/PzZfXq1bJnz56o1mLLli1SVlYmRx55\npHzzzTeiQTgdJoag02Ersg4IIICAxwV0j/XXX381e7YaQJ0E0bp168oBBxxghpt1yHnt2rXy7LPP\nenxNnXePPWDnVpREAAEEEIhR4LfffjPDyDrMrC+d9Liu7t1GmnQIWi9B0ut+dbLq/PDDD5GK+zKN\nAOzLzUanEUAAAX8J6LW8y5cvr9Lpbdu2yd69e6ukhX7YsGGDOeFK0zQA6+VHfnvmb+j6hM8zBB0u\nwmcEEEAAAdcFRo8ebdrUY8GbNm0SDa76ZCO7SfP1FpT62rlzpzl2fO+999pV8VUee8C+2lx0FgEE\nEKhZQO8ipfdJ1jON9YQn3XO0bl5hPbZP360zjTXQab7ujVpB0doztdKtIWCtY9Wz5rWM1Z5V3jrR\nSutZ88OGDZMXXnhBSktLg7eXrGlttL0mTZrIWWedZS47soaka6rnh3wCsB+2En1EAAEEHAhosLv7\n7rvlqaee8vQdojRwX3755TJ9+vTgDwMHq5d2RRiCTrtNygohgEBtFXjwwQdl1KhRng2+Gnh1T1n3\navUmG358hq+b3y32gN3UpC0EEEAghQJvvfWWOUnJGi7WruiJTnq2ceikgVDL6LuTKbQ9u/J27ekT\njJo1axY8m1nbfP311+Wee+6xazKt8wjAab15WTkEEKhNAnrdrL50soKm7m2GTtEG39C61rzVhn62\nC7pWeaucHlfWlxX89cSq2jwRgGvz1mfdEUAgrQQuvvhiuf/++4OX9migs06AslbUCszWu5UezXto\n3dB5uza2b98u+gqdevfuHfqx1s1X/WlU61afFUYAAQTSR0Dvs6xPDNIzmfUVHny9sKa6x6yPFhw8\neLA5q9kLfUpVH9gDTpU8y61WQIeoHn/8cXnyySdl3bp1wV/zVgVr+Msa+rJ+gYd/tso7ebfqWmW1\nTSvNat/K0/TwNCvPerfKhLcR/tkq7+Q9UW2GLjt0vTU9dD2t5YeXCa1vzVvraX223kPb0zSrTSs/\n0rtVxmrTaiP0s1XGrTa1HWs5kfoUKc3qj5UX7hTaXmh/rfLVvVvtWvVDP4e2Y83rkLNeqtO2bVs5\n77zzzIMMNE9foZcghV5mpIHaqm8NEevyQpdpzVvvuhytYw1xa9uaZy1L18dqS+f1B4Hm6400zjzz\nTOnSpYsm1+qJAFyrN783V/7CCy+UDz74wPx6t/6TCO2p9R+A9W7lhX+20p28R6obKU3bqi49dDlW\nGevdygv/bKU7ebfqWu9WnfDPVrqT90h1I6VpW6HpofORllNTvlXHSTmrjPUeqW5oXui8VTb83Spj\nvVv54Z+tdCfvkepGStO2qkuPtJzwsqGfI81rMNXXTz/9ZF6LFy+Wzp07R2qatBQLMASd4g3A4qsK\nzJ07Vz7++GPzS71+/frml7yTm7ZXbYVPCNROAd0b1TON9R7K1quoqKh2YvhgrdkD9sFGqk1dXL9+\nvfkPxNrztYa59FFkVprloUNd4VPoHkF4npPP8bapyw9vI/xzTX2M1EZ4391uM7w9XV5N/QzvU/hn\nt9uMpb3aZqnPzm3cuHGVv5U//vgjfNPw2SMCBGCPbAi68T+BNm3amBm996s16aUK1u3xrDQvv8cb\nuHTd3Ggj3CgRbYYvw4ufE7HeiWjTDTu9z7Je86s/VrSP+n744Ye70TRtJECAIegEoNJk7AKnnHKK\nnH/++eZG7Xqzdn1t3bo19gapiUAtEtCgqz9Y9aUjRjoc/corr9QiAX+tKnvA/tpenu+tDndNnTpV\nvvrqK7PXqr/AdRg59AxJ/U9C/3PQdH23Puu7TlqnoKBAVq5cKfqLXvd+NU0nLW/N6+fQef1staHz\nNU1W3dA6VppVNzTPSrN7t+qH1rPSrHqheVaa3bvWT8R6J6LN0HWLtN6aFlqmuvUOrRtaPjRd64bm\nVddWaLrWT8R6u9mm9jfcKZr11rL68ILu3bvL+PHjpWXLlqEEzHtIwHMBWP+z1Qc06y83Jn8JzJs3\nT6644oqIlw7Fsyb6VJeTTz45niaoiwACCHhOwBND0DpcMnz4cHPdmp75qmfvZWZmmuvEJk+e7Dk0\nOrSvgF7y0KNHD1m7dq3Zw9i3hPMU/QWv3wPrdemll8pvv/3mvAFKIoAAAj4Q8MQecGFhoehZrrNn\nz5b27dub4KtDj3r9mp5CX1FRIUOHDq2RU/fAdG8p0vSf//xH9AxBpsQIfPbZZ5KTk2OGzqzhM70W\nUZ9Hag0Thg+jhfdEy2mZ5s2bB9vRMjq8N3/+fNFAzIQAAgiki4AnAvCcOXNM4Aw9VpGVlWWOA44b\nN05GjBjhKADrnV+qO1t24cKFnrwtW7p8kXRv1brLjq6TFUyt4GulOVlfHRGx2tKArPPaPhMCCCCQ\nTgKeCMB6SzLr+GE4bnFxsdmzCk+P9LlDhw6ir0hTSUmJ2cuOlEda/ALnnnuuPPDAA8GhYg284Y9A\nc7IUrVdeXl6lqAbhs846q0oaHxBAAAG/C3giAI8cOVL69+8vY8eOldzcXGnatKn5T3jJkiVmj1aD\nJ5O3BQ488ED58MMP5bjjjjPDzm70Vvd8jz32WNEfYXrzdiYEEEAgnQQ8EYDz8/Nl0aJFZhi6tLTU\n7Knq8UQ97tu1a1dzPNAP6LrHp8ezZ8yYsc9jt/zQfzf6qHuregnEddddJ2PGjPHNtnNj3WkDAQQQ\niEbAEwFYO6xP79Dr1vw66YlCOpT+888/+3UVXOm3Xturd7F69tlnZc2aNfLqq6+60i6NIIAAAukm\n4InLkNIB9Z133hG9CYUOleqPCX1v0KBBOqya43U44IADRE+e00MIej9aPTNaX0wIIIAAAvsKeGYP\neN+u+StFL5vSa5d10mFYfemk18WGnglspZtMm39C61jFrLqheVaaVaa699A6oWWs+qH5VlpouUjz\noXV0z9c6U1nr62d9hZ9QFakd0hBAAIHaKEAAdmmrH3XUUSbobtu2zbxrcLLuxxq6iNCgFZruZD5S\n3UhpTtqyykSqHynNKl/du17zqyMAGnR10jb0JCqeQ1qdGOkIIFDbBRiCdukbcPzxx8uNN95obqOp\ne8N6O83QJ/q4tBjPN6PHwnXSIejnn3/enNXu+U7TQQQQQCAFAuwBx4D++uuvy4svvigrVqwIDi9b\nN2Nv166dCbyhe7/WkK6+60v3Dq330MVrG9bep1XHKhtaTuettqx5q5zVD03XNOsV2p5VR99DJ6tN\nq6yVZ7VttWW9h5fT8nr8Wy8duu++++Skk06ymuAdAQQQQCBMgAAcBlLTx759+4qecKUBtqbprbfe\nkj59+tRUjHwEEEAAgVoowBB0FBv98ccfl5kzZ1YbfOvVq2eGXnX4Vc+Cvummm8wj9aJYBEURQAAB\nBGqJAHvAUWzouXPnysEHHxwc1tWhWH1QhB7z1eFYvQTHGsbVZvXEJH0urj5gggkBBBBAAIFQAQJw\nqEYN83p9q/WwB+u46K5du4LHbfVOWFYA1ve6deuaPeIamiUbAQQQQKAWCjAEHcVGv/fee82j8TZt\n2mSub12/fn3wlpMakPUSpK1bt5ozoPVdT0jShxQwIYAAAgggEC5AAA4Xsfmcl5cn+uhE3RPWk7B0\niDnSpMeC9eSrH3/8MfhYvUjlSEMAAQQQqL0CBGAH216HnfUaXz2xSp/28+eff5q9W73UxrokJ/Rd\ng/Mbb7xhHkrgoHmKIIAAAgjUQgGOATvY6Lo3O3v2bFPynHPOMfd41kfv6eMT9YznYcOGOWiFIggg\ngAACCPy/AHvA/28Rce6nn36ShQsXij5o4IQTTpD3339fZs2aZe7wpPc+njRpUsR6JCKAAAIIIGAn\nQAC206nM2759e/Da3k6dOpnSeoazHgfWs5yZEEAAAQQQiEWACFKD2uGHHy7NmjWTpUuXynvvvSdf\nfPGFfPvttzJ//nxTs0OHDjW0QDYCCCCAAAL7ChCA9zWpkqInXum9n3Nzc83ecEFBgXnij57prMH5\n008/rVKeDwgggAACCDgRIAA7UNKzoAcNGiRff/21ufzo0EMPlV69esm1115rzox20ARFEEAAAQQQ\nqCLAMeAqHPt+0KHm/Px8KSsrk1NPPdUMRev1v9ZlSfvWIAUBBBBAAIGaBQjANkbl5eWilx2deOKJ\n5vjvhAkTZNGiRbJ8+XKZOnWqTU2yEEAAAQQQsBcgANv4rFmzRvT5vmPGjAmW0mfd6tnQ+pAFJgQQ\nQAABBGIVIADbyOnTjfQyJD3r2Zr06UdffvmlZGdnW0m8I4AAAgggELUAJ2HZkLVu3VoGDx5s7nSl\ngfiII46QK6+80jx+8K677rKpSRYCCCCAAAL2AgRgex8ZPny4aCB+7LHHzKMIu3XrJnosWC9PYkIA\nAQQQQCBWAQKwA7mBAweKvpgQQAABBBBwS4BjwG5J0g4CCCCAAAJRCBCAo8CiKAIIIIAAAm4JEIDd\nkqQdBBBAAAEEohAgAEeBRVEEEEAAAQTcEiAAuyVJOwgggAACCEQhQACOAouiCCCAAAIIuCVAAHZL\nknYQQAABBBCIQoAAHAUWRRFAAAEEEHBLgADsliTtIIAAAgggEIUAATgKLIoigAACCCDglgAB2C1J\n2kEAAQQQQCAKAQJwFFgURQABBBBAwC0BArBbkrSDAAIIIIBAFAIE4CiwKIoAAggggIBbAgRgtyRp\nBwEEEEAAgSgECMBRYFEUAQQQQAABtwQIwG5J0g4CCCCAAAJRCBCAo8CiKAIIIIAAAm4J1HWroXRt\nZ926dfLkk0/K2rVr5aCDDpJ7771XGjVqlK6ry3ohgAACCCRJgD1gG+jt27dLq1atpGPHjjJ8+HA5\n8sgj5fzzz5eNGzfa1CILAQQQQACBmgXYA7YxGjt2rDz88MMyaNAgU6p9+/ayadMmmTRpkgwbNsym\nJlkIIIAAAgjYC7AHbONTXl4u3bp1q1IiPz/fBOEqiXxAAAEEEEAgSgECsA2YDj2/8sorVUo89NBD\ncsQRR1RJ4wMCCCCAAALRCjAEbSOmQ889e/aUSy+9VK666ir5+OOPJRAIyMCBA21qkYUAAggggEDN\nAuwB2xjVq1dPZs+ebU6++uijj+Skk04ynzMyMmxqkYUAAggggEDNAgRgG6Pff/9dLrnkEqlbt640\nbdrU7AWXlZXZ1CALAQQQQAABZwKeG4LevXu3bNmyRZo1a+ZsDRJUaufOnaInXOk1wP369TNLOe64\n4+T222+XKVOmSP369RO0ZJpFAAEEEKgNAp7YA9Zgp9fZtm3b1gS27OxsyczMlC5dusjkyZNTsh1W\nrVolZ555ZjD4aif0WLAOS2seEwIIIIAAAvEIeGIPuLCwUHRoV4+36rW2Gnw3b94sixcvlqKiIqmo\nqJChQ4fGs55R123YsKFs3bp1n3rLly8XzWNCAAEEEEAgHgFP7AHPmTNHJk6cKHl5edKkSRPRk5yy\nsrKkoKBAxo0bJ7NmzYpnHWOqq3vjOgR9//33y44dO8yPgLPPPtvcFUvzmBBAAAEEEIhHwBMBWIea\n582bF3E9iouLJScnJ2JeohP1vs9656tzzz1XLrroItEA/Pzzzyd6sbSPAAIIIFALBDwxBD1y5Ejp\n37+/6K0fc3NzzRnHeheqJUuWiJ6UVVJSkpJNUadOHXMSVkoWzkIRQAABBNJawBMBWId6Fy1aJAsW\nLJDS0lJzPFj3evW4b9euXc2QdFpvBVYOAQQQQKDWCXgiAKu6ntjUvXv3uDaADhfrnnOkSU/q2rVr\nV6Qs0hBAAAEEEEi6gCcC8JgxY2yDY6dOnaRPnz414nz44YfmTOpIBb/77jtp165dpCzSEEAAAQQQ\nSLqAJwKwDjuPHz/e3GNZL0EKn5yehNW3b1/RV6Tp1Vdf5Tm+kWBIQwABBBBIiYAnAvDTTz8te/fu\nNa9nnnkmJRAsFAEEEEAAgWQKeOIyJF3hUaNGmZtvRLr5RTJBwpf1wQcfmLtxvf/+++FZfEYAAQQQ\nQCBmAc8EYL0Bx8svv2xuxBHz2rhcUR87OHPmTHP7yccee8wMb+ueOhMCCCCAAALxCngmAIevyPXX\nX2/2iMPTk/V5xowZ5laYzz33XPBZwPpEpGnTpiWrCywHAQQQQCCNBTwbgKdOnWpu/5gq+2+++cbc\nGCR0+TfccIN8++23oUnMI4AAAgggEJOAZwNwTGvjYiXd2/3xxx+rtKg3C9F0JgQQQAABBOIV8MRZ\n0JFWQo+/pvKpQ9ddd515/GDLli3lxBNPlM8++0yGDBli7g0dqb+kIYAAAgggEI2AZwOwPh0plVOL\nFi3MU5juuOMO0eFw/bx69WrzlKZU9otlI4AAAgikh4BnA7AXeLOzs3n6kRc2BH1AAAEE0lCAY8Bp\nuFFZJQQQQAAB7wsQgL2/jeghAggggEAaChCA03CjskoIIIAAAt4XIAB7fxvRQwQQQACBNBQgAKfh\nRmWVEEAAAQS8L0AA9v42oocIIIAAAmkoQABOw43KKiGAAAIIeF+AAOz9bUQPEUAAAQTSUCAjUDml\n4Xrts0r6cIVevXpJfn7+Pnl2CcuXL5c1a9ZI/fr17YqRl2CBbdu2SePGjSUjIyPBS6L56gT0v4rt\n27dLZmZmdUVIT4LAzp07pU2bNpKbm5uEpaX/IlauXCkffvihtG7dOukrW2sCcKyy06dPF/3PX+8N\nzZQ6gd69e8urr77Kf/6p2wRSXl4ueo/2WbNmpbAXLHrChAmSk5Njnk+Ohr8FGIL29/aj9wgggAAC\nPhUgAPt0w9FtBBBAAAF/CxCA/b396D0CCCCAgE8FCMA+3XB0GwEEEEDA3wIEYH9vP3qPAAIIIOBT\nAQKwTzcc3UYAAQQQ8LcAlyHVsP22bt0qev3j/vvvX0NJshMpUFZWJgcddBDXAScSuYa29+7dK+vW\nrTPboYaiZCdQYPPmzVKnTh0uyUugcbKaJgAnS5rlIIAAAgggECLAEHQIBrMIIIAAAggkS4AAnCxp\nloMAAggggECIAAE4BINZBBBAAAEEkiVAAE6WNMtBAAEEEEAgRIAAHILBLAIIIIAAAskSIAAnS5rl\nIIAAAgggECJAAA7BYBYBBBBAAIFkCRCAkyXNchBAAIEoBPQGQEzpLUAAttm+jzzyiOTl5Um7du1E\n55kSI7B48WK54oor5JhjjpGePXvKq6++GlzQJ598IqeddprZBhdddJFs3LjRUV6wEDNRC8yZM0ey\ns7Or1Kvub0G3x2WXXSYdO3aUo48+WubPn1+lHh+iF3jiiSekc+fOxvOmm26SPXv2mEbsrO3+TqLv\nATWSJlD5K4spgsBrr70WOPXUUwObNm0K/P7774HK4BAoKSmJUJKkeAXOOuuswIsvvmiaWbNmTaBF\nixaByltPBipvexho1apV4Ntvvw3s3LkzcMsttwSuueYaU84uL97+1Ob6GzZsCFQG0sABBxwQZLD7\nW+jbt2/gwQcfDFTepjIwb968QOXtQgPbt28P1mUmOoG5c+cG8vPzA1u2bAns2rUr0L9//8C0adNM\nI9VZ87cQnbGXSut9jpkiCAwePDjw7LPPBnMeffTRwHXXXRf8zIw7ApW/7gNvvfWWCbBWi7m5uebH\nznvvvRfo0aOHlRxYuXJlICsry3y2ywtWYCZqgSuvvDLwwgsvBJo1axasa/e3UHmP9MD69euDZY8/\n/vhA5R508DMz0Qn069cv8Nxzz5kfNOXl5VUqV2fN30IVJl99YAi6mrGG1atXS+XeVzC3ZcuWsnbt\n2uBnZtwR2G+//aRPnz5Sr14902DlHoAZZi4oKJDwbaAPY6j8T0l27Nhhm+dOz2pfK6+//ro0bNjQ\nHAYIXfvw7WD9LeiQqG6L0OFqzfvjjz9CqzMfhYBa//rrr3LwwQdL8+bN5eKLL5bK0R/zN1Gddfj2\nCf07iWLRFE2BAAG4GvTKX/VVnjbSuHFj2bZtWzWlSXZDYNmyZXL11VfL+PHjpXIIVMK3QaNGjcxi\nKoc4bfPc6Etta0OfNjVy5EgZPXr0Pqsevh2sv4XwdK2o20ifIMYUm4D+eJkxY4Z89NFHsnTpUlm+\nfLl88MEH+3zftXXLOnw7hP6dxNYLaiVLgABcjfSBBx4o+tgva9J5/VXKlBgB/c+mW7duct9995kT\nsnQp4dug8riY2UOrHB61zUtMD9O71RtvvNGc7Pb555+b//x1r6u4uNjs4YZvB+tvITxdhay89NZK\n3NrpD0/9EXrUUUdJ5aEYGThwoOjIhJ11eF7o30niekrLbgjUdaORdGyjTZs2smrVquCqlZaWStu2\nbYOfmXFPoPLYrpx55plyzz33yJAhQ4IN6zZQd2sK3QZ2eVZ53p0L1K9fXypPdjMvHeqsqKiQhx9+\nWE455RSp7m9Bg4XubemQqZbRSbfRIYcc4nzBlKwioP/HhD57XLeLjrzZWdetW9e4Ww2F/p1Yabx7\nVMBXR6yT2Fk9saHyEqSAnpX7888/Bzp06BD473//m8Qe1J5FVf4nH7jzzjvNyTyVw2nmvTIIBCqD\ngDkjunI4zswPGDAgcNdddxkYu7zaI5eYNa384VnlJCy7vwU9QauwsNCcsTtz5sxAp06dqpxQl5ge\npm+rlXu75v8dPZNcz4TWv42nn37arHB11vwt+Pf7wFnQ1Ww7vaxCL3mp/OUZqDyxJDBixIhqSpIc\nj8CXX36pdxvY5zVlyhTTrF4C06RJk0Dr1q0D3bt3N/8pWcuzy7PK8B69QHgAtvtb0B+nXbp0CVQe\nngno2et6KRJT7AK7d+82P2j0/xy9BE8vQ9IrBXSys+ZvIXbzVNbM0IV7dOfcE93SY1oNGjQwL090\nqBZ2ovI/JdHjWnrsN3yyywsvy+f4BOz+FiqvRZWcnJz4FkDtoMBff/0l+t0OHY62Mquz5m/BEvLP\nOwHYP9uKniKAAAIIpJEAZ0Gn0cZkVRBAAAEE/CNAAPbPtqKnCCCAAAJpJEAATqONyaoggAACCPhH\ngADsn21FTxFAAAEE0kiAAJxGG5NVQQABBBDwjwAB2D/bip4igAACCKSRAAE4jTYmq4IAAggg4B8B\nArB/thU9RQABBBBIIwECcBptTFYFAQQQQMA/AgRg/2wreooAAgggkEYCBOA02pisCgIIIICAfwQI\nwP7ZVvQUAQQQQCCNBAjAabQxWRUEEEAAAf8IEID9s63oKQIIIIBAGgkQgNNoY7IqCCCAAAL+ESAA\n+2db0VMEEEAAgTQSIACn0cZkVRBAAAEE/CNAAPbPtqKnCCCAAAJpJEAATqONyarUPoEvv/xSDjzw\nwKhXvLCwUB555JGo61EBAQTcEyAAu2dJSwgggAACCDgWIAA7pqIgAt4W+P7772XgwIFy8803S/Pm\nzeXYY4+V7777znQ6EAjIrbfeKq1atZLTTz9dfv311+DKrFu3Ti6++GI54IAD5JhjjpFPP/3U5E2a\nNEkuvPBC0bo69evXT5577jkzzz8IIBC/AAE4fkNaQMATAhUVFTJt2jTJzs6WH374QQoKCmT48OGm\nbxMmTDCBdd68eXLjjTdKSUlJsM+DBw+WrKwsWbp0qRQVFck111xj8gYMGCBLliyRl156SaZMmWLa\n1ADPhAAC7gjUdacZWkEAAS8ING3aVEaMGGG6onusGmx1evPNN2XQoEHSqVMn83rqqadM+oYNG0ww\n1oDduHFjueSSS+SFF14we855eXkyceJEueqqq2T37t1SXFws9evXN/X4BwEE4hcgAMdvSAsIeEag\nRYsWwb5kZmaawKkJK1askOOPPz6Yd/LJJ5t5HYrOyMiQHj16BPN0Zv78+aIBuHv37mbYumHDhnLC\nCSdUKcMHBBCIT4AAHJ8ftRHwlIAG00jTIYccIosXLzbD0pq/cuVKycnJMXvDOvysx4+ts6n1mLCm\n6fTuu+/Kpk2bZO/evWb+ggsuMOn8gwAC8QtwDDh+Q1pAwPMCPXv2lNdee022bdsmq1atCp5opUPK\nmvfMM8+YIFtWViZHHnmkOR68efNm+cc//iHjx48XHbLWeU1jQgABdwQIwO440goCnhbQk7EaNWok\nHTt2NHvBJ510UrC/d999t7z88svSrl07OeWUU+T22283w8/Dhg0THao+99xzpXfv3mYIW9OYEEDA\nHYGMyksM/neNgTvt0QoCCHhYoLy8XJo0aSJ16tTZp5c69KzD0NUNY+9TgQQEEIhLgAAcFx+VEUAA\nAQQQiE2AIejY3KiFAAIIIIBAXAIE4Lj4qIwAAggggEBsAgTg2NyohQACCCCAQFwCBOC4+KiMAAII\nIIBAbAIE4NjcqIUAAggggEBcAgTguPiojAACCCCAQGwCBODY3KiFAAIIIIBAXAIE4Lj4qIwAAggg\ngEBsAgTg2NyohQACCCCAQFwCBOC4+KiMAAIIIIBAbAIE4NjcqIUAAggggEBcAgTguPiojAACCCCA\nQGwCBODY3KiFAAIIIIBAXAIE4Lj4qIwAAggggEBsAgTg2NyohQACCCCAQFwCBOC4+KiMAAIIIIBA\nbAL/B9Q5g1MASFwBAAAAAElFTkSuQmCC\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHgCAYAAAB91L6VAAAEJGlDQ1BJQ0MgUHJvZmlsZQAAOBGF\nVd9v21QUPolvUqQWPyBYR4eKxa9VU1u5GxqtxgZJk6XtShal6dgqJOQ6N4mpGwfb6baqT3uBNwb8\nAUDZAw9IPCENBmJ72fbAtElThyqqSUh76MQPISbtBVXhu3ZiJ1PEXPX6yznfOec7517bRD1fabWa\nGVWIlquunc8klZOnFpSeTYrSs9RLA9Sr6U4tkcvNEi7BFffO6+EdigjL7ZHu/k72I796i9zRiSJP\nwG4VHX0Z+AxRzNRrtksUvwf7+Gm3BtzzHPDTNgQCqwKXfZwSeNHHJz1OIT8JjtAq6xWtCLwGPLzY\nZi+3YV8DGMiT4VVuG7oiZpGzrZJhcs/hL49xtzH/Dy6bdfTsXYNY+5yluWO4D4neK/ZUvok/17X0\nHPBLsF+vuUlhfwX4j/rSfAJ4H1H0qZJ9dN7nR19frRTeBt4Fe9FwpwtN+2p1MXscGLHR9SXrmMgj\nONd1ZxKzpBeA71b4tNhj6JGoyFNp4GHgwUp9qplfmnFW5oTdy7NamcwCI49kv6fN5IAHgD+0rbyo\nBc3SOjczohbyS1drbq6pQdqumllRC/0ymTtej8gpbbuVwpQfyw66dqEZyxZKxtHpJn+tZnpnEdrY\nBbueF9qQn93S7HQGGHnYP7w6L+YGHNtd1FJitqPAR+hERCNOFi1i1alKO6RQnjKUxL1GNjwlMsiE\nhcPLYTEiT9ISbN15OY/jx4SMshe9LaJRpTvHr3C/ybFYP1PZAfwfYrPsMBtnE6SwN9ib7AhLwTrB\nDgUKcm06FSrTfSj187xPdVQWOk5Q8vxAfSiIUc7Z7xr6zY/+hpqwSyv0I0/QMTRb7RMgBxNodTfS\nPqdraz/sDjzKBrv4zu2+a2t0/HHzjd2Lbcc2sG7GtsL42K+xLfxtUgI7YHqKlqHK8HbCCXgjHT1c\nAdMlDetv4FnQ2lLasaOl6vmB0CMmwT/IPszSueHQqv6i/qluqF+oF9TfO2qEGTumJH0qfSv9KH0n\nfS/9TIp0Wboi/SRdlb6RLgU5u++9nyXYe69fYRPdil1o1WufNSdTTsp75BfllPy8/LI8G7AUuV8e\nk6fkvfDsCfbNDP0dvRh0CrNqTbV7LfEEGDQPJQadBtfGVMWEq3QWWdufk6ZSNsjG2PQjp3ZcnOWW\ning6noonSInvi0/Ex+IzAreevPhe+CawpgP1/pMTMDo64G0sTCXIM+KdOnFWRfQKdJvQzV1+Bt8O\nokmrdtY2yhVX2a+qrykJfMq4Ml3VR4cVzTQVz+UoNne4vcKLoyS+gyKO6EHe+75Fdt0Mbe5bRIf/\nwjvrVmhbqBN97RD1vxrahvBOfOYzoosH9bq94uejSOQGkVM6sN/7HelL4t10t9F4gPdVzydEOx83\nGv+uNxo7XyL/FtFl8z9ZAHF4bBsrEwAANCRJREFUeAHt3QmUFNX59/Fn2GGQbRhZB2RVFFAiGIkI\nAypu4AYoEMUVFXNIBsQoJIaI0bgGEPUE44qJiqwqOyoqKKAoByEDIgqC7CCrsg3028/9v92Znulm\nqrtquqq7vnXOSC9Vd/ncdn5za+uMQHARFgQQQAABBBBIqkCZpNZGZQgggAACCCBgBAhgPggIIIAA\nAgi4IEAAu4BOlQgggAACCBDAfAYQQAABBBBwQYAAdgGdKhFAAAEEECCA+QwggAACCCDgggAB7AI6\nVSKAAAIIIEAA8xlAAAEEEEDABQEC2AV0qkQAAQQQQIAA5jOAAAIIIICACwIEsAvoVIkAAggggAAB\nzGcAAQQQQAABFwQIYBfQqRIBBBBAAAECmM8AAggggAACLggQwC6gUyUCCCCAAAIEMJ8BBBBAAAEE\nXBAggF1Ap0oEEEAAAQQIYD4DCCCAAAIIuCBAALuATpUIIIAAAggQwHwGEEAAAQQQcEGAAHYBnSoR\nQAABBBAggPkMIIAAAggg4IIAAewCOlUigAACCCBQDgIEELAusHPnTlm8eLFUr15dunTpEt7w0KFD\nMn/+fClbtqxceeWV5vXly5fLpk2b5Nxzz5UGDRqE1y3pwYkTJ6RMGX/9bbxw4UL56quvpG7dusav\natWqJTHxPgIpL5ARCC4p3ws6gECSBObOnSuXXXaZ/OpXv5Ivv/wyXOvGjRulcePGUrlyZfnll1/M\n6wMGDJDXX39d3nrrLbnhhhvC68Z6sG/fPnnooYekWbNm8rvf/S7Wamn3+osvvigDBw4M92vXrl2S\nlZUVfs4DBNJVwF9/ZqfrKNIvTwpcddVVMmLECDnzzDMtte+RRx6R0aNHy7Fjxyytny4rzZs3z3RF\n+759+3bCN10Gln6UKMAu6BKJWAGBxAR0NlytWjUpV+7//jc7fvy4mQ1/8cUXUr58eTn//POla9eu\nUqtWLdHXli5dair64IMPzGs6g9bl+++/F515r1q1Spo3by433nijZGdnm/f0Pz///LOMHz9e1q9f\nLxdeeKG0a9dOpk6dKr/+9a8lNzdXVq5cKbNmzTJ16axdZ+s642zatKmp95NPPjF1aNk9evSQFi1a\nmLJ19r5lyxYZNGiQvPbaa/Ltt9/KRRddJFdffbV89NFH8s4770j9+vXl5ptvllNPPTXcnqIPTtb+\nl156SXRXvS5r1qyRjz/+WPr06RMuYs+ePfLCCy9IxYoVJS8vL/z6tGnTZO3atdKzZ0/Lf+CEN+YB\nAl4R0F3QLAggYE1gzpw5esgmEAypwIIFC8I/wd3M5vVg6IYLuummm8xr+p4uDz74oHkePM4ZaNSo\nkXncoUOHQHDGG3j66afNcy1bf/R1XYKBFKhSpUrEe7Vr1w4Ew9q8H9zdHQjOsM37FSpUCGRkZATO\nOecc8/y+++4z6wRDzjxv2bJluJwVK1YEpk+fbp4Hj1sHgsdczePgse3AunXrzHbBPxDMa23btg2c\ncsoppmxt27XXXhvQbSpVqmTeDx7jDgSPW5ttiv6npPafddZZpoxQv4O79yOK0HKDfyiYdYLHiM17\nwT9kAsHAN20I/oEQsT5PEEglAXZBB//PZ0EgXgGdDersNfTTt2/fkxahJ1Y9++yzZqa4evVq+eGH\nH+SJJ56Qyy+/3Ox2vfPOO+Xuu+82ZYwcOVJmzpwphw8fNjM8Paas227btk3uv/9+0WOkOjvWMnXm\nm5+fL8HAlg0bNoiWvXv37qht0Zmozlrfe+89CYaqmXFecsklZvarx5+DwSr6r86ICy/t27cXnYk+\n+eST5mWdTS9btsycYBYMZnMsXGfKRRcr7de6OnfubDbVtunx8sJL8A8KueWWW8xLb7/9tvlXt9mx\nY4dcfPHFUq9evcKr8xiBlBIggFNquGisVwT0F7+eMBX6GTp06Embpmc1n3baaSY4dHet7io+evSo\n3HbbbeYMaT3rV8NMlxo1aphdzHq29f79+6VVq1bmpKw6deqY+nTdb775RoIzVROEuo2e5KVtOv30\n001o62tFF919rMeldTezLhrm//nPf0zg6klfS5YsMa/rLu3Ci+4S1rO7tWxdgrNWCc6yJTgTNyeM\n6Wt67LboYqX9uvs9OHM3m9asWdOcXV60HN3FrX6hAJ48ebJZJbSLvuj6PEcgVQQI4FQZKdrpKQEN\nu7/85S/hnz/84Q8ltk9neLfeeqtkZmbKokWL5M9//rMJNT32GW3RWZ4uemw2tOix0NAlTToT1uPK\numhohxYNxmhL0dniY489Zi770fDVWfMZZ5xhNit6CVToeHNwl7N5v/Dx3uDucfNacLdfsSqttL/Y\nRlFeCO6uN8eedQb/+eefm+Pb+sfKNddcE2VtXkIgdQQI4NQZK1qawgI6q9QZq4aGhp0Gie7yPXLk\niLz88sumZ6HgKygoMM/1JCpdgseaze5ofawnWunsV2ekena1zmp1CR6bNv9qIOsu5miLhndoOXjw\noPnjQYNMr1XW2aXOtKMtoXaF3iv8PFrwhtaz0v7QuiX9q3+46KJ7GrZu3Sq9e/eWUPiXtC3vI+BV\nAc6C9urI0K60EtBjmXfddZcJ4VGjRpmZ7969e00fdde0LqFd0FOmTDEzW91FrMdo9QYfesxWdx2H\njpHqGcE669VrknUXru6W1cDTG4Vs3rzZlFf0P9qG0KJhrNfa6q7jN99801z69Oqrr5q3dbe3E4v2\nq6T2W61H/1jRm598+umnZpPgCW5WN2U9BDwrwAzYs0NDw9JJQGdrGnTdu3cX3fV7/fXXmzDRXdeh\nk690dqzHRPVYrJ5cpcu7775rLvPR3bl6nayGtl5b/Oijj5r3GzZsaC4x0huD6IlhemlT8Gxr815o\nl7F5UuQ/ehnU448/Ljk5OaZ+PSEsdBxbL4lyaimp/Vbr0b7069fPrK67pPXyKhYEUl2AO2Gl+gjS\n/pQT0Btt6CxVj+VqEBZe9MQsPdtZg7Xwrl4941m30etudfdzaNFrh/X6YD1+e8EFF5iXNYD/9re/\nmRDXs6tPtuguZN2lq+WW5hKr/fHUqSdjTZgwwfwBojctYUEg1QUI4FQfQdrvawE9MSl4fa8x0F3c\negxYZ9p66ZLegCN0YlUqI40bN05mz55tjnPrTU30WLrOglkQSHUBdkGn+gjSfl8L6N2s9Bph/Vfv\nqawzxCZNmphjxekQvjq4//3vf0346u5yPU5N+Pr6I59WnWcGnFbDSWf8LKC7kwufaJVOFroLu/Au\n+XTqG33xrwAB7N+xp+cIIIAAAi4KsAvaRXyqRgABBBDwrwAB7N+xp+cIIIAAAi4KEMAu4lM1Aggg\ngIB/BQhg/449PUcAAQQQcFGAAHYRn6oRQAABBPwrQAD7d+zpOQIIIICAiwIEsIv4VI0AAggg4F8B\nAti/Y0/PEUAAAQRcFCCAXcSnagQQQAAB/woQwP4de3qOAAIIIOCiAAHsIj5VI4AAAgj4V4AA9u/Y\n03MEEEAAARcFCGAX8akaAQQQQMC/AgSwf8eeniOAAAIIuChAALuIT9UIIIAAAv4VIID9O/b0HAEE\nEEDARQEC2EV8qkYAAQQQ8K8AAezfsafnCCCAAAIuChDALuJTNQIIIICAfwUIYP+OPT1HAAEEEHBR\ngAB2EZ+qEUAAAQT8K0AA+3fs6TkCCCCAgIsCBLCL+FSNAAIIIOBfAQLYv2NPzxFAAAEEXBQggF3E\np2oEEEAAAf8KEMD+HXt6jgACCCDgogAB7CI+VSOAAAII+FeAAPbv2NNzBBBAAAEXBQhgF/GpGgEE\nEEDAvwIEsH/Hnp4jgAACCLgoQAC7iE/VCCCAAAL+FSjn365b7/n8+fNl1apV1jfwwJpZWVny29/+\nVsqWLeuB1tAEBBBAAIGiAhmB4FL0RZ5HCnTs2FEeeOABycjIiHzDw8+mTJkiw4YNkzZt2ni4lTQN\nAQQQ8K8AM2ALY1+lShXp2bOnlCmTOnvsddbOggACCCDgXYHUSRTvGtIyBBBAAAEE4hYggOMmYwME\nEEAAAQTsCxDA9g0pAQEEEEAAgbgFCOC4ydgAAQQQQAAB+wIEsH1DSkAAAQQQQCBuAQI4bjI2QAAB\nBBBAwL4AAWzfkBIQQAABBBCIW4AAjpuMDRBAAAEEELAvQADbN6QEBBBAAAEE4hYggOMmYwMEEEAA\nAQTsCxDA9g0pAQEEEEAAgbgFCOC4ydgAAQQQQAAB+wIEsH1DSkAAAQQQQCBuAQI4bjI2QAABBBBA\nwL4AAWzfkBIQQAABBBCIW4AAjpuMDRBAAAEEELAvQADbN6QEBBBAAAEE4hYggOMmYwMEEEAAAQTs\nCxDA9g0pAQEEEEAAgbgFCOC4ydgAAQQQQAAB+wIEsH1DSkAAAQQQQCBuAQI4bjI2QAABBBBAwL4A\nAWzfkBIQQAABBBCIW4AAjpuMDRBAAAEEELAvQADbN6QEBBBAAAEE4hYggOMmYwMEEEAAAQTsCxDA\n9g0pAQEEEEAAgbgFCOC4ydgAAQQQQAAB+wIEsH1DSkAAAQQQQCBuAQI4bjI2QAABBBBAwL4AAWzf\nkBIQQAABBBCIW4AAjpuMDRBAAAEEELAvQADbN6QEBBBAAAEE4hYggOMmYwMEEEAAAQTsCxDA9g0p\nAQEEEEAAgbgFCOC4ydgAAQQQQAAB+wIEsH1DSkAAAQQQQCBuAQI4bjI2QAABBBBAwL4AAWzfkBIQ\nQAABBBCIW4AAjpuMDRBAAAEEELAvQADbN6QEBBBAAAEE4hYggOMmYwMEEEAAAQTsCxDA9g0pAQEE\nEEAAgbgFCOC4ydgAAQQQQAAB+wKeC+CCggLZs2eP/Z5RAgIIIIAAAh4W8EQAHz16VEaMGCE5OTlS\noUIFqVWrlmRmZkrr1q3llVde8TAfTUMAAQQQQCAxgXKJbebsVoMHD5Zt27bJzJkzpWnTpiZ89+/f\nL/n5+ZKXlyeHDx+WQYMGOVsppSGAAAIIIOCigCdmwPPmzZPx48dL27ZtpWrVqpKRkSHVq1eXjh07\nytixY2X69OkuElE1AggggAACzgt4IoB1V/OCBQui9m7GjBmSnZ0d9T1eRAABBBBAIFUFPLELetSo\nUdK/f38ZPXq0NGvWTKpVqyb79u2T1atXi56UNWvWrFT1pd0IIIAAAghEFfBEALdr106WL18uixcv\nlg0bNpjjwTrr1eO+nTt3Nruko7aeFxFAAAEEEEhRAU8EsNpVqlRJunbtama8Bw4ckJo1a6YoKc1G\nAAEEEECgZAFPHAPmMqSSB4o1EEAAAQTSS8ATM2CnLkOaPHlyzOPFu3btktzcXBk6dGh6jSC9QQAB\nBBBISQFPBLBehqTHf+vWrRtGLHwZ0siRIy1dB3zRRRfJueeeGy6j8AM9kevIkSOFX+IxAggggAAC\nrgl4IoBDlyH169evGEQ8lyHpceNYx45PPfVU2blzZ7HyeQEBBBBAAAE3BDwRwFyG5MbQUycCCCCA\ngJsCngjgaJch1ahRQwYOHCjdunXjMiQ3PyHUjQACCCBQKgKeOAt648aNcuedd8opp5wiPXr0kHXr\n1snw4cPlqquukttvv130LGkWBBBAAAEE0knAEwH8l7/8RRo1aiRnnXWWjBs3zlwLvGrVKvn6669F\nrwl++OGH08mcviCAAAIIICCe2AX9ySefyJo1a8xXEU6bNs18+ULDhg3N8Gj43n333QwVAggggAAC\naSXgiRlwy5YtZcKECQZWr9UtfO9nPQu6RYsWaYVOZxBAAAEEEPDEDPi5554zx35feuklad68uQwb\nNkxefvllKVOmjOj3AusMmQUBBBBAAIF0EvBEAOs3IOXn58v8+fPlm2++MceD9XpenfleeeWVUq6c\nJ5qZTuNOXxBAAAEEXBbwTLJlZGRI9+7dzY/LJlSPAAIIIIBAqQt44hhwqfeSChBAAAEEEPCYAAHs\nsQGhOQgggAAC/hAggP0xzvQSAQQQQMBjAgSwxwaE5iCAAAII+EOAAPbHONNLBBBAAAGPCRDAHhsQ\nmoMAAggg4A8BAtgf40wvEUAAAQQ8JkAAe2xAaA4CCCCAgD8ECGB/jDO9RAABBBDwmAAB7LEBoTkI\nIIAAAv4QIID9Mc70EgEEEEDAYwIEsMcGhOYggAACCPhDgAD2xzjTSwQQQAABjwkQwB4bEJqDAAII\nIOAPAQLYH+NMLxFAAAEEPCZAAHtsQGgOAggggIA/BAhgf4wzvUQAAQQQ8JgAAeyxAaE5CCCAAAL+\nECCA/THO9BIBBBBAwGMCBLDHBoTmIIAAAgj4Q4AA9sc400sEEEAAAY8JEMAeGxCagwACCCDgDwEC\n2B/jTC8RQAABBDwmQAB7bEBoDgIIIICAPwQIYH+MM71EAAEEEPCYAAHssQGhOQgggAAC/hAggP0x\nzvQSAQQQQMBjAgSwxwaE5iCAAAII+EOAAPbHONNLBBBAAAGPCRDAHhsQmoMAAggg4A8BAtgf40wv\nEUAAAQQ8JkAAe2xAaA4CCCCAgD8ECGB/jDO9RAABBBDwmAAB7LEBoTkIIIAAAv4QIID9Mc70EgEE\nEEDAYwIEsMcGhOYggAACCPhDgAD2xzjTSwQQQAABjwkQwB4bEJqDAAIIIOAPAQLYH+NMLxFAAAEE\nPCZAAHtsQGgOAggggIA/BAhgf4wzvUQAAQQQ8JgAAeyxAaE5CCCAAAL+ECCA/THO9BIBBBBAwGMC\nBLDHBoTmIIAAAgj4Q4AA9sc400sEEEAAAY8JEMAeGxCagwACCCDgDwEC2B/jTC8RQAABBDwmQAB7\nbEBoDgIIIICAPwQIYH+MM71EAAEEEPCYAAHssQGhOQgggAAC/hAggP0xzvQSAQQQQMBjAgSwxwaE\n5iCAAAII+EOAAPbHONNLBBBAAAGPCRDAHhsQmoMAAggg4A8BAtgf40wvEUAAAQQ8JkAAe2xAaA4C\nCCCAgD8ECGB/jDO9RAABBBDwmAAB7LEBoTkIIIAAAv4QIID9Mc70EgEEEEDAYwIEsMcGhOYggAAC\nCPhDgAD2xzjTSwQQQAABjwkQwB4bEJqDAAIIIOAPAQLYH+NMLxFAAAEEPCZAAHtsQGgOAggggIA/\nBAhgf4wzvUQAAQQQ8JgAAeyxAaE5CCCAAAL+ECgXq5tjxoyRffv2yYABA6RJkyaxVuN1BBBAAAEE\nEEhAIOYM+Morr5QDBw5Ip06dJDc3V1599VU5ePBgAlWwCQIIIIAAAggUFYgZwC1atJCnnnpKNm7c\nKMOHD5dPPvlEWrVqJbfccossWbKkaDmOPS8oKJA9e/Y4Vh4FIYAAAggg4EWBmAEcauxPP/0ka9eu\nNT/lypWTrKwsycvLk759+4ZWsf3v0aNHZcSIEZKTkyMVKlSQWrVqSWZmprRu3VpeeeUV2+VTAAII\nIIAAAl4TiHkMeOHChfLYY4+J/tujRw8ZOXKkXHTRRVKmTBk5ceKENGjQQDZs2CCnnXaa7T4NHjxY\ntm3bJjNnzpSmTZua8N2/f7/k5+ebsD98+LAMGjTIdj0UgAACCCCAgFcEYgawznp79uwpb7zxhlSv\nXj2ivRrCOjPVEHZimTdvnixevFjq1q0bLk7r7Nixo4wdO9aEPwEcpuEBAggggEAaCMTcBX3bbbeZ\n4F2xYoXp5vPPP29C9/jx4+b5ZZddJuXLl3eEQHc1L1iwIGpZM2bMkOzs7Kjv8SICCCCAAAKpKhBz\nBjx16lQZPXq0/Pvf/zZ969y5swwdOlQCgYBoODu5jBo1Svr372/qa9asmVSrVs1cArV69WrRk7Jm\nzZrlZHWUhQACCCCAgOsCMWfAs2fPlkceeURatmxpGqmzVA3kyZMnO97odu3ayfLly+Xxxx83x5nr\n1KkjF198sTzzzDOyatUqady4seN1UiACCCCAAAJuCsScAWvozZ07Vy655JJw+z7++GMzOw2/4NAD\nPQtaZ8Gvv/66bN682cyyq1SpYm4Acu+998qtt97qUE0UgwACCCCAgDcEYgaw7mbWWaiemXz++efL\n119/Ldu3bxedGTu9cBa006KUhwACCCDgdYGYAaxnOOsNN95//3359ttv5Y477jBnJesZ0E4vTp0F\n/cILL5iztqO1b+fOneauXtHe4zUEEEAAAQSSLRAzgLUheilQr169Sr1NobOg+/XrV6yueM6CvvPO\nO0V/oi2TJk0SDWEWBBBAAAEEvCAQM4D37t0r99xzj6xcuVL0GG1oufzyy0W/qMHJhbOgndSkLAQQ\nQACBVBCIGcBPPPGEuRRIz0SuWrVquC96m0inl9BZ0HozDr27lt4VS6/91Ztv6OVPGRkZTldJeQgg\ngAACCLgqEDOA9WxknQF37do1KQ2sVKlSRF16+0mdeRO+SeGnEgQQQACBJAvEPKPquuuuM5cF7dix\nI8lN+r/qpkyZYm784UrlVIoAAggggEApC8ScAW/ZssXcgUpPXtIvSChbtqxpit6C0uljwPrVh7t2\n7Yroqs5+9S5YGsTXXHMN34oUocMTBBBAAIFUF4gZwPoNSO3btzf903CsUaOG6NcRlsYxYP1iB73u\n+MYbb5Sbb77Z1Dl9+nTzBQ16dyz9akIWBBBAAAEE0kkg5i5ovQ5Y74R1++23yx//+EfRrwfUW1Pq\nfZqdXjp16iTLli2TdevWmd3OGri1a9c2J3/pHbn0MQsCCCCAAALpJBAzgPWmFh9++KHolzLo0q1b\nN/P1g/p6aSwa7BMmTJAbbrjBnPmsNwBhQQABBBBAIF0FYgbwwoULZdiwYVK/fn3Td/3qwby8PBPK\npYlx/fXXi94ZS3d7F/5+4NKsk7IRQAABBBBItkDMY8A5OTmiIZybmxtu0zvvvCP16tULPy+tBw0b\nNpT33nuvtIqnXAQQQAABBFwXiBnAQ4YMkQ4dOsj8+fNl69at5j7QepMMdg27PmY0AAEEEEAgDQRi\nBrB+J29+fr5MnDhRNm7cKF26dDE/ocuR0qDvdAEBBBBAAAHXBGIGsLZIb0GpZ0GzIIAAAggggICz\nAjED+OmnnzZ3wipaXffu3UXvE82CAAIIIIAAAokLxAzga6+9Vs477zxTciAQEL0z1tixY+WKK65I\nvDa2RAABBBBAAAEjEDOA9faT+lN40edPPfVUxJnRhd/nMQIIIIAAAghYE4h5HXC0zdevX2++ojDa\ne7yGAAIIIIAAAtYFYs6Adaard6YKLYcOHZJNmzbJm2++GXqJfxFAAAEEEEAgQYGYAdyrVy9z7W+o\nXP0iBt0FnZ2dHXqJfxFAAAEEEEAgQYGYAdykSRPRHxYEEEAAAQQQcF4gZgDHugypcBM+++wzqVKl\nSuGXeIwAAggggAACFgRiBvAFF1wgL7/8srkRx4UXXiirVq2ScePGie6a7ty5sym6YsWKFqpgFQQQ\nQAABBBAoKhAzgPUErIceekh69+5tttH7Qrdq1UpGjRolf/rTn4qWw3MEEEAAAQQQiEMg5mVIehtK\nveyo8PLVV19JZmZm4Zd4jAACCCCAAAIJCMScAd9xxx1y6aWXytSpU823Ii1btsx8KcOcOXMSqIZN\nEEAAAQQQQKCwQMwZcMuWLWXp0qUycOBA0W9Aevjhh00At27duvD2PEYAAQQQQACBBARiBvCJEyfk\nhRdekDFjxpjvAC4oKJDrrrtOdu7cmUA1bIIAAggggAAChQViBrCG74cffmh2QesG3bp1kwYNGphQ\nLlwAjxFAAAEEEEAgfoGYAbxw4UIZNmyY1K9f35Ravnx5ycvLM6EcfzVsgQACCCCAAAKFBWIGcE5O\njmgIF17eeecdqVevXuGXeIwAAggggAACCQjEPAt6yJAh5uzn+fPny9atW819oTds2GCOBydQD5sg\ngAACCCCAQCGBmAFcrVo1yc/Pl4kTJ5qzn7t06SL6o2dEsyCAAAIIIICAPYGYATxixAipU6eOPPDA\nA/ZqYGsEEEAAAQQQKCYQ8xhw48aNZeXKlXL8+PFiG/ECAggggAACCNgTiDkDrly5ssyYMUN0V7Se\nkBXa9ax3x/rHP/5hr1a2RgABBBBAwOcCMQP4sssuk7PPPrsYT1ZWVrHXeAEBBBBAAAEE4hOIGcC6\nC1p/WBBAAAEEEEDAeYFix4B15vvTTz+Zmg4dOiSbNm1yvlZKRAABBBBAwOcCxQJYv/Xo2LFjhuXz\nzz+X/v37+5yI7iOAAAIIIOC8QLEAdr4KSkQAAQQQQACBogIEcFERniOAAAIIIJAEgagnYf34449y\n+PBh2bZtmxw5ckR++OGHcFMyMzOldu3a4ec8QAABBBBAAIH4BaIGcPv27SNKOu2008LP+/TpI2+/\n/Xb4OQ8QQAABBBBAIH6BYgG8ffv2k5aSkZFx0vd5EwEEEEAAAQRKFigWwKE7XpW8KWsggAACCCCA\nQKICnISVqBzbIYAAAgggYEOAALaBx6YIIIAAAggkKkAAJyrHdggggAACCNgQIIBt4LEpAggggAAC\niQoQwInKsR0CCCCAAAI2BAhgG3hsigACCCCAQKICBHCicmyHAAIIIICADQEC2AYemyKAAAIIIJCo\nAAGcqBzbIYAAAgggYEOAALaBx6YIIIAAAggkKkAAJyrHdggggAACCNgQIIBt4LEpAggggAACiQoQ\nwInKsR0CCCCAAAI2BAhgG3hsigACCCCAQKICBHCicmyHAAIIIICADQEC2AYemyKAAAIIIJCoAAGc\nqBzbIYAAAgggYEOAALaBx6YIIIAAAggkKkAAJyrHdggggAACCNgQIIBt4LEpAggggAACiQoQwInK\nsR0CCCCAAAI2BAhgG3hsigACCCCAQKICBHCicmyHAAIIIICADQEC2AYemyKAAAIIIJCoAAGcqBzb\nIYAAAgggYEOAALaBx6YIIIAAAggkKkAAJyrHdggggAACCNgQIIBt4LEpAggggAACiQoQwInKsR0C\nCCCAAAI2BAhgG3hsigACCCCAQKICBHCicmyHAAIIIICADQEC2AYemyKAAAIIIJCogOcCuKCgQPbs\n2ZNof9gOAQQQQACBlBDwRAAfPXpURowYITk5OVKhQgWpVauWZGZmSuvWreWVV15JCUgaiQACCCCA\nQDwC5eJZubTWHTx4sGzbtk1mzpwpTZs2NeG7f/9+yc/Pl7y8PDl8+LAMGjSotKqnXAQQQAABBJIu\n4IkZ8Lx582T8+PHStm1bqVq1qmRkZEj16tWlY8eOMnbsWJk+fXrSYagQAQQQQACB0hTwRADrruYF\nCxZE7eeMGTMkOzs76nu8iAACCCCAQKoKeGIX9KhRo6R///4yevRoadasmVSrVk327dsnq1evFj0p\na9asWanqS7sRQAABBBCIKuCJAG7Xrp0sX75cFi9eLBs2bDDHg3XWq8d9O3fubHZJR209LyKAAAII\nIJCiAp4IYLWrVKmSdO3a1cx4Dxw4IDVr1kxRUpqNAAIIIIBAyQKeOAbMZUglDxRrIIAAAgikl4An\nZsBOXYa0atUqWbNmTdQRWrJkiTmzOuqbvIgAAggggECSBTwRwHoZkh7/rVu3brj7hS9DGjlypKXr\ngHXX9fbt28NlFH6wd+9eqVy5cuGXeIwAAggggIBrAp4I4NBlSP369SsGEc9lSHrdsP5EWyZNmiQ7\nd+6M9havIYAAAgggkHQBTwQwlyElfdypEAEEEEDAZQFPBDCXIbn8KaB6BBBAAIGkC3gigLXXocuQ\nigocP37cXJpUsWLFom/xHAEEEEAAgZQV8MRlSJs2bZIBAwaY+0Bfcsklsm7dujCoHru96aabws95\ngAACCCCAQDoIeCKA9RaU9erVk2XLlpmTqPTuV2vXrk0HX/qAAAIIIIBAVAFP7ILWez3rrSj1MiE9\nIevMM8+USy+9VBYtWhS10byIAAIIIIBAqgt4Ygasgauz39DSt29f0ZtzXH755bJ79+7Qy/yLAAII\nIIBA2gh4IoDvvvtu6dOnjzz++ONh2KFDh0qvXr1kyJAh4dd4gAACCCCAQLoIeGIXdPfu3eW7776T\n77//PsJV74DVpUsX817EGzxBAAEEEEAgxQU8EcBqmJmZKW3atCnGmZubK/rDggACCCCAQDoJeGIX\ndDqB0hcEEEAAAQSsCBDAVpRYBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLY\nYVCKQwABBBBAwIoAAWxFiXUQQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0G\npTgEEEAAAQSsCBDAVpRYBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCK\nQwABBBBAwIoAAWxFiXUQQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgE\nEEAAAQSsCBDAVpRYBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwAB\nBBBAwIoAAWxFiXUQQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgEEEAA\nAQSsCBDAVpRYBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwABBBBA\nwIoAAWxFiXUQQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgEEEAAAQSs\nCBDAVpRYBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwABBBBAwIoA\nAWxFiXUQQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgEEEAAAQSsCBDA\nVpRYBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwABBBBAwIoAAWxF\niXUQQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgEEEAAAQSsCBDAVpRY\nBwEEEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwABBBBAwIoAAWxFiXUQ\nQAABBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgEEEAAAQSsCBDAVpRYBwEE\nEEAAAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwABBBBAwIoAAWxFiXUQQAAB\nBBBwWIAAdhiU4hBAAAEEELAiQABbUWIdBBBAAAEEHBYggB0GpTgEEEAAAQSsCBDAVpRYBwEEEEAA\nAYcFCGCHQSkOAQQQQAABKwIEsBUl1kEAAQQQQMBhAQLYYVCKQwABBBBAwIoAAWxFiXUQQAABBBBw\nWKCcw+VRnEcEjh8/Ljt37pStW7d6pEUlNyMjI0Pq1q1b8oqsgQACCKSBAAGcBoMYrQtLly6Vzz//\nXFq2bBntbU++tnjxYpk4caKcd955nmwfjUIAAQScFCCAndT0UFnHjh2TkSNHSq9evTzUqpM35Z//\n/KesX7+eAD45E+8igECaCHAMOE0Gkm4ggAACCKSWgOcCuKCgQPbs2ZNairQWAQQQQACBOAU8sQv6\n6NGj8te//lVef/112bx5swQCAalSpYo0adJE7r33Xrn11lvj7Barp6LAvn37ZOrUqbJixYqUaf7B\ngwfl9ttvl7PPPjtl2qwN3bRpk+zatSul2pyVlSWNGjVKqTanamNXrlwpOhlKpaV58+ZyyimnpFKT\nxRMBPHjwYNm2bZvMnDlTmjZtKpmZmbJ//37Jz8+XvLw8OXz4sAwaNKhEWA1w/QUebdFg79ChQ7S3\nSnxNg2HgwIGiZ+mmyqL9HTNmjMyePTtVmmzGX49d16hRI2Xa/PPPP8s555wjnTp1Spk2a0MXLVok\nXbp0Sak2f/zxxynpnGqfjV9++UW++uqrlPp8HDp0SE4//XSZMGFCSn2mM4KzzYDbLdaZrp4BG+0S\nlCVLlpiTiebOnVtiMzWo9Sfaor/YK1euLFWrVo329klf013iu3fvPuk6XntT/1jwwNDGxVKmTBk5\nceJEXNt4YWX9Y6dWrVpeaIrlNqiz/qGbSov+kk21Zfv27VKnTp1Ua7ZUqlQppSYcCtygQQPzOz6V\nsD0xA27durUsWLBA+vXrV8xuxowZkp2dXez1aC/oh0Z/nF5q1qwp+sOCQDQB3fXFgkA0gTZt2kR7\nmdcQMAKemAEvX75c+vfvb/bfN2vWTKpVqya623f16tXmOMSsWbOkcePGDBkCCCCAAAJpI+CJAFZN\n3XWsu6E3bNhgjgfrrLdFixbSuXPnlNsVkjafDjqCAAIIIFBqAp4J4FLrIQUjgAACCCDgQQHPXQfs\nQSOahAACCCCAgOMCBLDjpBSIAAIIIIBAyQIEcMlGrIEAAggggIDjAgSw46QUiAACCCCAQMkCBHDJ\nRqyBAAIIIICA4wIEsOOkFIgAAggggEDJAgRwyUasgQACCCCAgOMCnrgVpeO9crhAvTtXTk6Ow6VS\nXFGBHTt2SPny5bntZ1GYUnj+zTffmJvXl0LRFFlI4McffzRfLpLIPegLFcPDEgT0Xv96/3v9kpFU\nWghgC6Ol4fvRRx9ZWJNV7Ag899xz5sb1vXv3tlMM21oQyM3N5TNtwcnuKsOHD5err75azj//fLtF\nsf1JBPSPd/1WvVRb2AWdaiNGexFAAAEE0kKAAE6LYaQTCCCAAAKpJkAAp9qI0V4EEEAAgbQQIIDT\nYhjpBAIIIIBAqgkQwKk2YrQXAQQQQCAtBAjgtBhGOoEAAgggkGoCfB+whRHbunWr1KtXz8KarGJH\nYP/+/VK2bFnJzMy0UwzbWhDgM20ByYFVfvrpJ/N5rlixogOlUUQsgRMnTsiuXbvk1FNPjbWKJ18n\ngD05LDQKAQQQQCDdBdgFne4jTP8QQAABBDwpQAB7clhoFAIIIIBAugsQwOk+wvQPAQQQQMCTAgSw\nJ4eFRiGAAAIIpLsAAZzuI0z/EEAAAQQ8KUAAe3JYaBQCCCCAQLoLEMDpPsL0DwEEEEDAkwIEsCeH\nxT+NCgQCcvz4cf90mJ4igAAC/1+AAD7JR+Gjjz6STp06SZMmTeTaa6+VPXv2nGRt3opXQO9ec/31\n18uTTz4Zsenf//53adu2rXHXxyyJCxw7dkzuu+8+ad++vfnRL4g/evSoKVA/z+rfokULadOmjXz2\n2WeJV8SW8tZbb5nfF2eeeab069dP9u3bF1bhMx2mcOyB3jmvcePG8v7774fLTLXf2QRweOgiH+ht\nzfr37y/PP/+8rF271oTBvffeG7kSzxIW+PLLL6VLly7ywQcfRJQxadIkmTlzpixcuFAWL14sEydO\nlNmzZ0eswxPrAq+99pp89913xlI98/PzZcKECaaAu+66y/yho5/vcePGyXXXXSeHDh2yXjhrhgW+\n//57GTJkiEybNs0YV61aVUaNGmXe5zMdZnL0QV5enmgIh5ZU/J1NAIdGr8i/y5Ytk1atWplfUOXL\nl5fBgwfL1KlTi6zF00QFNBh+//vfm5lC4TLmzJkjN954o1SvXl3q1q1r3tdfaiyJCZx99tlmD4N+\nhvVHZ2effvqpKUyt77nnHsnIyJDc3Fxp2LChLFq0KLGKfL6V7iVbtWqVZGdnG4mCgoLwoRU+085/\nOKZPny6VKlWSli1bhgtPxd/ZBHB4+CIfbNy4MeILGOrUqWN2KR05ciRyRZ4lJPDMM89Inz59im1b\n1F1DePv27cXW4wVrAh06dJBmzZqZlX/++Wd54403pEePHuZwin6Wa9WqFS5IrXfs2BF+zgPrAvpH\nTFZWlqxZs8Z8rpcuXSqhPWZ8pq07WllTP6MPP/ywPPbYYxGrF3VOhd/ZBHDEEP7vye7duyO+lady\n5crmzV9++eV/K/HIcYGi7lWqVBENDhZ7Anrct2/fvqKB3KtXLynqrKXrZ/zgwYP2KvL51roLX2dl\nhw8flrlz5xqNotZ8pu19SPTQyUMPPSTVqlWLKKiocyr8ziaAI4bwf09q164dcXzhwIEDZpdHzZo1\n/7cSjxwXKOqux3jq16/veD1+KlDDV4/v6tnmOgPWpaizvoa1Kthb2rVrJ4888oj861//Ej3hTc/y\nL2qNc+LGeqKbntOgy4wZM2Tv3r2yZMkS2bBhQzHnVPidXS5xivTeUo+H6aCGFn2ck5MTesq/pSSg\n7j/88EO4dNzDFAk90GOROvPV8NVj6RUqVDDl1KhRw8x4f/zxR3PsV19U60aNGiVUj9830pMK9Rik\nzs500WPtelKQBgSfaec+HRqqeoLbo48+agrdsmWLvPnmm3LGGWcYZ/0Mh5aU+N0R/AuNJYpAcBdS\nIPjlzoHgKe4BfTxgwIDAAw88EGVNXrIjEDwJKBC8RCNcRPCM50DwEqTA5s2bA+vXrw80b9488MUX\nX4Tf50F8AqNHjzaewV9UgeAuOvMT/CVmCrntttsCwZMLA8FLlQKTJ08OBH+JBYKz5fgqYG0joL7B\nEwcDmzZtCgT/2AmMGDHCuOubfKZL70Ny3nnnBebPn28qSMXf2cyAQ38uFfm3YsWK8uyzz8o111xj\nzsjV4zrPPfdckbV46rTApZdeKm+//bacddZZZpe/zij0GlaWxATGjBlj9igU3o1/xRVXmEu9Hnzw\nQenZs6e5llKPl7344ovmTOnEavL3VvXq1TOXHXXr1s1AnHPOOeHd/Xymk/PZSMXf2Rn6p0NyeFKz\nFt2Fp7s9OPab3PHT42T6P5T+sJSuwM6dO8OXz5RuTelfuv461d8XRU8Q0p7zmU7O+KfS72wCODmf\nCWpBAAEEEEAgQoCzoCM4eIIAAggggEByBAjg5DhTCwIIIIAAAhECBHAEB08QQAABBBBIjgABnBxn\nakEAAQQQQCBCgACO4OAJAggggAACyREggJPjTC0IIIAAAghECBDAERw8QQABBBBAIDkCBHBynKkF\nAQQQQACBCAECOIKDJwgggAACCCRHgABOjjO1IIAAAgggECFAAEdw8AQBBBBAAIHkCBDAyXGmFgQQ\nQAABBCIECOAIDp4ggAACCCCQHAECODnO1IIAAggggECEAAEcwcETBBBAAAEEkiNAACfHmVoQQAAB\nBBCIECCAIzh4ggACCCCAQHIECODkOFMLAggggAACEQIEcAQHTxBAAAEEEEiOAAGcHGdqQQABBBBA\nIEKAAI7g4AkC6Sswb9486d27d7iDBQUF0qFDB9m9e3f4NR4ggEDyBAjg5FlTEwKuCvzmN7+ROXPm\nyObNm007FixYIBUqVJCsrCxX20XlCPhVgAD268jTb98JVK1aVa644gqZNm2a6fukSZOkb9++vnOg\nwwh4RYAA9spI0A4EkiCggTtlyhQ5fvy4vPvuuxG7pJNQPVUggEAhAQK4EAYPEUh3AZ0Br1ixQt57\n7z1p1aqV1KtXL927TP8Q8KwAAezZoaFhCDgvUKlSJenRo4cMHz5cbrjhBucroEQEELAskBEILpbX\nZkUEEEh5gdmzZ8tVV10lW7Zskezs7JTvDx1AIFUFmAGn6sjRbgQSFNDLj3RXNOGbICCbIeCQQDmH\nyqEYBBDwuIDu7Lr//vtl6tSp8uqrr3q8tTQPgfQXYAac/mNMDxEwAhkZGeakq/Hjx0unTp1QQQAB\nlwU4BuzyAFA9AggggIA/BZgB+3Pc6TUCCCCAgMsCBLDLA0D1CCCAAAL+FCCA/Tnu9BoBBBBAwGUB\nAtjlAaB6BBBAAAF/ChDA/hx3eo0AAggg4LIAAezyAFA9AggggIA/BQhgf447vUYAAQQQcFmAAHZ5\nAKgeAQQQQMCfAgSwP8edXiOAAAIIuCxAALs8AFSPAAIIIOBPAQLYn+NOrxFAAAEEXBYggF0eAKpH\nAAEEEPCnAAHsz3Gn1wgggAACLgsQwC4PANUjgAACCPhT4P8Bz9zUB+zsIlwAAAAASUVORK5CYII=\n" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 9, 10, 10, 11, 15, 21, 39]\n0\n" | |
} | |
], | |
"prompt_number": 8 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import pandas.io.sql as psql\nimport sqlite3 as lite\ncon = lite.connect(\"sharetribe.db\")\nwith con:\n community_memberships_sql = \"SELECT * FROM community_memberships\"\n df_community_memberships = psql.frame_query(community_memberships_sql, con)\n print df_community_memberships.shape\n communities_listings_sql = \"SELECT * FROM communities_listings\"\n df_communities_listings = psql.frame_query(communities_listings_sql, con)\n print df_communities_listings.shape\n communities_sql = \"SELECT * FROM communities\"\n df_communities = psql.frame_query(communities_sql, con)\n print df_communities.shape\n comments_sql = \"SELECT * FROM comments\"\n df_comments = psql.frame_query(comments_sql, con)\n print df_comments.shape\n listings_sql = \"SELECT * FROM listings\"\n df_listings = psql.frame_query(listings_sql, con)\n print df_listings.shape\n locations_sql = \"SELECT * FROM locations\"\n df_locations = psql.frame_query(locations_sql, con)\n print df_locations.shape\n share_types_sql = \"SELECT * FROM share_types\"\n df_share_types = psql.frame_query(share_types_sql, con)\n print df_share_types.shape\n people_sql = \"SELECT * FROM people\"\n df_people = psql.frame_query(people_sql, con)\n print df_people.shape\n participations_sql = \"SELECT * FROM participations\"\n df_participations = psql.frame_query(participations_sql, con)\n print df_participations.shape\n conversations_sql = \"SELECT * FROM conversations\"\n df_conversations = psql.frame_query(conversations_sql, con)\n print df_conversations.shape\n payments_sql = \"SELECT * FROM payments\"\n df_payments = psql.frame_query(payments_sql, con)\n print df_payments.shape", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "(12647, 10)\n(21470, 2)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(759, 60)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(6401, 6)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(16470, 27)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(15705, 11)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(33, 7)\n(12326, 38)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(22117, 9)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(11130, 7)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(5, 9)\n" | |
} | |
], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import pandas as pd\na=df_locations[[\"location_type\"]]\npd.Series(a.values.ravel()).unique()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 10, | |
"text": "array([origin_loc, person, destination_loc, community, None], dtype=object)" | |
} | |
], | |
"prompt_number": 10 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_community_memberships[\"community_name\"]=\"NA\"", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 11 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "test=[]\nfor index, i in df_community_memberships.iterrows():\n for index, j in df_communities.iterrows():\n if i['community_id']==j['id']:\n df_community_memberships['community_name']=j['name']\n# test.append[i]\n df_community_memberships.append(i)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_community_memberships.tail()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>person_id</th>\n <th>community_id</th>\n <th>admin</th>\n <th>created_at</th>\n <th>updated_at</th>\n <th>consent</th>\n <th>invitation_id</th>\n <th>last_page_load_date</th>\n <th>status</th>\n <th>community_name</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>12642</th>\n <td> 31623</td>\n <td> dlfKVm8Lir4OaeXLbny1Fu</td>\n <td> 1016</td>\n <td> 0</td>\n <td> 2013-07-21 22:13:39</td>\n <td> 2013-07-21 22:13:39</td>\n <td> SHARETRIBE1.0</td>\n <td> NaN</td>\n <td> 2013-07-21 22:13:39</td>\n <td> pending_email_confirmation</td>\n <td> MutualAidHarrisburg</td>\n </tr>\n <tr>\n <th>12643</th>\n <td> 31624</td>\n <td> dJdUHG8LCr4OaaXLbny1Fu</td>\n <td> 1037</td>\n <td> 0</td>\n <td> 2013-07-21 22:50:06</td>\n <td> 2013-07-21 23:44:33</td>\n <td> SHARETRIBE1.0</td>\n <td> 21976</td>\n <td> 2013-07-21 23:44:33</td>\n <td> accepted</td>\n <td> MutualAidHarrisburg</td>\n </tr>\n <tr>\n <th>12644</th>\n <td> 31625</td>\n <td> cUhvTk8L0r4OaaXLbny1Fu</td>\n <td> 1016</td>\n <td> 0</td>\n <td> 2013-07-21 23:31:35</td>\n <td> 2013-07-21 23:33:55</td>\n <td> SHARETRIBE1.0</td>\n <td> 21952</td>\n <td> 2013-07-21 23:33:55</td>\n <td> accepted</td>\n <td> MutualAidHarrisburg</td>\n </tr>\n <tr>\n <th>12645</th>\n <td> 31626</td>\n <td> dHtewc8MOr4OaeXLbny1Fu</td>\n <td> 1016</td>\n <td> 0</td>\n <td> 2013-07-22 01:06:17</td>\n <td> 2013-07-22 01:06:17</td>\n <td> SHARETRIBE1.0</td>\n <td> NaN</td>\n <td> 2013-07-22 01:06:17</td>\n <td> accepted</td>\n <td> MutualAidHarrisburg</td>\n </tr>\n <tr>\n <th>12646</th>\n <td> 31627</td>\n <td> cdB0Ec8MWr4OaaXLbny1Fu</td>\n <td> 1016</td>\n <td> 0</td>\n <td> 2013-07-22 01:18:12</td>\n <td> 2013-07-22 01:18:12</td>\n <td> SHARETRIBE1.0</td>\n <td> NaN</td>\n <td> 2013-07-22 01:18:12</td>\n <td> accepted</td>\n <td> MutualAidHarrisburg</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 13, | |
"text": " id person_id community_id admin \\\n12642 31623 dlfKVm8Lir4OaeXLbny1Fu 1016 0 \n12643 31624 dJdUHG8LCr4OaaXLbny1Fu 1037 0 \n12644 31625 cUhvTk8L0r4OaaXLbny1Fu 1016 0 \n12645 31626 dHtewc8MOr4OaeXLbny1Fu 1016 0 \n12646 31627 cdB0Ec8MWr4OaaXLbny1Fu 1016 0 \n\n created_at updated_at consent invitation_id \\\n12642 2013-07-21 22:13:39 2013-07-21 22:13:39 SHARETRIBE1.0 NaN \n12643 2013-07-21 22:50:06 2013-07-21 23:44:33 SHARETRIBE1.0 21976 \n12644 2013-07-21 23:31:35 2013-07-21 23:33:55 SHARETRIBE1.0 21952 \n12645 2013-07-22 01:06:17 2013-07-22 01:06:17 SHARETRIBE1.0 NaN \n12646 2013-07-22 01:18:12 2013-07-22 01:18:12 SHARETRIBE1.0 NaN \n\n last_page_load_date status community_name \n12642 2013-07-21 22:13:39 pending_email_confirmation MutualAidHarrisburg \n12643 2013-07-21 23:44:33 accepted MutualAidHarrisburg \n12644 2013-07-21 23:33:55 accepted MutualAidHarrisburg \n12645 2013-07-22 01:06:17 accepted MutualAidHarrisburg \n12646 2013-07-22 01:18:12 accepted MutualAidHarrisburg " | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_people[[\"id\", \"created_at\", \"updated_at\", ]].head()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>created_at</th>\n <th>updated_at</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> d_8CcgNxqr4lLjabWuarwG</td>\n <td> 2011-06-23 08:44:25</td>\n <td> 2013-07-21 12:34:12</td>\n </tr>\n <tr>\n <th>1</th>\n <td> aWCO7INy8r4lLjabWuarwG</td>\n <td> 2011-06-23 11:51:54</td>\n <td> 2013-07-21 11:40:32</td>\n </tr>\n <tr>\n <th>2</th>\n <td> aE013ONKir4lLjabWuarwG</td>\n <td> 2011-06-24 09:12:44</td>\n <td> 2013-07-21 11:34:16</td>\n </tr>\n <tr>\n <th>3</th>\n <td> dhqCOaNKir4lLjabWuarwG</td>\n <td> 2011-06-24 09:17:27</td>\n <td> 2013-07-21 12:15:19</td>\n </tr>\n <tr>\n <th>4</th>\n <td> aZqiLYNKCr4kwAabWuarwG</td>\n <td> 2011-06-24 09:49:06</td>\n <td> 2013-07-21 11:41:54</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 14, | |
"text": " id created_at updated_at\n0 d_8CcgNxqr4lLjabWuarwG 2011-06-23 08:44:25 2013-07-21 12:34:12\n1 aWCO7INy8r4lLjabWuarwG 2011-06-23 11:51:54 2013-07-21 11:40:32\n2 aE013ONKir4lLjabWuarwG 2011-06-24 09:12:44 2013-07-21 11:34:16\n3 dhqCOaNKir4lLjabWuarwG 2011-06-24 09:17:27 2013-07-21 12:15:19\n4 aZqiLYNKCr4kwAabWuarwG 2011-06-24 09:49:06 2013-07-21 11:41:54" | |
} | |
], | |
"prompt_number": 14 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "people=df_listings[[\"id\",\"author_id\", \"share_type_id\", \"created_at\", \"updated_at\", \"last_modified\"]]\npeople.to_csv(\"people.csv\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_share_types.to_csv(\"share_type.csv\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 16 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_communities_listings.head()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>community_id</th>\n <th>listing_id</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> 4</td>\n <td> 57</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 11</td>\n <td> 57</td>\n </tr>\n <tr>\n <th>2</th>\n <td> 297</td>\n <td> 57</td>\n </tr>\n <tr>\n <th>3</th>\n <td> 4</td>\n <td> 58</td>\n </tr>\n <tr>\n <th>4</th>\n <td> 4</td>\n <td> 59</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 17, | |
"text": " community_id listing_id\n0 4 57\n1 11 57\n2 297 57\n3 4 58\n4 4 59" | |
} | |
], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_communities[[\"category\"]].tail()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>category</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>754</th>\n <td> other</td>\n </tr>\n <tr>\n <th>755</th>\n <td> other</td>\n </tr>\n <tr>\n <th>756</th>\n <td> association</td>\n </tr>\n <tr>\n <th>757</th>\n <td> other</td>\n </tr>\n <tr>\n <th>758</th>\n <td> neighborhood</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 18, | |
"text": " category\n754 other\n755 other\n756 association\n757 other\n758 neighborhood" | |
} | |
], | |
"prompt_number": 18 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import pandas as pd\ndata_310=pd.read_csv(\"/Users/sayantanm/Documents/Study Time/Coye/Sharetribe/analysis_3_10.csv\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 15 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "data_310.head()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>Unnamed: 0</th>\n <th>id</th>\n <th>author_id</th>\n <th>auth_freq</th>\n <th>community_id</th>\n <th>count_in_community</th>\n <th>share_type_id</th>\n <th>share_type</th>\n <th>created_at</th>\n <th>updated_at</th>\n <th>barter</th>\n <th>direction</th>\n <th>money</th>\n <th>mon_dir</th>\n <th>permanent</th>\n <th>last_modified</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> 3017</td>\n <td> 20002</td>\n <td> aBRbnaz5Kr3BIOaaWPEYjL</td>\n <td> 55</td>\n <td> 501</td>\n <td> 8346</td>\n <td> 8</td>\n <td> request</td>\n <td> 2/10/09 9:38</td>\n <td> 7/7/13 23:22</td>\n <td> no</td>\n <td> in</td>\n <td> n</td>\n <td> in_n</td>\n <td> y</td>\n <td> 2/10/09 9:38</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 3019</td>\n <td> 20007</td>\n <td> acnSYy-rer3BOyaaWPfx7J</td>\n <td> 4</td>\n <td> 501</td>\n <td> 8346</td>\n <td> 6</td>\n <td> give_away</td>\n <td> 2/12/09 20:54</td>\n <td> 5/22/13 18:58</td>\n <td> no</td>\n <td> out</td>\n <td> n</td>\n <td> out_n</td>\n <td> y</td>\n <td> 2/12/09 20:54</td>\n </tr>\n <tr>\n <th>2</th>\n <td> 3020</td>\n <td> 20008</td>\n <td> acnSYy-rer3BOyaaWPfx7J</td>\n <td> 4</td>\n <td> 501</td>\n <td> 8346</td>\n <td> 6</td>\n <td> give_away</td>\n <td> 2/12/09 20:59</td>\n <td> 5/23/13 22:20</td>\n <td> no</td>\n <td> out</td>\n <td> n</td>\n <td> out_n</td>\n <td> y</td>\n <td> 2/12/09 20:59</td>\n </tr>\n <tr>\n <th>3</th>\n <td> 3022</td>\n <td> 20018</td>\n <td> aBRbnaz5Kr3BIOaaWPEYjL</td>\n <td> 55</td>\n <td> 501</td>\n <td> 8346</td>\n <td> 6</td>\n <td> give_away</td>\n <td> 3/3/09 9:01</td>\n <td> 4/16/13 2:15</td>\n <td> no</td>\n <td> out</td>\n <td> n</td>\n <td> out_n</td>\n <td> y</td>\n <td> 3/4/09 7:41</td>\n </tr>\n <tr>\n <th>4</th>\n <td> 3023</td>\n <td> 20019</td>\n <td> aBRbnaz5Kr3BIOaaWPEYjL</td>\n <td> 55</td>\n <td> 501</td>\n <td> 8346</td>\n <td> 8</td>\n <td> request</td>\n <td> 3/4/09 8:11</td>\n <td> 7/6/13 20:22</td>\n <td> no</td>\n <td> in</td>\n <td> n</td>\n <td> in_n</td>\n <td> y</td>\n <td> NaN</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 29, | |
"text": " Unnamed: 0 id author_id auth_freq community_id \\\n0 3017 20002 aBRbnaz5Kr3BIOaaWPEYjL 55 501 \n1 3019 20007 acnSYy-rer3BOyaaWPfx7J 4 501 \n2 3020 20008 acnSYy-rer3BOyaaWPfx7J 4 501 \n3 3022 20018 aBRbnaz5Kr3BIOaaWPEYjL 55 501 \n4 3023 20019 aBRbnaz5Kr3BIOaaWPEYjL 55 501 \n\n count_in_community share_type_id share_type created_at updated_at \\\n0 8346 8 request 2/10/09 9:38 7/7/13 23:22 \n1 8346 6 give_away 2/12/09 20:54 5/22/13 18:58 \n2 8346 6 give_away 2/12/09 20:59 5/23/13 22:20 \n3 8346 6 give_away 3/3/09 9:01 4/16/13 2:15 \n4 8346 8 request 3/4/09 8:11 7/6/13 20:22 \n\n barter direction money mon_dir permanent last_modified \n0 no in n in_n y 2/10/09 9:38 \n1 no out n out_n y 2/12/09 20:54 \n2 no out n out_n y 2/12/09 20:59 \n3 no out n out_n y 3/4/09 7:41 \n4 no in n in_n y NaN " | |
} | |
], | |
"prompt_number": 29 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "comm=data_310.community_id\ndirec=data_310.direction\nmoney=data_310.money\nmon_dir=data_310.mon_dir\nperm=data_310.permanent", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 33 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "all_comm=[]\nfor i in comm.values:\n if i not in all_comm:\n all_comm.append(i)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 42 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 5, | |
"metadata": {}, | |
"source": "Money Non Moneytary Distribution For Communities" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "yess=[]\nnoo=[]\nfor i in all_comm:\n temp=data_310[data_310.community_id==i][['money']].values\n ln=len(data_310[data_310.community_id==i][['money']])\n yes=0.0\n no=0.0\n for j in temp:\n if j==\"y\":\n yes+=1\n elif j==\"n\":\n no+=1\n yess.append((yes/ln)*100)\n noo.append((no/ln)*100)\n print i, (yes/ln)*100, (no/ln)*100, ln", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "501 81.8595734484 18.1404265516 8346\n11 88.9622641509 11.0377358491 2120\n19 91.9964028777 8.0035971223 1112\n295" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 58.8235294118 41.1764705882 731\n29 79.7136038186 20.2863961814 419\n297 96.5384615385 3.46153846154 260\n27 72.1774193548 27.8225806452 248\n322 97.4025974026 2.5974025974 231\n12 89.3401015228 10.6598984772 197\n308" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 93.7007874016 6.29921259843 127\n14 85.7142857143 14.2857142857 112\n306 70.7547169811 29.2452830189 106\n305 80.412371134 19.587628866 97\n313 86.0465116279 13.9534883721 86\n6 40.0 60.0 85\n455 58.6666666667 41.3333333333 75\n473 50.0 50.0 70\n719 13.2352941176 86.7647058824 68\n779 16.6666666667 83.3333333333 60\n294" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 79.3103448276 20.6896551724 58\n4 75.4716981132 24.5283018868 53\n30 64.1509433962 35.8490566038 53\n351 78.8461538462 21.1538461538 52\n28 71.4285714286 28.5714285714 49\n465 31.8181818182 68.1818181818 44\n352 57.1428571429 42.8571428571 42\n502 54.7619047619 45.2380952381 42\n1030 97.4358974359 2.5641025641 39\n402 36.8421052632 63.1578947368 38\n528 50.0 50.0 38\n731" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 23.5294117647 76.4705882353 34\n31 73.3333333333 26.6666666667 30\n445 26.6666666667 73.3333333333 30\n551 70.3703703704 29.6296296296 27\n296 46.1538461538 53.8461538462 26\n321 96.0 4.0 25\n314 95.8333333333 4.16666666667 24\n515 41.6666666667 58.3333333333 24\n570 29.1666666667 70.8333333333 24\n516 0.0 100.0 23\n703 22.7272727273 77.2727272727 22\n566 80.9523809524 19.0476190476 21\n639 66.6666666667 33.3333333333 21\n894" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 71.4285714286 28.5714285714 21\n299 50.0 50.0 20\n312 47.0588235294 52.9411764706 17\n413 31.25 68.75 16\n571 31.25 68.75 16\n788 31.25 68.75 16\n872 62.5 37.5 16\n360 60.0 40.0 15\n844 20.0 80.0 15\n947 60.0 40.0 15\n587 42.8571428571 57.1428571429 14\n747 85.7142857143 14.2857142857 14\n934 71.4285714286 28.5714285714 14\n9" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 76.9230769231 23.0769230769 13\n491 61.5384615385 38.4615384615 13\n483 8.33333333333 91.6666666667 12\n539 33.3333333333 66.6666666667 12\n798 0.0 100.0 12\n334 81.8181818182 18.1818181818 11\n557 9.09090909091 90.9090909091 11\n648 100.0 0.0 11\n840 27.2727272727 72.7272727273 11\n1016 36.3636363636 63.6363636364 11\n18 40.0 60.0 10\n388" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 10\n537 60.0 40.0 10\n565 80.0 20.0 10\n649 30.0 70.0 10\n725 10.0 90.0 10\n732 60.0 40.0 10\n807 80.0 20.0 10\n922 90.0 10.0 10\n969 0.0 100.0 10\n316 55.5555555556 44.4444444444 9\n781 22.2222222222 77.7777777778 9\n8 12.5 87.5 8\n309" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 37.5 62.5 8\n327 62.5 37.5 8\n723 25.0 75.0 8\n828 12.5 87.5 8\n1001 0.0 100.0 8\n311 0.0 100.0 7\n361 0.0 100.0 7\n422 28.5714285714 71.4285714286 7\n467 14.2857142857 85.7142857143 7\n482 57.1428571429 42.8571428571 7\n531 28.5714285714 71.4285714286 7\n662" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 42.8571428571 57.1428571429 7\n956 85.7142857143 14.2857142857 7\n461 50.0 50.0 6\n478 33.3333333333 66.6666666667 6\n745 66.6666666667 33.3333333333 6\n916 66.6666666667 33.3333333333 6\n946 0.0 100.0 6\n961 66.6666666667 33.3333333333 6\n326 40.0 60.0 5\n359 60.0 40.0 5\n364 80.0 20.0 5\n366 80.0 20.0 5\n398" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 60.0 40.0 5\n399 0.0 100.0 5\n470 0.0 100.0 5\n476 20.0 80.0 5\n535 40.0 60.0 5\n583 60.0 40.0 5\n711 40.0 60.0 5\n759 100.0 0.0 5\n803 0.0 100.0 5\n908 80.0 20.0 5\n909 100.0 0.0 5\n920 100.0 0.0 5\n#N/A" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 80.0 20.0 5\n301 25.0 75.0 4\n303 25.0 75.0 4\n310 75.0 25.0 4\n323 50.0 50.0 4\n513 100.0 0.0 4\n532 75.0 25.0 4\n588 100.0 0.0 4\n658 0.0 100.0 4\n686 75.0 25.0 4\n695 75.0 25.0 4\n841" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 25.0 75.0 4\n903 0.0 100.0 4\n915 75.0 25.0 4\n995 75.0 25.0 4\n1009 75.0 25.0 4\n307 0.0 100.0 3\n346 0.0 100.0 3\n390 100.0 0.0 3\n400 33.3333333333 66.6666666667 3\n439 0.0 100.0 3\n446 66.6666666667 33.3333333333 3\n450 0.0 100.0 3\n451" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 3\n474 33.3333333333 66.6666666667 3\n486 33.3333333333 66.6666666667 3\n495 100.0 0.0 3\n496 33.3333333333 66.6666666667 3\n505 66.6666666667 33.3333333333 3\n511 33.3333333333 66.6666666667 3\n563 66.6666666667 33.3333333333 3\n569 66.6666666667 33.3333333333 3\n576 0.0 100.0 3\n598 33.3333333333 66.6666666667 3\n623 33.3333333333 66.6666666667 3\n634 100.0 0.0 3\n653" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 3\n659 100.0 0.0 3\n667 0.0 100.0 3\n674 66.6666666667 33.3333333333 3\n694 33.3333333333 66.6666666667 3\n717 100.0 0.0 3\n829 0.0 100.0 3\n835 66.6666666667 33.3333333333 3\n848 33.3333333333 66.6666666667 3\n881 100.0 0.0 3\n943 100.0 0.0 3\n994 100.0 0.0 3\n1002 100.0 0.0 3\n1036" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 3\n300 50.0 50.0 2\n332 100.0 0.0 2\n341 50.0 50.0 2\n342 100.0 0.0 2\n348 50.0 50.0 2\n357 0.0 100.0 2\n362 50.0 50.0 2\n370 50.0 50.0 2\n372 100.0 0.0 2\n380 50.0 50.0 2\n391 100.0 0.0 2\n395" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 2\n397 50.0 50.0 2\n404 100.0 0.0 2\n412 100.0 0.0 2\n418 50.0 50.0 2\n430 50.0 50.0 2\n443 50.0 50.0 2\n453 50.0 50.0 2\n454 0.0 100.0 2\n463 100.0 0.0 2\n469 100.0 0.0 2\n517 50.0 50.0 2\n518 0.0 100.0 2\n541" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 2\n544 100.0 0.0 2\n568 100.0 0.0 2\n577 100.0 0.0 2\n591 100.0 0.0 2\n599 50.0 50.0 2\n637 50.0 50.0 2\n688 50.0 50.0 2\n697 100.0 0.0 2\n700 100.0 0.0 2\n714 100.0 0.0 2\n733 50.0 50.0 2\n734 0.0 100.0 2\n736" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 2\n748 100.0 0.0 2\n770 50.0 50.0 2\n786 0.0 100.0 2\n787 0.0 100.0 2\n789 50.0 50.0 2\n802 50.0 50.0 2\n808 100.0 0.0 2\n810 0.0 100.0 2\n813 50.0 50.0 2\n820 100.0 0.0 2\n869 100.0 0.0 2\n877" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 2\n884 0.0 100.0 2\n902 0.0 100.0 2\n930 100.0 0.0 2\n933 0.0 100.0 2\n938 0.0 100.0 2\n940 100.0 0.0 2\n985 100.0 0.0 2\n1018 100.0 0.0 2\n1023 50.0 50.0 2\n1037 50.0 50.0 2\n16 0.0 100.0 1\n315" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n343 100.0 0.0 1\n345 100.0 0.0 1\n363 0.0 100.0 1\n373 100.0 0.0 1\n374 100.0 0.0 1\n379 100.0 0.0 1\n409 100.0 0.0 1\n410 0.0 100.0 1\n417 100.0 0.0 1\n425 100.0 0.0 1\n432 100.0 0.0 1\n434 0.0 100.0 1\n435" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n436 0.0 100.0 1\n438 0.0 100.0 1\n447 0.0 100.0 1\n448 0.0 100.0 1\n457 0.0 100.0 1\n460 100.0 0.0 1\n462 100.0 0.0 1\n472 0.0 100.0 1\n477 0.0 100.0 1\n481 100.0 0.0 1\n488 0.0 100.0 1\n499" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n507 100.0 0.0 1\n508 100.0 0.0 1\n509 100.0 0.0 1\n510 100.0 0.0 1\n514 0.0 100.0 1\n525 100.0 0.0 1\n547 100.0 0.0 1\n556 100.0 0.0 1\n578 0.0 100.0 1\n580 0.0 100.0 1\n581 100.0 0.0 1\n584" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n592 0.0 100.0 1\n594 100.0 0.0 1\n600 100.0 0.0 1\n608 100.0 0.0 1\n622 100.0 0.0 1\n626 0.0 100.0 1\n628 100.0 0.0 1\n631 100.0 0.0 1\n635 100.0 0.0 1\n638" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n647 0.0 100.0 1\n670 100.0 0.0 1\n671 0.0 100.0 1\n672 100.0 0.0 1\n676 100.0 0.0 1\n679 100.0 0.0 1\n680 0.0 100.0 1\n681 0.0 100.0 1\n682 100.0 0.0 1\n689 0.0 100.0 1\n690" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n698 100.0 0.0 1\n705 100.0 0.0 1\n715 100.0 0.0 1\n716 0.0 100.0 1\n718 100.0 0.0 1\n722 100.0 0.0 1\n726 0.0 100.0 1\n729 0.0 100.0 1\n738 100.0 0.0 1\n740 0.0 100.0 1\n750 100.0 0.0 1\n751" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n752 100.0 0.0 1\n760 0.0 100.0 1\n763 0.0 100.0 1\n771 100.0 0.0 1\n773 100.0 0.0 1\n777 0.0 100.0 1\n782 100.0 0.0 1\n784 100.0 0.0 1\n800 0.0 100.0 1\n801 0.0 100.0 1\n806 100.0 0.0 1\n809 0.0 100.0 1\n812" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n814 0.0 100.0 1\n819 100.0 0.0 1\n822 100.0 0.0 1\n824 100.0 0.0 1\n826 0.0 100.0 1\n827 100.0 0.0 1\n830 0.0 100.0 1\n833 100.0 0.0 1\n834 100.0 0.0 1\n837 100.0 0.0 1\n857 0.0 100.0 1\n858 100.0 0.0 1\n860" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n863 100.0 0.0 1\n873 0.0 100.0 1\n887 100.0 0.0 1\n896 100.0 0.0 1\n897 100.0 0.0 1\n898 0.0 100.0 1\n900 0.0 100.0 1\n907 0.0 100.0 1\n911 100.0 0.0 1\n917 100.0 0.0 1\n921" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n925 0.0 100.0 1\n928 0.0 100.0 1\n936 100.0 0.0 1\n966 0.0 100.0 1\n967 100.0 0.0 1\n968 100.0 0.0 1\n970 100.0 0.0 1\n976 100.0 0.0 1\n977 100.0 0.0 1\n980 0.0 100.0 1\n987" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n988 0.0 100.0 1\n991 100.0 0.0 1\n1003 100.0 0.0 1\n1004 0.0 100.0 1\n1007 0.0 100.0 1\n1011 100.0 0.0 1\n1014 100.0 0.0 1\n1015 100.0 0.0 1\n1028 100.0 0.0 1\n1033 100.0 0.0 1\n" | |
} | |
], | |
"prompt_number": 71 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import matplotlib.pyplot as plt\nimport pylab\nprint \"percentage of transaction involve money for top 25 communities per volume\"\nplt.plot(yess[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transaction involve money for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XtclGXaB/Dfg+AJFUVxUAEJdEA8IK2ltVkQDe52IDSz\nNG3Kaivf3rd6W5OsLXTfcjqnbbWbWjurbcZWEltqSjpmbkkmnjLDDBUVxgPiCRWB5/3jcjgPzDzn\nmbm+nw+fNZh5nnvH8ccz13Pf1y2IoiiCMcaY3wnSewCMMcbUwQHPGGN+igOeMcb8FAc8Y4z5KQ54\nxhjzUxzwjDHmp9oM+OnTp8NkMmH48OH136uoqIDFYoHZbEZGRgYqKyvrfzZv3jwMHjwYiYmJWL16\ntXqjZowx1q42A/7ee+/FqlWrmnzPZrPBYrGguLgY6enpsNlsAIBdu3bho48+wq5du7Bq1SrMmDED\ndXV16o2cMcZYm9oM+LFjx6JXr15Nvpefnw+r1QoAsFqtyMvLAwB89tlnmDx5MkJCQhAbG4tBgwah\nsLBQpWEzxhhrj9c1eKfTCZPJBAAwmUxwOp0AgMOHDyMqKqr+cVFRUTh06JBCw2SMMeYtWTdZBUGA\nIAht/pwxxpg+gr19gslkQnl5OSIjI1FWVoa+ffsCAAYMGIDS0tL6xx08eBADBgxo8fxBgwZh7969\nMobMGGOBJz4+Hr/88otXz/H6Cj4zMxN2ux0AYLfbkZWVVf/9ZcuWobq6GiUlJdizZw+uvPLKFs/f\nu3cvRFHkL1HEc889p/sYjPLFrwW/FvxatP0l5cK4zSv4yZMnY/369Th27Biio6Mxd+5cZGdnY9Kk\nSVi8eDFiY2ORm5sLAEhKSsKkSZOQlJSE4OBgvP3221yiYYwxHbUZ8B9++GGr3y8oKGj1+7Nnz8bs\n2bPlj4oxxphsvJJVR6mpqXoPwTD4tWjAr0UDfi3kEURR1HTDD0EQoPEpA15lJbBzJ3DNNXqPhDEm\nlZTs5Cv4ALB0KZCRAezZo/dIGGNa4oDXiSgCO3Zoc65Nm4Dhw4F77wVqa7U5J2NMfxzwOtm0Cbji\nCqC6Wv1zFRYCf/sbEBQELFig/vkYY8bAAa+TTz8FLlwAiorUPc+JE8Dhw3QF//77wPPPAz//rO45\nGWPGwAGvA1GkgB89GvjuO3XPVVgIXH450KEDEB8P5ORwqYaxQMEBr4Pt24G6OuChh4Bvv1X3XJs2\n0S8SlxkzgE6dgDfeUPe8jDH9ccDr4NNPgQkTgKuu0j7gg4KAxYsBmw3YvVvdczPG9MUBrwNXwJvN\nwJkzVCNXgyhSiaZxwANAXBwwZw5wzz1cqmHMn3HAa6y4GDh2DBgzBhAE+l+16vAlJUDHjkCjNv31\nHnoI6NoVePVVZc9ZXg4cP67sMRlj0nDAa2z5cmD8eCqVAOqWaZqXZxoLCgLeew94+WVg1y5lzudw\n0GydrCz+ZMCYEXDAa8xVnnEZM0bdgG+lY3O92Fjgz3+mUk1NjfTziCLw5pvAHXcAH3xAn0zmz5d+\nPMaYMrgXjYZKS4GUFKCsDAgJoe+dOgX060fz1Tt2VPZ8V19N897T0tw/RhSpjUF6OpCd7f05zp+n\nmTmbNwN5eVTf37uXPjl88w2QmCh9/IyxBtyLxuCWLwduuaUh3AGgRw+an75tm7Lnqq6mY44a1fbj\nBAFYtIhq8T/+6N05Dh8GUlOB06eB//yHwh2g/z9z5wJWq7xPBowxefwy4HfuBH73O+Cmm/QeSVPN\nyzMuatTht2+nwO3evf3HDhwIvPCCd6Wab7+lVgu33ALk5gLdujX9+UMP0blfftnroTPGFCI54OfP\nn4/hw4dj2LBhmH+p4FpRUQGLxQKz2YyMjAxUVlYqNlBPOJ0ULNdfTyWCzZs1PX2bjhwBtm4FLJaW\nP1OjDt/WDdbW3H8/EB4OvPRS+49dvBi49Vbqb/P00/QpoDnXTdzXXtOuqRpjrClJAb9z504sWrQI\n33//PbZt24bPP/8ce/fuhc1mg8ViQXFxMdLT02Gz2ZQeb6vOn6eFO0OH0tS/3btpSf7588aZspef\nD4wbB3Tu3PJnalzBt3eDtTlXqeb1190H8sWLwH/9F12Vf/01cPPNbR8zJob+XqxWei5jTFuSAn73\n7t0YPXo0OnfujA4dOuC6667DJ598gvz8fFitVgCA1WpFXl6eooNtThSBZcvoRl5hIYXka6/Rlagg\nAElJwE8/qToEj7krzwC04OnUKbr5qpTWFji1JzqaAvmee1oG8pEjwA03APv30y8PT2+eTp9ON5Gf\nf967sTDG5JMU8MOGDcOGDRtQUVGBqqoqrFixAgcPHoTT6YTJZAIAmEwmOJ1ORQfb2Lff0iyRl18G\n7HYK0MGDmz5myBDl5njLcfIkzSi58cbWfx4UpOyCpxMngEOH6BONt6ZPB/r2BV58seF7W7ZQvX3s\nWOCzz4CwMM+PJwjAwoXAO+8AP/zg/XgYY9K1uem2O4mJiZg1axYyMjIQGhqKkSNHokOHDk0eIwgC\nhNaKswBycnLq/5yamurVvoslJcBTTwEbN9KNwbvualg01FxSkjEC/vPPabZJWzc8XXX48ePln+/7\n76mDZLCEv11XIF9+OZCZSTesH32UAnriRGnj6d+fPllZrRTynTpJOw5jgcThcMDhcMg7iKiA2bNn\ni2+//baYkJAglpWViaIoiocPHxYTEhJaPFbqKSsrRfHJJ0UxPFwU584VxbNn23/OF1+IYkaGpNMp\nasIEUXz//bYfs3q1KI4dq8z55s4VxZkz5R3jvfdEMSJCFOPiRHH7dvljqqsTxfHjRXHWLPnHYiwQ\nSclOybNojhw5AgA4cOAAPv30U0yZMgWZmZmw2+0AALvdjqysLHm/fS7JzQUSEqiHy44dwJ/+RDdT\n22OEEk1VFVBQQNMJ2zJ6NJVClLgZ6e0Mmtbccw+tci0spPYDcgkC8Ne/An//u/o98BljRPJK1muv\nvRbHjx9HSEgIXn/9daSlpaGiogKTJk3CgQMHEBsbi9zcXPTs2bPpCb1cjbVpE4XjypXAb37j3Rjr\n6qgsUlZGC4r0sHw58NZbFPLtce261N7ipLaIImAyUSkkOlr6cdTy8cc0tbKoyLNf0owxImUlq6Fb\nFRw/TqH+xhvUwEqK3/yG6sfeTBlU0rRpNA1yxoz2H/vAA8CIEcB//7f085WUAL/9Ld1kdXMLRHeT\nJwORkTQlkzHmGb9qVVBXB9x9N93Yk1Pp0bNMU10NfPGF5+O/6ir55QtXecao4Q4Af/kLld2+/lrv\nkTDm3wwb8C+9BFRWAvPmyTuOnjNp1q2j+eL9+3v2eCUWPClRf1db795Uj7/3XtrwhDGmDkMG/Pr1\n1G72o4+aNuaSQs/FTp98Atx2m+ePT0igOexylg/4QsADdF/l2muBJ5/UeySM+S/DBbzTCUyZQouX\nWtuJyFt6lWhqa2lRkDfz2oOCKJylXsVfvEgdJL29Ga2XN96gNQJr1ug9Esb8k6ECvraWwv2++6hH\nuRLi46mt7blzyhzPUxs3UmnG1ULXU3Lq8Nu3A5ddpt+MIW+FhVH/m/vuo9W+RlZcrPcIGPOeoQLe\ntcD1ueeUO2ZwMDBoEPDzz8od0xNt9Z5pi5w6vK+UZxrLyKAWDk88ofdI3HvjDSqfHT2q90gY845h\nAn7VKpoD/s9/As26Hsim9Y1WUZQe8KNH0xx2KQuefDHgAbqh/skn8u49qOXddyngY2OBAwf0Hg1j\n3jFEwJeW0srJf/6TFukoTes6/A8/AF260C8Wb4WF0QYc27d7/1xfDfgePeim60cf6T2SppYupZ2p\nCgpofQIHPPM1ugf8xYu0WfPjj9OsCjVoPZPmk0/o6l3qXHQpdfjKSuDgQWkdJI1g2jRgyRK9R9Hg\nk0+AmTOB1aupxBcTwwHPfI/uAZ+dTfOiZ85U7xxalmhE0fvpkc1JqcPL6SBpBNdfT6tvd+/WeyS0\nOG3GDGqP4foUxgHPfJGuAb98OYWh3e6+5a8SBg+mJfzV1eqdw2XXLtpJSs5URSkB76vlGZcOHaiF\nwdKl+o7jq69oAVZ+PjByZMP3OeCZL9It4PfuBR58kJash4ere65Onaiu/csv6p4HaLi5KqdVQGIi\n9eG51LDTI74e8ACVaT74gNpU6GHjRvol8/HHLV9LDnjmi3QJ+PPngdtvp7a/WjUB06pMI3X2TGOu\nBU+e1uFF0T8CPjkZCA0F/vMf7c+9eTMtSlu6tPV7QRzwzBfpEvCPPUY3rh55RLtzajGT5tdfaVHV\nb38r/1jelGn276fauxIrf/UkCPrcbN2xgzYQX7TI/QK7yEigogK4cEHbsTEmhy4Bv3Yt/WPSsuOh\nFjNpPv0UuPVWZebxexPwmzbRJyEjd5D01JQpVCLRKkh//hkYN456H2Vmun9chw60MvngQW3GxZgS\ndAn4f/1L++X0WpRolCjPuFx5Jc2nr6lp/7H+UJ5xiY6mOedffKH+uUpKAIuF9va94472H89lGuZr\nJAf8vHnzMHToUAwfPhxTpkzBhQsXUFFRAYvFArPZjIyMDFRWVrb63ORkyeOVLCGB+ol4EphSHD5M\nU/yuv16Z4/XqRWG3Y0f7j/WngAeoTKP2bJqDB4H0dJqme889nj2HA575GkkBv2/fPixcuBBbtmzB\njh07UFtbi2XLlsFms8FisaC4uBjp6emw2WxKj1ey0FCqo5aUqHP8vDzgppuAjh2VO6YnZZqLF4Gt\nW+Vt82c0t91GZbyKCnWO73QCN9xAc9092WnLhQOe+RpJAd+jRw+EhISgqqoKNTU1qKqqQv/+/ZGf\nnw+r1QoAsFqtyMvLU3SwcqlZh1eyPOPiScDv2OFbHSQ9ERZGdfF//Uv5Y1dUUFlmyhTgj3/07rkc\n8MzXSAr48PBwPPHEE4iJiUH//v3Rs2dPWCwWOJ1OmC41kzGZTHAarHuUWjNpjh+nlaTjxil73DFj\n2g94fyvPuEydqk6ZJjubZjn96U/eP5cDnvkaSQvb9+7dizfeeAP79u1DWFgYbr/9dixt9q9REAQI\nbqZ15Lj6AgNITU1FamqqlGF4LSkJcDiUP+6//00f+bt2Vfa4SUnAsWPUpjYiovXHbNpEV/r+Ztw4\nYPp0Kqlddpkyx9y5kzZh+flnaTOOOOCZlhwOBxwyA0tSwG/evBlXX301evfuDQCYMGECvv32W0RG\nRqK8vByRkZEoKytD3759W31+44DXUlIS8M47yh/3yy+pp7nSgoJoNs1331G3xdZs2kTrCvxNx440\ns+WDD4BnnlHmmH/8Ix2rZ09pz4+OpoAXRf+YkqqlggJ63SwWvUfiO5pf/M6ZM8frY0gq0SQmJuK7\n777DuXPnIIoiCgoKkJSUhFtuuQV2ux0AYLfbkZWVJeXwqhkyhGrwSi6FF0W6IZiertwxG2urDl9Z\nSa2Whw1T59x6c5VpRFH+sVatok8DDz0k/Rg9etAvHrVu/vqzRYtoMdljj9FKdqMpLZXWotvoJAV8\ncnIy7r77bowaNQojRowAAPzhD39AdnY21qxZA7PZjLVr1yI7O1vRwcoVFkZfpaXKHXPXLqBbN9oQ\nQg1t1eE3b/btDpLtGT2atnHcvFnecWpq6Or9pZfkb+LOZRppnE76NHb4MHDFFZ5N/9XSs89SmbWs\nTO+RKEvyPPgnn3wSP/74I3bs2AG73Y6QkBCEh4ejoKAAxcXFWL16NXpK/SysIqVn0qxdq9zc99aM\nGUMB19r8fX+9weoiCMrcbH3vPaBPn7ZXqnqKA16aI0doLcpHH9H2jNdfDyxYoMynM7nOnqVpzhMn\n0hoMvZrdqUH3fvBaU3omzVdfqRvwvXpRj5mdO1v+zNWiwJ9NnQosWyZtC0MAOH2a9vh99VVl6uYx\nMdT7h3nnyBHarU0QaGHZt9/SDm433giUl+s7trw84Oqr6RfOhQvAyy/rOx4lBVzAK9myoLYWWL8e\nSEtT5njutFaH95cOku2Jj6evNWukPf/FF+nGnpz+/I3xFbz3amroftGlORkAqNnghg1Urhk5kvrv\n6+Uf/wDuvptKnR98ALz2Gv3b8gcBGfBKlWiKiqgBVWSkMsdzp7U6/P79NMsmOlrdcxuB1DJNaSnN\nmnr+eeXGMnAgB7y3jh+nT6LNm/CFhNCetx9/DDz6KPDww0BVlbZjO3SI1rC4yncxMfSemTwZOHlS\n27GoIeAC3lWiUaL2p3b93aW1PVoLC+nqPRCm691xB7BiBZVbvPH009SKQMlfgnwF770jRwA3M6YB\nANdcQ+02zpyhT1pFRdqN7Z//pNYYXbo0fG/CBFqH8dBDxrhHIEfABXxEBH0UU6Lup+b0yMaSkmgW\nwrFjDd8LhPKMS+/ewHXXUTsIT23eTHOvn3xS2bFwwHuvvYAHaHbbkiW0wnjcOOCVV9S/2SmKtF3o\n3Xe3/Nlrr9FMn7//Xd0xqC3gAh5QpkxTXU07D113nTJjakuHDg0LnlwCKeAB7zYCEUWaqTFnDtC9\nu7Lj6NePftHyxh+e8yTgXaZMoU+nn31G904OHVJvXEVFVBJqbYOeLl3o5v6TT9LKZ18VkAGvxEya\nTZsAs5lqi1poXIf3xw6S7bn5ZmDLFs/+wX/2GS1Gmj5d+XG4Nv5QM3j8jTcBD9CaEoeDLp5SU9Vr\n8f2Pf9CFQ5CbFBw2DPjzn4E77/TdX+gBGfBKzKTRqv7u0rgOv2MH3ezzpw6S7encmWqjH37Y9uOq\nq+mq65VXlNlZqzVcpvGOtwEP0N/ds8/SL9PcXOXHdPEivZemTWv7cQ8+CMTFAbNmKT8GLQRswMst\n0Wgd8GPG0N3+2tqGG6yBxpMyzV//Sv8gle7s2RgHvHekBLzL7Nm045bS9fgvv6SpmoMGtf04QQAW\nLgSWLwc+/1zZMWghIANebommqoq20xs7VrkxtSc8nK5mdu4MvPq7y9ixNJ/aXc+QEydoSuQrr6g7\nDg5478gJ+IwMoFMn6tiqJNfcd0+Eh9P8+Pvvp1YLviQgA75/f2p4dPy4tOdv3AikpNAuUVpy1eED\nNeCDgoC77nI/J/7552nTc7Wbr3HAe0dOwAtCw1W8UlMWT5ygK/hJkzx/zjXX0JTbqVPpU7SvCMiA\nFwR5ZRq12xO4c9VV9MY8cMB/O0i2Z+pUmrvc/B/Z3r00pW3uXPXHwAHvHTkBDwDjxwOnTlFZVAn/\n+hd9MvB2gsTTT9P77qWXlBmHFgIy4AF5ZRqt6+8uV11FS7pTUvy3g2R7kpKop8n69U2/n50NPP64\n+quKAQ54bzmd8gI+KIj+fl94QZnxeFOeaaxDByrVvPFG+zutGUXABrzUmTSVlXTlP2aM8mNqz9Ch\ntGtUIJZnGps6tenN1o0bqWz1+OPanN8V8L6+ylELZ8/SNEe56xGmTAF++aXlim5v7d0L7NkD/O53\n0p4fFQW8+y6Np7JS3li0ENABL6VE8/XXFO6dOik/pvZ06EA3GrW8uWtEd95JHQCrqhoWNT3/vPJb\nJrrTowd9gjpxQpvz+bKjR+nqXW5LjZAQmv46b5684yxZQn1m5OwLcOutwE030RRKo/+SD9iAl1qi\n0ao9gTt5ecr0Nfdl/frRp5j8fOovXlNDN1+1xGUaz7jaBCth+nSaIix1sxBRlF6eae7ll+kC8b33\n5B9LTZIC/ueff0ZKSkr9V1hYGBYsWICKigpYLBaYzWZkZGSg0sCfYQYOpNWOp0559zy96u8uHTsG\nRoOx9kydStvAPfUU9Xp3txpRLRzwnpF7g7WxLl1oyz+bTdrzN26kT3kpKcqMZdky4H//19gbhEj6\nZ5GQkICioiIUFRXhhx9+QNeuXTF+/HjYbDZYLBYUFxcjPT0dNql/ExoICgISE4Hduz1/zpEj9I/6\n8svVGxfzzPjxVI9NTtamH1BzHPCeUTLgAWopvHo11dK95WosptQFUlISTZU2ctsK2dc9BQUFGDRo\nEKKjo5Gfnw+r1QoAsFqtyMvLkz1ANXlbplm3Drj22sCdwWIkoaHA22/TjAY9cMB7RumA79GDQt7b\nqYrnzgGffKJ8KS8+XtovG63IDvhly5Zh8uTJAACn0wnTpYKbyWSC0+mUe3hVeTuTRu/yDGvq7rvV\n2+y8PRzwnlE64AHgf/6H5rJ7c+Wcn0/N+QYMUHYs8fHAr78qe0wlyboWra6uxr///W+8+OKLLX4m\nCAIEN5+FcnJy6v+cmpqK1NRUOcOQLCkJWLzY88evXQs88oh642G+gwPeM0eOKFPzbqxPH9rX9dVX\nqW+7J5S6udpcXJx6V/AOhwMOh0PeQUQZ8vLyxHHjxtX/d0JCglhWViaKoigePnxYTEhIaPEcmadU\n1O7dohgX59lj9+8XxYgIUaytVXdMzDfs3y+KAwboPQrjs1hEcdUq5Y978KAo9uolikePtv/YsjJR\nDAsTxTNnlB/H0qWieMcdyh+3NVKyU1aJ5sMPP6wvzwBAZmYm7HY7AMButyMrK0vO4VUXH0/NgzzZ\nB3LtWtpcW+vZGsyY+venq9OLF/UeibGpUaIBqNQycSKwYEH7j/3wQyArS53eUUavwQuXfjN47ezZ\nsxg4cCBKSkrQ/dIytYqKCkyaNAkHDhxAbGwscnNz0bNnz6YnFARIPKUqhg+nj2/tfYy8+27a+eXB\nB7UZFzO+mBha+KbXfQBf0L8/tblWuvYN0MrWMWOoBt7W3ggpKVTOUeP+2dGjQEICTblWm5TslHw9\nGhoaimPHjtWHOwCEh4ejoKAAxcXFWL16dYtwN6IhQ9pf0SqKfIOVtcR1+LbV1VEARkSoc/xBg6hp\n2F//6v4x27dT11i1bvP16UML7Yy6qjngCw6ezKTZs4dKM+1tDsACCwd82yorgW7daHGeWrKzgddf\np2mQrVmyhBbFqVVaFQRjl2k44D0IeNfVO68gZY1xwLdNrfp7YyNGAFdcAbz/fsuf1dRQ98f2tuWT\niwPewDwp0XB5hrWGA75tctsEe2r2bFr41PyG91dfUffHIUPUPT8HvIGZzUBJCW3W3Jq6OlrBmpam\n7biY8XHAt02LK3iAbrTGx7fckN3VmkBtHPAG1qkTNR7bs6f1n+/YQTu/REdrOy5mfBzwbdMq4AG6\nip83r6Hx16lTwBdfUGtptXHAG1xbveG5PMPciYkB9u83fk9wvSjZKrg9119PUyWXL6f//vhj+tTd\np4/6546LM267Ag54tN10TO/+78y4wsLoxvvJk3qPxJi0vIJvvjm3Wq0JWhMdTf9fL1zQ5nze4ICH\n+5k0NTXAhg3qzaFlvk0QuEzTFi0DHgBuuYVC9t13gZ07adclLQQHU8iXlGhzPm9wwMN9ieaHH6g+\nr9ZCDeb7OODd0zrgg4JoA5hHHgHuuEPbbTWNWofngActNS4upiv2xr76iuvvrG0c8O5pHfAABXtK\nCm3vpyUOeAMLDQUiI1t+xOIbrKw9HPDu6RHwwcHApk3Ab36j7Xk54A2ueZnm/Hl6o+ixHRzzHRzw\nrauuBs6cAfRoR6XHinMOeINrPpPmu++AoUPb7lLHGAd861xNxgKlvTYHvME1n0nD5RnmCQ741ulR\nntFTXBywb1/DQiuj4IC/pHmJhgOeeWLAAKC8vOUN+kAXaAHftSuVo7zZJ1YLkgO+srISEydOxJAh\nQ5CUlIRNmzahoqICFosFZrMZGRkZqKysVHKsqnI1Hauro9rhtm3A1VfrPSpmdCEhFGSHD+s9EmMJ\ntIAHjLkBt+SAf/TRR3HjjTfip59+wvbt25GYmAibzQaLxYLi4mKkp6fDZrMpOVZVhYXRV2kpLW4a\nNYp+KzPWHi7TtKRVJ0kjMWIdXlLAnzx5Ehs2bMD0S5NNg4ODERYWhvz8fFitVgCA1WpFXl6eciPV\ngKtMw+UZ5g0O+JYC9QreLwK+pKQEERERuPfee3H55ZfjgQcewNmzZ+F0OmG61F3IZDLB6XQqOli1\nuWbScMAzbwwcyAHfHAe8MUgK+JqaGmzZsgUzZszAli1bEBoa2qIcIwgCBB/bAikpCfjmG2odfMUV\neo+G+Qq+gm+JA94YgqU8KSoqClFRUbjiUgpOnDgR8+bNQ2RkJMrLyxEZGYmysjL0dfM3nJOTU//n\n1NRUpBqkm1dSEvWxsFjU3UeS+ZeYGGDlSr1HYSxatgo2CqUD3uFwwOFwyDqGIIrSullfe+21WLRo\nEcxmM3JyclBVVQUA6N27N2bNmgWbzYbKyspWr+wlnlJ1R4/SVcdLLwEzZ+o9GuYrtm2jfT+3b9d7\nJMYRE0OTFQYO1Hsk2hFFmqixfz9tEqQ0KdkpOeC3bduG+++/H9XV1YiPj8f777+P2tpaTJo0CQcO\nHEBsbCxyc3PRs9laZSMHPEA9aVaupIZFjHnixAngsssAJWYF19RQF9PRo+UfSy+iCHTpAlRUBN5M\ntJQUYOFCmoWnNE0DXiqjB3xZGdCvn96jYL5EFKmlxcGDdAUnR34+MGECsGULMGKEMuPT2qlTtADs\n9Gm9R6K9iROB22+nrpZKk5KdvJK1GQ535i3Xxh+lpfKPtWIFXQU++KDxlr17KhBvsLrExRnrRisH\nPGMKUGImjShSwNvtQIcOtDORLwrkgDfaTBoOeMYUoETA//gj9TMfMgT429+AP/2J+tz4mkAPeCO1\nK+CAZ0wBSgT8ihXAjTdSyWfoUOCBB4DHH1dmfFoK9IDnK3jG/IySAe/yzDNAYSHw5Zfyjqu1QA74\n6Gj6/3/hgt4jIRzwjClAbsCfPEkzZxqv+evaFXjrLWDGDODSMhOfEMgBHxxMId98+0+9cMAzpgC5\nAb9mDXDNNS3njf/ud9Q24//+T974tBTIAQ8Yq0zDAc+YAgYMoDUUtbXSnv/FF03LM429/jqwaBHd\nhPUFgdgquDEOeMb8TMeOQJ8+FPLeqquj1dPuAr5fP2DOHN+ZG89X8BzwjPkdqWWaoiLa7i0uzv1j\nHnyQ2hi895708WmFA54DnjG/IzXgm8+eaU1QEC18mj2bAtSoamqoN0/v3nqPRD9GWs3KAc+YQmJi\nqJOgtzwJeIB609xzD/DEE96fQyvHjwPh4TSbJFDFxQH79hmjnMYBz5hCpFzBHztGu4iNHevZ4597\njtrwFhRtx+hdAAASmElEQVR4Pz4tBHp5BgBCQ6nkZoSN2DngGVOIlID/8ksgLQ3o1Mmzx4eGAn/5\nC/Dww8D5896PUW0c8MQodXgOeMYUIiXgPS3PNHbzzUByMvDCC949Twsc8IQDnjE/423A19bSFby3\nAQ8A8+cD77wD7N7t/XPVxAFPfD7gY2NjMWLECKSkpODKK68EAFRUVMBiscBsNiMjIwOVSmxxw5iP\nCA8HqqtpwwtPFBbSAqmoKO/PNWAA8OyzwEMPUZtho+CAJz4f8IIgwOFwoKioCIWFhQAAm80Gi8WC\n4uJipKent9iPlTF/5u3GH1LKM43NmAGcPUv9442CA574fMADaLF9VH5+PqxWKwDAarUiLy9PzuEZ\n8znelGnkBnyHDtQ3ftYsmo1jBBzwxOcDXhAE3HDDDRg1ahQWLlwIAHA6nTCZTAAAk8kEp9OpzCgZ\n8xGeBnxZGXUcvOoqeee7/HLgrruAmTPlHUcpHPCkTx/g4kVa9KUnycsRNm7ciH79+uHo0aOwWCxI\nTExs8nNBECAIguwBMuZLPA34VasAi0WZBUFz5wIJCcDOncCwYfKPJwcHPBGEhqv4UaP0G4fkt1e/\nS7tTR0REYPz48SgsLITJZEJ5eTkiIyNRVlaGvm7+pnNycur/nJqaitTGTbAZ82ExMZ4tQvriC+CW\nW5Q5Z7dutFBq2zYOeCORG/AOhwMOh0PWGASxeSHdA1VVVaitrUX37t1x9uxZZGRk4LnnnkNBQQF6\n9+6NWbNmwWazobKyssWNVkEQWtTuGfMX69YBOTnA+vXuH3PxIhARAfz8M3Cpoinbs8/SVeOcOcoc\nT4qqKppJdO4cjSXQPfkkrWidPVuZ40nJTklX8E6nE+PHjwcA1NTU4K677kJGRgZGjRqFSZMmYfHi\nxYiNjUVubq6UwzPmszwp0WzcCAwerFy4A4DZTDdt9eS6eudwJ/HxwPff6zsGSQF/2WWXYevWrS2+\nHx4ejgKjNslgTANRUdSDpLaWZrm0Ru7smdYMHgwUFyt7TG9xeaap+Hhg2TJ9x8ArWRlTUKdOVKYo\nL3f/GDUDXs/qJwd8U0aYKskBz5jC2irT7N9PW9opPbMiPJx+uejZK/7IEWXLTr4uOppekwsX9BsD\nBzxjCmsr4FeupI203ZVv5NC7TMNX8E0FB1PIl5ToNwYOeMYU1lbAq1GecTGbOeCNRu8yDQc8Ywpz\nF/DnzwMOBzBunDrnHTwY2LNHnWN7ggO+Jb237+OAZ0xh7gL+669p273wcHXOy1fwxsNX8Iz5GXcB\nr2Z5BqCA5yt4Y+GAZ8zP6BXwgwYBv/yi32bPHPAtccAz5mf69KHl+mfONHxvzx767+Rk9c4bGgr0\n7u15P3ol1dUBR49SCwbWIC4O2LdPv1+6HPCMKay1jT9cV+9qL+PX60ZrZSU1PevYUftzG1loKPWj\nOXxYn/NzwDOmguZlGrXLMy563Wjl8ox7epZpOOAZU0HjgD97FvjPf4AbblD/vHrdaHU6OeDd4YBn\nzM80Dvi1a4ErrgB69FD/vHqtZuUrePc44BnzM40DXqvyDMAlGiPigGfMz7gCXhS1Dfi4OLq5e/Gi\nNudz4YB3T8/VrBzwjKnAFfC7dtHMmSFDtDlvx47AgAHaN7jigHfPZ6/ga2trkZKSglsubS5ZUVEB\ni8UCs9mMjIwMVFZWKjJIxnxNVBRw8CDw+efaTI9sTI8brdwq2L2ICPpEdeKE9ueWFfDz589HUlIS\nhEvvXpvNBovFguLiYqSnp7fYj5WxQNG5M9CrF/D++9qVZ1z0uNHKV/DuCYJ+V/GSA/7gwYNYsWIF\n7r///vqNYPPz82G1WgEAVqsVeXl5yoySMR8UE0OrGNPStD2vHjdaOeDb5nMB//jjj+Pll19GUFDD\nIZxOJ0yXPqeZTCY4nU75I2TMR8XEULiHhmp7Xj1Ws3LAty0+Hvj1V+3PK2nT7c8//xx9+/ZFSkoK\nHA5Hq48RBKG+dNNcTk5O/Z9TU1ORmpoqZRiMGdo11+jTm0XrK/jqauqz07Onduf0NfHxwPffe/cc\nh8PhNl89JYii99v0zp49G0uWLEFwcDDOnz+PU6dOYcKECfj+++/hcDgQGRmJsrIypKWlYffu3U1P\nKAiQcErGmIdqa6kvTEUF0KWL+uc7dIgWcunVb8UXFBQAzz8PrFsn/RhSslNSieaFF15AaWkpSkpK\nsGzZMlx//fVYsmQJMjMzYbfbAQB2ux1ZWVlSDs8Yk6FDB+Cyy6h1sBa4PNM+n6vBN+YqxWRnZ2PN\nmjUwm81Yu3YtsrOzlTg8Y8xLWpZpOODbFx1N/XouXND2vJJq8I1dd911uO666wAA4eHhKCgokD0o\nxpg8Ws6F54BvX3AwhXxJCZCYqN15eSUrY35Iy7nwHPCe0aNMwwHPmB/S8gqeWwV7hgOeMaYIvoI3\nHg54xpgi+vWjjUZOnlT/XBzwnuGAZ4wpQhC0K9NwwHtGj9WsHPCM+SmtyjQc8J6Ji6NZNHV12p2T\nA54xP6XFFbwocsB7KjSU2jloueKXA54xP6XFFfzp00BICNC1q7rn8Rda1+E54BnzU1qsZuWrd+9o\nvX0fBzxjfspVolGztx8HvHf4Cp4xpojwcGo8dvSoeufggPcOBzxjTDFq32jlgPcOBzxjTDFq32jl\ngPcOBzxjTDFq32jlgPdORARw8SJw4oQ25+OAZ8yPcYnGWARB26t4DnjG/BiXaIxHy5YFkgL+/Pnz\nGD16NEaOHImkpCQ89dRTAICKigpYLBaYzWZkZGSgsrJS0cEyxrwzeDBdLaq1PJ5bBXvvlVeAjAxt\nziUp4Dt37ox169Zh69at2L59O9atW4dvvvkGNpsNFosFxcXFSE9Ph81mU3q8jDEvdOsGhIXRxthq\n4Ct47112GbUs0ILkEk3XS2uTq6urUVtbi169eiE/Px9WqxUAYLVakZeXp8woGWOSqXWjtaaGbhb2\n7q38sZkyJAd8XV0dRo4cCZPJhLS0NAwdOhROpxMmkwkAYDKZ4HQ6FRsoY0watW60Hj8O9OpF+40y\nY5L8VxMUFIStW7fi5MmTGDduHNatW9fk54IgQBCEVp+bk5NT/+fU1FSkpqZKHQZjrB1q3Wjl8oy6\nHA4HHA6HrGPI/t0bFhaGm266CT/88ANMJhPKy8sRGRmJsrIy9HXzt9844Blj6jKbgfXrlT/ukSPA\npQ/sTAXNL37nzJnj9TEklWiOHTtWP0Pm3LlzWLNmDVJSUpCZmQm73Q4AsNvtyMrKknJ4xpiC1CrR\n8BW88Um6gi8rK4PVakVdXR3q6uowbdo0pKenIyUlBZMmTcLixYsRGxuL3NxcpcfLGPNSXBywfz/d\nFFWyXs4Bb3yCKKrZTLSVEwoCND4lYwEvLg5YvRoYNEi5Yz79NNClC/DMM8odk7knJTt5JStjAUCN\nG618BW98HPCMBQA15sJzwBsfBzxjAUCNG60c8MbHAc9YAOASTWDigGcsAPAVfGDiWTSMBYCaGmo8\nduIEzXyRq6qK9nw9d456nDP18SwaxlirgoOpi6FSG024rt453I2NA56xAKFkmYbLM76BA56xAKHk\njVYOeN/AAc9YgOAr+MDDAc9YgOAr+MDDAc9YgFByNSu3CvYNHPCMBYj+/YEzZ4BTp+Qfi6/gfQMH\nPGMBQhCom6QSdXgOeN/AAc9YAFHqRisHvG/ggGcsgCh1o5UD3jdICvjS0lKkpaVh6NChGDZsGBYs\nWAAAqKiogMVigdlsRkZGRv22fowxY1DiRmtdHXD0KBARocyYmHokBXxISAhef/11/Pjjj/juu+/w\n1ltv4aeffoLNZoPFYkFxcTHS09Nhs9mUHi9jTAYlSjSVldTXpmNHZcbE1CMp4CMjIzFy5EgAQLdu\n3TBkyBAcOnQI+fn5sFqtAACr1Yq8vDzlRsoYk81VopHT74/LM75Ddg1+3759KCoqwujRo+F0OmG6\nNDnWZDLB6XTKHiBjTDm9e9NsmuPHpR+DA953yNpj/cyZM7jtttswf/58dO/evcnPBEGA4KbVXE5O\nTv2fU1NTkZqaKmcYjDEPCULDVXyfPtKO4XRywGvB4XDA4XDIOobkfvAXL17EzTffjN///vd47LHH\nAACJiYlwOByIjIxEWVkZ0tLSsHv37qYn5H7wjOlq2jQgPR245x5pz3/rLWDnTuCddxQdFmuHZv3g\nRVHEfffdh6SkpPpwB4DMzEzY7XYAgN1uR1ZWlpTDM8ZUJPdGK5dofIekgN+4cSOWLl2KdevWISUl\nBSkpKVi1ahWys7OxZs0amM1mrF27FtnZ2UqPlzEmk9y58BzwvkNSDf6aa65BXV1dqz8rKCiQNSDG\nmLr4Cj5w8EpWxgLM4MEU8G6u0drFAe87OOAZCzDduwM9egCHD0t7PrcK9h0c8IwFIKllGlHkK3hf\nwgHPWACScqO1tBTIygIGDgR69lRnXExZHPCMBSBvruBra4G//AVISQEuvxzYtAkI4uTwCbJWsjLG\nfJPZDHzzTfuP27kTeOABIDgY2LABGDJE/bEx5fDvYcYCUHslmvPngWeeAdLSaMXr+vUc7r6Ir+AZ\nC0Dx8cC+fUBNDV2dN7Z+PfCHPwDDhgHbttFersw3ccAzFoA6dwYiI4H9+ynsAeDECWDmTODLL4E3\n36Qbqsy3cYmGsQDlutEqikBuLjB0KAX/jz9yuPsLyd0kJZ+Qu0kyZgiPPAJ06QLs3g2UlADvvgtc\nfbXeo2LuaNZNkjHm+xISgAULgCuvBLZs4XD3R3wFz1iAOnsWqKgAoqP1HgnzhJTs5IBnjDEfwCUa\nxhhj9SQH/PTp02EymTB8+PD671VUVMBiscBsNiMjIwOVlZWKDJIxxpj3JAf8vffei1WrVjX5ns1m\ng8ViQXFxMdLT02Gz2WQP0J/J3VDXn/Br0YBfiwb8WsgjOeDHjh2LXr16Nflefn4+rFYrAMBqtSIv\nL0/e6Pwcv3kb8GvRgF+LBvxayKNoDd7pdMJ0aScAk8kEp9Op5OEZY4x5QbWbrIIgQBAEtQ7PGGOs\nPaIMJSUl4rBhw+r/OyEhQSwrKxNFURQPHz4sJiQktHhOfHy8CIC/+Iu/+Iu/vPiKj4/3OqMVbTaW\nmZkJu92OWbNmwW63I6uVhha//PKLkqdkjDHmhuSFTpMnT8b69etx7NgxmEwmzJ07F7feeismTZqE\nAwcOIDY2Frm5uejJe3sxxpguNF/JyhhjTBuarmRdtWoVEhMTMXjwYLz44otantpwYmNjMWLECKSk\npODKK6/Uezia4kVyDVp7LXJychAVFYWUlBSkpKS0WG/ir0pLS5GWloahQ4di2LBhWLBgAYDAfG+4\ney28fm9Iu73qvZqaGjE+Pl4sKSkRq6urxeTkZHHXrl1and5wYmNjxePHj+s9DF18/fXX4pYtW5rc\noJ85c6b44osviqIoijabTZw1a5Zew9NUa69FTk6O+Oqrr+o4Kn2UlZWJRUVFoiiK4unTp0Wz2Szu\n2rUrIN8b7l4Lb98bml3BFxYWYtCgQYiNjUVISAjuvPNOfPbZZ1qd3pDEAK2O8SK5Bq29FkBgvjci\nIyMxcuRIAEC3bt0wZMgQHDp0KCDfG+5eC8C794ZmAX/o0CFEN+pLGhUVVT/gQCQIAm644QaMGjUK\nCxcu1Hs4uuNFck29+eabSE5Oxn333RcQJYnm9u3bh6KiIowePTrg3xuu12LMmDEAvHtvaBbwvOip\nqY0bN6KoqAgrV67EW2+9hQ0bNug9JMMI9EVyDz/8MEpKSrB161b069cPTzzxhN5D0tSZM2dw2223\nYf78+ejevXuTnwXae+PMmTOYOHEi5s+fj27dunn93tAs4AcMGIDS0tL6/y4tLUVUVJRWpzecfv36\nAQAiIiIwfvx4FBYW6jwifZlMJpSXlwMAysrK0LdvX51HpJ++ffvWB9n9998fUO+Nixcv4rbbbsO0\nadPq19EE6nvD9VpMnTq1/rXw9r2hWcCPGjUKe/bswb59+1BdXY2PPvoImZmZWp3eUKqqqnD69GkA\nwNmzZ7F69eomsygCkWuRHAC3i+QCRVlZWf2fly9fHjDvDVEUcd999yEpKQmPPfZY/fcD8b3h7rXw\n+r2hwg1gt1asWCGazWYxPj5efOGFF7Q8taH8+uuvYnJyspicnCwOHTo04F6LO++8U+zXr58YEhIi\nRkVFie+99554/PhxMT09XRw8eLBosVjEEydO6D1MTTR/LRYvXixOmzZNHD58uDhixAjx1ltvFcvL\ny/UepiY2bNggCoIgJicniyNHjhRHjhwprly5MiDfG629FitWrPD6vcELnRhjzE/xln2MMeanOOAZ\nY8xPccAzxpif4oBnjDE/xQHPGGN+igOeMcb8FAc8Y4z5KQ54xhjzU/8P36p6rX05hOIAAAAASUVO\nRK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x118615210>" | |
} | |
], | |
"prompt_number": 114 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions does not involve money for top 25 communities per volume\"\nplt.plot(noo[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions does not involve money for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt8k+X5P/BPCnWMM2VtClZXLLRIgbZaYKBIoCaIDiwH\nOzxgBuicm/M8qc5J+W5C8DAtKvs5xS0TheHUWhFQKkQRQRTKQUDLCqWltBEo5VSgp/v3x2V6zuFJ\nnkOe5Hq/XnkJafI8tyH95M713AeDEEKAMcaYbkVo3QDGGGOB4SBnjDGd4yBnjDGd4yBnjDGd4yBn\njDGd4yBnjDGd8xrkubm5GDZsGIYOHYrc3FwAQFVVFcxmMxITE2GxWFBdXa14QxljjHXMY5B/++23\neP311/H1119j165dWL16NYqLi2Gz2WA2m1FUVISMjAzYbDa12ssYY6wNj0H+3XffYdSoUejSpQs6\ndeqEcePG4d1330V+fj6sVisAwGq1Ii8vT5XGMsYYa89jkA8dOhSbNm1CVVUVampqsGbNGhw5cgRO\npxNGoxEAYDQa4XQ6VWksY4yx9jp7+uHgwYMxb948WCwWdOvWDampqejUqVOrxxgMBhgMBkUbyRhj\nzAMhwRNPPCGWLl0qkpKSREVFhRBCiKNHj4qkpKQOH5+QkCAA8I1vfOMb3yTcEhISpESz8Dpq5Ycf\nfgAAlJaW4r333sNtt92GKVOmwG63AwDsdjsyMzM7fG5xcTGEEHwTAvPnz9e8DcFy49eCXwt+LTzf\niouLvUVzKx5LKwAwY8YMnDhxApGRkVi6dCl69eqF7OxsZGVlYdmyZYiPj8eqVasknZQxxph8vAb5\n559/3u6+qKgoFBQUKNIgxhhj0vDMTpWYTCatmxA0+LVoxq9FM34t/GcQQgjFDm4wQMHDM8ZYSJKa\nndwjZ4wxneMgZyzEnTkDjBsHrFmjdUuYUjjIGQtx330HHDwI/OEPwK23AjwRO/RwkDMW4oqKgGuu\nAfbsAS6/HBg2DHjjDYAvX4UODnLGQlxREZCYCHTtCixeDHz8MbB0KZCRARw4oHXrmBw4yBkLcQcO\nUJC7pKUBW7cCkycDo0cDCxcCdXXatY8FjoOcsRBXVAQMGtT6vs6dgYceAr75Bti0Cbj6auCrr7Rp\nHwscjyNnLIQJAfTuDRw6BERFuX/MypXAww8Dt9wCPP000KOHuu1krfE4csZYkx9+ACIj3Yc4ABgM\nNJpl717g7Flg6FBg9Wr12sgCx0HOWAhzXej0RVQUjWb55z+p7JKVBZw+rWz7mDw4yBkLYW0vdPpi\nwgRg924ab849c33gIGcshHV0odMXP/0pkJJCpRkW/DjIGQth/vTIXWJiOMj1goOcsRDmb48c4CDX\nE69BvmjRIiQnJ2PYsGG47bbbcPHiRVRVVcFsNiMxMREWiwXV1dVqtJUxJkFjI1BcDAwc6N/zOcj1\nw2OQl5SU4LXXXsOOHTuwZ88eNDQ0YOXKlbDZbDCbzSgqKkJGRgZsNpta7WWM+ejIERqJ0r27f883\nGjnI9cJjkPfs2RORkZGoqalBfX09ampq0L9/f+Tn58NqtQIArFYr8vLyVGksY8x3gZRVAO6R64nH\nII+KisIjjzyCyy+/HP3790fv3r1hNpvhdDphNBoBAEajEU5eF5OxoBPIhU6Ag1xPPG6+XFxcjBdf\nfBElJSXo1asXbrnlFixfvrzVYwwGAwwGg9tj5OTkNP3ZZDLxvnyMqSTQHnn37kBDA3DuHNCtm3zt\nYu05HA44HA6/n+8xyL/55huMGTMGffv2BQBMmzYNW7ZsQWxsLCorKxEbG4uKigrExMS4PUbLIGeM\nqaeoCBg/3v/nGwzUKz92jINcaW07uQsWLJD0fI+llcGDB2Pr1q04f/48hBAoKCjAkCFDMHnyZNjt\ndgCA3W5HZmam9JYzxhQVaGkF4PKKXnjskaekpODOO+9Eeno6IiIicNVVV+E3v/kNzpw5g6ysLCxb\ntgzx8fFYtWqVWu1ljPmgrg4oLQWuuCKw43CQ6wMvY8tYCCoqAiZNonHkgZg9Gxg7FpgzR552Md/w\nMraMMVnKKgD3yPWCg5yxEBToiBWXmBhaBZEFNw5yxkIQ98jDCwc5YyFIzh45B3nw4yBnLARJ2RnI\nEw5yfeAgZyzEnD9Pk3guvzzwY3GQ6wMHOWMh5n//AwYMADp1CvxY0dHA8eO0JC4LXhzkjIUYuS50\nAsAllwA9egAnT8pzPKYMDnLGQoxcFzpduLwS/DjIGQsxcl3odOEgD34c5IyFGDlLKwAHuR5wkDMW\nYri0En44yBkLIadO0UYQ/frJd0wO8uDHQc5YCDlwgHrjHjbtkoyDPPhxkDMWQuS+0AlwkOsBBzlj\nIUTuC50AB7keeA3y77//HmlpaU23Xr16YcmSJaiqqoLZbEZiYiIsFguqq6vVaC9jzAO5L3QCvJSt\nHngN8qSkJBQWFqKwsBDbt29H165dMXXqVNhsNpjNZhQVFSEjIwM2m02N9jLGPOAeeXiSVFopKCjA\nwIEDcdlllyE/Px9WqxUAYLVakZeXp0gDGWO+EUKZHnnv3jQS5uJFeY/L5CMpyFeuXIlbb70VAOB0\nOmE0GgEARqMRTv7uxZimjh2jhbL69pX3uBERtHjWsWPyHpfJp7OvD6ytrcWHH36IxYsXt/uZwWCA\nwc14p5ycnKY/m0wmmEwmyY1kjHmnRFnFxVVeiYtT5vjhzuFwwOFw+P18n4N87dq1uPrqqxEdHQ2A\neuGVlZWIjY1FRUUFYmJiOnxeyyBnjClHibKKi9HIdXIlte3kLliwQNLzfS6trFixoqmsAgBTpkyB\n3W4HANjtdmRmZko6MWNMXmr0yFlw8inIz507h4KCAkybNq3pvuzsbKxfvx6JiYnYsGEDsrOzFWsk\nY8w7JXvkHOTBzafSSrdu3XD8+PFW90VFRaGgoECRRjHGpFNiVqcLB7l069cDn34KqDEym2d2MhYC\nGhuB4mLukQeTPXto/1Q1cJAzFgLKy4FevYDu3ZU5Pge5dMXFwBVXqHMuDnLGQoCSZRWAg9wfxcVA\nQoI65+IgZywEuJavVQoHuXQc5IwxSZTukUdHU5ALodw5Qkl9PVBaCgwYoM75OMgZCwFKjiEHgK5d\ngchI4MwZ5c4RSsrK6FtMly7qnI+DnLEQoOQYchdeztZ3apZVAA5yxnSvvh44fFj54OA6ue84yBlj\nkpSUAP37Az/5ibLn4SD33cGDHOSMMQnUKKsAHORScI+cMSaJ0hc6XTjIfcdBzhiTRK0eOS9l6xsh\nOMgZYxIpPYbchXvkvjl+nHZq6tNHvXNykDOmc1xaCS5q98YBDnLGdO3CBaCyErj8cuXPxUHuGw5y\nxpgkxcU0Dbyzz5s2+o+D3DdBG+TV1dWYMWMGrrzySgwZMgRfffUVqqqqYDabkZiYCIvFgurqaqXb\nyhhrQ60LnQDQty9QXU0TkJh7QRvkDzzwAG688Ubs378fu3fvxuDBg2Gz2WA2m1FUVISMjAzY1NgG\ngzHWiloXOoHmC3gnTqhzPr1SezIQ4EOQnzp1Cps2bcKcOXMAAJ07d0avXr2Qn58Pq9UKALBarcjL\ny1O2pYyxdtS60OnC5RXvgrJHfujQIURHR2P27Nm46qqrcPfdd+PcuXNwOp0wGo0AAKPRCCevpsPC\nVHU1sGaNNudWs7QCcJB7U1MDnDwJXHqpuuf1eomkvr4eO3bswMsvv4wRI0bgwQcfbFdGMRgMMBgM\nHT4/Jyen6c8mkwkmkymgBjMWbBwO4J57gIoKIELl4QPcIw8uBw8C8fHS3wcOhwMOh8Pv83oN8ri4\nOMTFxWHEiBEAgBkzZmDRokWIjY1FZWUlYmNjUVFRgZiYmA6f3zLIGQtFpaUUbjt2AOnp6p339Gm6\n9e+v3jl5KVvP/C2rtO3kLliwQNLzvX5uxMbG4rLLLkNRUREAoKCgAMnJyZg8eTLsdjsAwG63IzMz\nU9KJGQsVpaVAt27ql1dc27u5+TKsCO6Re6bmhsst+TT69KWXXsLtt9+O2tpaJCQk4J///CcaGhqQ\nlZWFZcuWIT4+HqtWrVK6rYwFpdJS4LbbKMifekq986pdVgEoyLdtU/ecelJcrP6/CeBjkKekpODr\nr79ud39BQYHsDWJMb0pLgd/9DvjPf4Bjx2h/SzWofaET4B65N8XFwKRJ6p+XZ3YyFqDSUgrUCROA\njz9W77xa9cg5yN3TYughwEHOWEAuXqQJMrGxwI03qlsn16JHzkvZuldfTx/qAwaof24OcsYCUF5O\no0Y6daKv1B9/DDQ0KH9eIdSd1enCPXL3jhyh16dLF/XPzUHOWABKS5tXHoyLo9tXXyl/3hMnaLRK\n377Kn6ul7t3pg+rcOXXPqwdalVUADnLGAnL4cOslZG+6CfjoI+XP6yqrqDn0EKDzxcTQRV3WGgc5\nYzrVskcOqFcn16Ks4sLllY5xkDOmU22D/Be/oF56ebmy53VNBtICB3nHOMgZ06m2Qd65M2CxAOvW\nKXte7pEHH61mdQIc5IwFpG2QA+qUV7QYQ+7CQd6eENwjZ0yXhKAgv+yy1vffcAPw6adAba0y521s\n5NJKsDl+nIagRkVpc34Ocsb8VFUFXHIJ0LNn6/tjYqi3vHmzMuc9epTO2aOHMsf3hoO8PS174wAH\nOWN+66is4qJkeUXL3jjAS9l2hIOcMZ3SKsi1vNAJcI+8I1rs09kSBzljfvIU5OnpNGmmpET+82p5\noRPgIO8I98gZ0ylPQR4RQRc9166V/7xaLJbVUnQ0XdxrbNSuDcFGF0EeHx+P4cOHIy0tDSNHjgQA\nVFVVwWw2IzExERaLBdXV1Yo2lLFg4ynIAeXKK1qXVi65hC60njypXRuCjS6C3GAwwOFwoLCwENt+\n3B7EZrPBbDajqKgIGRkZ7TZkZizUeQtyiwX47DPgwgX5zllfT+UaLUMD4PJKSzU19KF26aXatcHn\n0ooQotXf8/PzYbVaAQBWqxV5eXnytoyxIOctyKOigJQUCnO5HD5Ma59rsVRqSxzkzQ4eBOLjqZym\nFZ975Ndffz3S09Px2muvAQCcTieMRiMAwGg0wsnjkVgYqa2li5n9+nl+nNzlFa0vdLpwkDfTcmq+\ni097dm7evBn9+vXDsWPHYDabMXjw4FY/NxgMMKi9niZjGiovpxDv7OU36MYbgRkzgNxcec67a5e2\nFzpdOMibaV0fB3wM8n4/djuio6MxdepUbNu2DUajEZWVlYiNjUVFRQViYmI6fG5OTk7Tn00mE0wm\nU8CNZkxr3soqLsOHUw1VjguUx48DL7ygznrn3nCQNysuDvzf1uFwwOFw+P18g2hb/G6jpqYGDQ0N\n6NGjB86dOweLxYL58+ejoKAAffv2xbx582Cz2VBdXd3ugqfBYGhXW2csFLz5Jq1w+NZb3h97991A\ncjLw4IOBnXPOHJqa/+KLgR1HDkuXAnv2AH//u9Yt0d6kScDvfw/88pfyHVNqdnrtkTudTkydOhUA\nUF9fj9tvvx0WiwXp6enIysrCsmXLEB8fj1WrVvnfasZ0xtceOUDllb//PbAg/+wzYP16YN8+/48h\nJ+6RN9NFaWXAgAHYuXNnu/ujoqJQUFCgSKMYC3alpUBqqm+PzcgA7rwTOHuW9ryU6uJF4Le/BZYs\n0W6hrLY4yElDA70XBgzQth08s5MxP0jpkffsCYwcCWzY4N+5nn2WarCZmf49Xwkc5KSsjGa6aj0c\nlIOcMT9ICXLA/2GIBw5QTfyll9TfaNkTDnISDGUVgIOcMclcG0r4E+RSrv0LAfzud8ATT0g7lxp6\n96ZS0cWLWrdEWxzkjOlUdTXN4uvVy/fnDB5MO8js3ev7c95+m4Yc3n+/9DYqLSKCSgrHjmndEm1x\nkDOmU1J74wCVRaSUV6qqgEcfBV591fukI61weSU4ZnUCHOSMSeZPkAPSgjw7G5g+nS6SBisO8uDp\nkQfpZz1jwcvfIB8/Hrj1VuDUKc9lmc2bKfCllGG0YDSGd5ALETxBzj1yxiQqLQV+/nPpz+vaFbj2\nWprY405tLXDPPTQVX0oNXgvh3iM/cYKue0RFad0SDnLGJPO3Rw54L6/87W/0ITFjhn/HV1O4B3mw\n9MYBDnLGJAs0yNeu7XibtIMHgeeeA155JbjGjLvDQc5BzphuBRLkV1xBJZO2q164xow/9hhtUqAH\nHOQc5IzpUl0dhVf//v4fo6PyyqpVwNGjwEMPBdY+NXGQc5AzpktHj9JojUDGdt94Y+s1xaurgYcf\npjHjkZGBt1EtHOQc5IzpUiBlFZexY2k52uPH6e9PPAFMngyMHh14+9QUHU1BHq5bDgRTkPM4csYk\nkCPIf/ITGlP+8ccUBHl5wT9mvCNdu9I3iDNnaIXHcFJTQ7NvAymxyYmDnDEJ5AhygMorH3wAfP89\n8PzzQJ8+gR9TC67ySrgF+cGDdFG6UyetW0J8Kq00NDQgLS0NkydPBgBUVVXBbDYjMTERFosF1dXV\nijaSsWAhV5BPmgS88w7V22fODPx4WgnXOnkwlVUAH4M8NzcXQ4YMgeHHwa02mw1msxlFRUXIyMho\nt1enHrz+OvWIGJNCriC/7DLgvvtoCzg9jBl3JyYGcDq1boX6Dh7UWZAfOXIEa9aswV133dW0GWh+\nfj6sVisAwGq1Ii8vT9lWKiAvz7eNcxlrSa4gB2iziGAKA39wjzw4eA3yhx56CM8++ywiIpof6nQ6\nYTQaAQBGoxFOHX4k79sHbNzY8Qw7xtyRM8hDAQd5cPAY5KtXr0ZMTAzS0tKaeuNtGQyGppKLXtTU\nABUVdIHm22+1bg3Ti1OnaKhdsC9mpSYO8uDgcdTKl19+ifz8fKxZswYXLlzA6dOnMWvWLBiNRlRW\nViI2NhYVFRWIiYlxe4ycnJymP5tMJphMJrna7rfvvwcGDgSuuYY2xB0+XOsWMT04fJh64zrrtyjK\naAS+/FLrVqiroYG+mQ0YIN8xHQ4HHA6H3883CHdd7TY+++wzPPfcc/jwww/x2GOPoW/fvpg3bx5s\nNhuqq6s7vOBpMBjc9uS19NZbQH4+rTD3738DH36odYuYHqxeDSxd6t8myqFqwwbgL3+hMmW4KCmh\nSV1lZcqdQ2p2SprZ6SqhZGdnY/369UhMTMSGDRuQnZ0trZUa278fGDIEMJmATZuA+nqtW8T0gOvj\n7YVjaSXYyiqAhAlB48aNw7hx4wAAUVFRKCgoUKxRStu3j8buRkfT2s/btwOjRmndKhbsOMjb4yAP\nDmG51sq+fdQjB4AJE+jrIWPecJC317cvLfoVTt9qg2XD5ZbCLshra+mi1aBB9HcOcuYrDvL2OnWi\n5QVOnNC6JeoJtslAQBgG+YED9Mv4k5/Q36+7Dti6FbhwQdt2seDHQd6xcCuvcGklCLQsqwA0Jjg5\nmcKcMXfq64HKSuDSS7VuSfAJpyAXgoM8KLQNcoDLK8y7o0cpsPS08YNawinIT5wAIiKAqCitW9Ja\n2AX5/v3AlVe2vo+DnHnDZRX3tAryTZuALVvUPWcw9saBMAzyjnrkY8bQZrhnz2rTJhb8OMjd0yLI\nGxqAu+8GHn9c3fNykAeB+nq62Dl4cOv7u3YF0tPpE56xjnCQu6fFUrbvvw/06EFrJZWUqHdeDvIg\ncOgQEBtLwd1WRgaXV5h7HOTuqd0jFwJYuBB46ingV78Cli9X79wc5EGgo7KKC9fJmScc5O6pHeQf\nf0zfrm+6CbjzTlovSa0lnTjIg4CnIB8xgsouVVXqtonpAwe5e0ajukG+cCHVxiMigJEjaTXKr75S\n59zBOKsTCLMg72jEissll9Cytp99pm6bmD5wkLunZo980yYaCnrLLfR3g6G5V660mhrq6AXjXIKw\nCnJPPXKAyyusY6dO0Vd5ve50r7Tu3WkUyblzyp9r0SJg3jygc4vl/u64A1i1Crh4UdlzHzoExMfT\nsgTBJmyCvLER+O479z1ygIL800/VaxPTh7Iy3lDCE4OBeuXHjil7nh07gN27qQfe0s9/DgwbBnz0\nkbLnD9b6OBBGQV5WBvTu7XmbrtRUmoZdUaFeu1jw47KKd2qUVxYtAh55pHmdpJbUKK9wkAeBffs8\n98YB+spkMoXXbifMOw5y75QO8u++o+tXd9/d8c+nTwccDuD4ceXaoNsgv3DhAkaNGoXU1FQMGTIE\nj/84jaqqqgpmsxmJiYmwWCyorq5WpbGB8FYfd+E6OWuLg9w7pYN88WLgD3+genxHevak4YgrVyrX\nBt0GeZcuXbBx40bs3LkTu3fvxsaNG/HFF1/AZrPBbDajqKgIGRkZHe7XGWxc27t5w0HO2uIg907J\nID98mPbYve8+z49Turyi2yAHgK4/ToOsra1FQ0MD+vTpg/z8fFitVgCA1WpFXl6esq2UgS+lFYAe\nU1NDV6gZAzjIfaFkkD/3HJVUvI0auv564MgR6rTJraGB3gcDBsh/bDl4DfLGxkakpqbCaDRi/Pjx\nSE5OhtPphNFoBAAYjUY41V5oQSIhfC+tGAzcK2etcZB7p1SQO53AW28BDz3k/bGdOtFQxDfflL8d\nZWW0x2+XLvIfWw5eN1+OiIjAzp07cerUKUycOBEb21wJNBgMMHgYl5WTk9P0Z5PJBJPJ5Hdj/VVZ\nSRN+fvYz3x7vWndl7lxl28WCX0MDTUAJxkkgwUSpIH/xReC222j2qC/uvBOYNAn4619p5qdclJ7R\n6XA44HA4/H6+1yB36dWrF2666SZs374dRqMRlZWViI2NRUVFBWJiYtw+r2WQa8XXsorLhAnAk09S\nT57HDmvv4kXais/T0FGlVFRQB6CjIW+smRJBXl0N/OMfNH7cV0OHUs/Z4aDfY7kovU9n207uggUL\nJD3f42fW8ePHm0aknD9/HuvXr0daWhqmTJkCu90OALDb7cjMzJTYbHX5WlZxGTCAvkJ9951ybWK+\n+/OfqZel1sJILXFZxTdKLGX78svA5Mk04UcKJS56BvOFTsBLj7yiogJWqxWNjY1obGzErFmzkJGR\ngbS0NGRlZWHZsmWIj4/HqlWr1GqvX3wdsdKSq04upSfP5NfQQDXSyEjgnXeArCx1z89B7pvoaBrD\n3dgoT0nj3DlgyRL/1j669VZgwQI6RrdugbcFoE7dzJnyHEsJHoN82LBh2NHB95qoqCgUFBQo1ii5\n7dsHTJsm7TkTJgDvvgv8/vfKtIn5xuGgNeSffRa46y7g5pvVLXNwkPvmkktojPfJk0DfvoEf77XX\ngOuu868jZTTSAnjvvQfMmhV4WzZsALZtA15/PfBjKSUsZnZKLa0AFOQOB/UItbBtG/VEw92bb9Iv\n44QJQHIy8NJL6p6fg9x3ci1ne/EiDTkMZBs3ucorx47Rsf71L98HS2gh5IP8+HGgthbo10/a8/r1\no57grl3KtMubFSuAV17R5tzBoqYG+OCD5q+0zz5LM/yUnIbdFge57+S64Pnmm3TR8uqr/T/G5MnA\n9u00rtxfQgCzZwO33w5YLP4fRw0hH+SuNcj9GX2i5XjyLVvoan1trTbnDwYffACMGkUfqADttfqr\nXwH/93/qtYGD3HdyBHl9PWCzAU88EdhxfvpTYMaMwL7VLllC/z9/+UtgbVFDyAe5P2UVF62C/OJF\nYM8eIC6Olu0MV8uXt69xzp8PvP02UFSkThs4yH0nR5D/97/0bfi66wJvTyDbwBUW0lj0FSuo/h/s\nQj7I/Rmx4jJuHPDFF+r3infsAJKSaCXGbdvUPXew+OEH4MsvgbYjW6Ojgcceo5vSzpyh8etyXLwL\nB4EGuWtT5UB74y7XXAOcPy9tHDoAnD1L5bzc3OAecthSyAe51MlALfXtCwwcCHz9tbxt8mbLFmD0\naCorqLUXYbBZuZLqnB0NH7v/frp2EcBEOJ/whhLSBBrkq1fTNPsbbpCnPf5uA3f//cCYMTSjVC/C\nIsj97ZEDzdP11bR1K/CLX4R3kC9fTutmdKRLl+ZNBhoblWsDl1WkCSTIhQCefpp643J+cM6aReWR\nujrfHr9iBX0LV3t0VKBCOshPn6ZpvoH8MmpRJ3f1yJOTgfJyGpsbTr7/nnrDnqZY/+pXVLtcvly5\ndnCQSxNIkDsc9D6XOt/Dm4QEKlOuW+f9sQcPUm985Ur3654Hq5AO8v376R8xkJlm115LpZXz5+Vr\nlydHjlBdNiGBvmZedZX6pR2tLV9OX2s7e5iuZjAAzz8P/OlPNExRCRzk0vgb5OfP00Xs7GxlNjb2\npbxSV0czQv/0J/qd05uQDvJAyyoA0KMHkJICbN4sT5u8cfXGXV8vw628IoTnskpLY8bQa/W3vynT\nFg5yafwJ8l27gPR0oH9/Gq+thFtuAdav9/zN9qmnaMLPAw8o0walhXSQBzJipSU1yyuu+rjLqFHh\nNXJl82a6wJma6tvjbTZa6rSyUv62cJBL07s3jfjwZZRXYyN9AF9/PfXElRzm17s3MHEi4G5JqIIC\n6rH/61/6vbAd0kEeyIiVltQMcleP3MXVI9di5T8tuHrjvv5CXXEF8OtfU49Kbhzk0kRE0PDQY8c8\nP+7oURqZ8t//0nt71izlA9RdeeWHHwCrlX4WHa1sG5QU8kEuR4989Ghg717g1KnAj+XJxYv0VXPE\niOb74uJo5b+SEmXPHQwuXqQVDqUO+3rySZoFumePfG1paKALzXFx8h0zHHhbzjYvj2rQY8YAn3+u\n7GYNLVkswP/+RzeXxkbqBNx5J41O07OQDfKaGtoUQI43Spcu1DPetCnwY3lSWAgMGtT+ivnIkeFR\nJ1+zBhg+XHovuHdvCvNHH5WvLZWVtEdksG7tFazc1cnPnQPuuQd4+GFalTAnx/PFbLlFRlIHoeU2\ncLm5QFWVuks+KCVkg/z772kyj1xvFjXKK1u3ti6ruITLBU9fL3J25Le/pW8tvgwz80VpqfQNDVjH\nKyBu30698AsXgJ07qTeuBVd5pbGRZnsuWkS1+chIbdojp5ANcrnKKi4TJgCffirf8TrStj7uEg4X\nPE+epNd3xgz/nh8ZCTzzDPXK6+sDbw/Xx/3Tskfe0EAXoydNoo0e7HagZ0/t2paaSt92162jKfgv\nvUS7gYXm9FSGAAARp0lEQVQCr0FeVlaG8ePHIzk5GUOHDsWSJUsAAFVVVTCbzUhMTITFYmnaEi5Y\nyDVixSU9HTh82PuFnEC4C/L0dOrJ+Do7TY/eeYfqmIHsyzllCg0he+ONwNvDQe4fV5CXlVHdee1a\n4JtvgmN3HdeU/VtuAcaOpUllocJrkEdGRuKFF17A3r17sXXrVrzyyivYv38/bDYbzGYzioqKkJGR\nAZvNpkZ7fSbXiBWXzp3pH1+p9T3Ky6muP3Bg+5/16EE9h1BeCfHNN/0vq7i4JgnNn08LXgWCg9w/\nMTEU3ldfTUP+NmwIrtdx1iz6hvBjfzRkeA3y2NhYpP44qLd79+648sorUV5ejvz8fFitVgCA1WpF\nXl6esi2VSO7SCqBsndw1ftzdMKxQrpMfOkR7IsqxWNLVV1PPfvHiwI7DQe6fpCR6D3/0Ee3wo8RM\nzUDExtKwR7n28gwWkmrkJSUlKCwsxKhRo+B0OmE0GgEARqMRTrm30A5AbS2VQQYNkve4GRnAJ58o\nM6bbXVnFJZSD/O23aVNluSaEPP008Pe/09d7f3GQ+2fMGPrm2HIILVOez2M6zp49i+nTpyM3Nxc9\nevRo9TODwQCDm65kTk5O059NJhNMJpNfDZXiwAEacSD3Jr3DhtEV7z17aJicnLZs8bwTyahRyk1F\n15IQVFb517/kO2ZcHPC739FKei2Hm0nBQc7U5HA44Aikbit8UFtbKywWi3jhhRea7ktKShIVFRVC\nCCGOHj0qkpKS2j3Px8PLbtUqITIzlTn2ww8LMX++vMe8eFGIrl2FOH3a/WPq6oTo1k2IkyflPbfW\nvv5aiIQEIRob5T3umTN03Nxc/57bpYv8bWLMV1Kz02tpRQiBuXPnYsiQIXjwwQeb7p8yZQrsdjsA\nwG63I7PtVi4aknvESkvTptGEBjnt3EkXOdt80Wmlc+fQXAnRdZFT7ina3bvTGhrPPw8sWybtubyh\nBNMbr0G+efNmLF++HBs3bkRaWhrS0tKwbt06ZGdnY/369UhMTMSGDRuQnZ2tRnt9osSFTpfRo2kI\n4oED8h3TW33cJdTq5HV1tPZzoKNV3ImPpzB/6imqw/uKyypMb7zWyK+99lo0utmGpaCgQPYGyWHf\nPuX2dIyIAKZOBd5/X75zbNlCQ6K8GTWKJlWEioICWkKhoyGXchk0iC5QZ2TQzupTp3p/Dgc50xvF\nZ3YqvdBUW/X1tDDO4MHKnWPaNODdd+U73pYtrZeudSfUVkJ8800a16u05GRax+Wee2iMszcc5Exv\nFA/yuXPVDZ5Dh2isaNeuyp1j3Dj6sAhkeJvL0aO0hnNiovfHxsVRrfzw4cDPq7UzZyhcs7LUOd9V\nV9EKiVYrsHGj58dykDO9UTzIS0rUnUUl94zOjkRG0g7vcsyB8jYRqCWDIXRWQnzvPfpA/NnP1Dvn\n6NG0uUBWFvDll+4fx0HO9EbxIH/nHZqgsXWr0mciSl7obEmu0Su+Xuh0CZULnoGsdBgIk4lKOpmZ\ntCpfRzjImd4oHuQDBgCvvUYL1Jw4ofTZlB162JLZTOuHB7qIlq/1cZdQCPLycgrRX/5Sm/PfcAPw\n6qvATTcB337b+meNjbQBNm8owfRElWVsb76Zvs7OmkW/KEpSo7QC0AiIiROB/Hz/j1FbSx8GI0f6\n/pxQWAlxxQr6RvPTn2rXhqlTgRdeoH/DoqLm+51O2qhCy7YxJpVq65EvXAicPh34YkaeNDbS4ktq\nBDkQ+OiVXbuAhARpazT37Kn/lRC1Kqu0deuttDvM9dc3b6XHZRWmR6oFeWQkTf5YskS5pWDLyqg3\nFcia1lLceCPwxRf+D7GUWh93GTlSvxtN7NlD22tdd53WLSFz5wJ//CONMy8v5yBn+qTqDkFxcTSh\n5fbbaU9EualVVnHp0YNGXnz0kX/Pl1ofd9FznXz5cvr3jwiivan+8AfgN7+hnvk333CQM/1R/dfJ\nYgHuuou+1jY0yHtstUastBTI6BV3e3R6o9cgdzpplcM779S6Je3Nm0c7xzzzDAc50x9N+kVPPUUT\nW+bPl/e4ao1YaWnyZGD9etrdR4rKSirJ+DIRqK2hQ6mMFGS763kkBM2snDtX3W9NUixYADz3HI1I\nYkxPNAnyTp2At96i3pkvU6Z9pXZpBaAJLenptJ6HFK6yij8lBj2uhLh8OXDwoPwf3nIyGIBHHqEP\nSsb0RLNKZUwMDUObPVueqe5CaFNaAYDp06WXV/ytj7vo6YJneTkFpN0u/2YfjDENgxygzYwffpjG\nmNfWBnasykraKkzNKd8umZnA6tXS/h/8rY+76KVOLgRdE/n974G0NK1bw1ho0nzswKOPUvgGupy5\nFmUVl/79abVFb4sxudTVATt2UBj7Sy8rIS5bBvzwA227xhhThuZBHhFBX7nffz+wtUu0Kqu4SBm9\nsmsXTeqRMhGorcsuo9cumFdCLCmhndTtdppHwBhThtcgnzNnDoxGI4YNG9Z0X1VVFcxmMxITE2Gx\nWFAd4PCJqChale63vwWKi/07hhYjVlqaOpVWQ/RlSGWg9XGALswFc3mlsRGYM4e+cfHFQ8aU5TXI\nZ8+ejXXr1rW6z2azwWw2o6ioCBkZGbDZbAE3ZMQImi49dizw+uvSx5hrWVoBaKp9v36el0d1CbQ+\n7iLXkrbnz9OGHHJaupSO++ij8h6XMdae1yAfO3Ys+vTp0+q+/Px8WK1WAIDVakWeHAtzg3rk+fnA\nv/9NF8bWr/f9uVqXVgDfR6/4OzW/rVGjAh+5Ul8PjB9PM1QrKgJvE0CbbuTk0PDSTp3kOSZjzD2/\nauROpxNGoxEAYDQa4XQ6ZWtQejrw2WcUBPfeS0uN7t/v+TnHj9OIkX79ZGuGX1x1ck8XIJ1O4ORJ\nICkp8PONGBH4SojPP087zlss8gxpbGgAfv1r4Mkn5fl/ZIx553XzZW8MBgMMHra3ycnJafqzyWSC\nyWTy4ZgUir/8JfDKK7TAUlYWhXt0dPvH799PZRVfdtlR0pAhQJcutNZ2enrHj9myhXrScqw10rMn\n8POf00JUV10l/fl799JMxm++oeOkptIH53PP0ZZo/njxReqF33+/f89nLBw5HA44AllNUPjg0KFD\nYujQoU1/T0pKEhUVFUIIIY4ePSqSkpI6fJ6Ph/fq+HEh7r9fiL59hXjmGSHOn2/98//3/4SYM0eW\nUwUsO1uIxx93//N584TIyZHvfLNnC7F0qfTn1dUJkZ4uxKuvtr5/714hBg6k17u2Vtox9+0T4mc/\nE6K4WHp7GGPNpGanX/3CKVOmwG63AwDsdjsyMzP9/yTxQd++QG4uXUjcvJl636tWNZcwtB6x0pJr\njXJ35RW56uMu/l7wfOYZoE8f4O67W98/ZAiVV4qKaNOF48d9O159PfXi//IX4IorpLeHMRYAb0k/\nc+ZM0a9fPxEZGSni4uLEG2+8IU6cOCEyMjLEoEGDhNlsFidPnpTlU8VXGzYIkZoqxOjRQmzZIoTZ\nLMSaNYqcSrLGRiHi4qhn21ZtrRDdugnh5uXyy44dQgweLO05u3dTz/nwYfePqa+nbw/x8ULs3On9\nmH/9K/07NDZKawtjrD2p2Wn48UmKMBgMUOrwDQ20ie6f/kQzBw8cAOLjFTmVZA88QLX8J59sff/2\n7bSE69698p2rvp420ygv921Djbo6GsN+7700dd6blStpve6XX6Z9Vzuyaxet5b1jB01UYowFRmp2\naj6z01+dOtHoiKIi4O236WJdsHA3DFGu8eMtde5MQzV9XQlx8WL6kJk717fHz5xJKzvOm0ezNNuO\n76+tpZLKM89wiDOmFd0GuUu3brQhgNYjVlq65hrqIR861Pp+uevjLr7WyXfvpmsNr78u7fVyfVBs\n3Urrr7ecyPvXv1KA//rXkpvNGJOJ7oM8GHXqBNx8c/teuRxT8zviy1T9ujoK22eeoS33pIqOpp75\noEH0wbF/Pw1bfPVV4B//CK4PUsbCDQe5QtouovXDD8CJE8osI+DLSoiLFtGEqUB6zpGR1KN//HGa\nCZqVBbzwgvYTsRgLdwFPCGIdmzCB9iWtqKCg27pVvolAbV1+OfWIS0s7vlawcyddrCwslKfnPHs2\nDVP85BP6f2SMaYt75Aq55BKaJelahkap+jjgeSXE2lrqhT/7LHDppfKdc9Qo4M9/5pIKY8GAg1xB\nLUevKFUfd3F3wfPpp+liZDDuXM8Yk4dux5HrQU0NlVUOHKBlbktLaTalEgoKaC2aL75ovm/HDuCG\nG6i00r+/MudljMlPanZykCts+nTqEX/yCS21q5RTpyisq6vpomRtLS3c9dhjwB13KHdexpj8wmZC\nkF5Mm0abLChVH3fp1at5JUSA1jwZMAC4/XZlz8sY0x6PWlHYTTfRf5Wsj7u4NppobKSx3Tt38sVI\nxsIB98gV1rs38NRTwKRJyp9r5Ejg889plAqP72YsfHCNPITs2AFcfTWQmUmjZbg3zpg+8cXOMFZX\nB8yYQdPmY2O1bg1jzF8c5IwxpnOqjlpZt24dBg8ejEGDBmHx4sWBHIoxxpif/A7yhoYG3HfffVi3\nbh327duHFStWYL+37e7DWEAbq4YYfi2a8WvRjF8L//kd5Nu2bcPAgQMRHx+PyMhIzJw5Ex988IGc\nbQsp/CZtxq9FM34tmvFr4T+/g7y8vByXtdgSJi4uDuXl5bI0ijHGmO/8DnIDj21jjLHg4O8uz1u2\nbBETJ05s+vvChQuFzWZr9ZiEhAQBgG984xvf+CbhlpCQICmP/R5+WF9fj6SkJHz66afo378/Ro4c\niRUrVuBKJbbAYYwx5pbfa6107twZL7/8MiZOnIiGhgbMnTuXQ5wxxjSg6IQgxhhjylNk0SyeKNQs\nPj4ew4cPR1paGkaOHKl1c1Q1Z84cGI1GDBs2rOm+qqoqmM1mJCYmwmKxoLq6WsMWqqej1yInJwdx\ncXFIS0tDWloa1q1bp2EL1VNWVobx48cjOTkZQ4cOxZIlSwCE53vD3Wsh+b3h78VOd+rr60VCQoI4\ndOiQqK2tFSkpKWLfvn1yn0Y34uPjxYkTJ7RuhiY+//xzsWPHDjF06NCm+/74xz+KxYsXCyGEsNls\nYt68eVo1T1UdvRY5OTni+eef17BV2qioqBCFhYVCCCHOnDkjEhMTxb59+8LyveHutZD63pC9R84T\nhdoTYVq9Gjt2LPq02dsuPz8fVqsVAGC1WpHn2p06xHX0WgDh+d6IjY1FamoqAKB79+648sorUV5e\nHpbvDXevBSDtvSF7kPNEodYMBgOuv/56pKen47XXXtO6OZpzOp0wGo0AAKPRCKfTqXGLtPXSSy8h\nJSUFc+fODYtSQlslJSUoLCzEqFGjwv694XotfvHjLjRS3huyBzlPFGpt8+bNKCwsxNq1a/HKK69g\n06ZNWjcpaBgMhrB+v9x77704dOgQdu7ciX79+uGRRx7RukmqOnv2LKZPn47c3Fz06NGj1c/C7b1x\n9uxZzJgxA7m5uejevbvk94bsQX7ppZeirKys6e9lZWWIi4uT+zS60e/HbXqio6MxdepUbNu2TeMW\nactoNKKyshIAUFFRgZiYGI1bpJ2YmJimwLrrrrvC6r1RV1eH6dOnY9asWcjMzAQQvu8N12txxx13\nNL0WUt8bsgd5eno6Dhw4gJKSEtTW1uI///kPpkyZIvdpdKGmpgZnzpwBAJw7dw6ffPJJq1EL4WjK\nlCmw2+0AALvd3vTGDUcVFRVNf37//ffD5r0hhMDcuXMxZMgQPPjgg033h+N7w91rIfm9ocCFWLFm\nzRqRmJgoEhISxMKFC5U4hS4cPHhQpKSkiJSUFJGcnBx2r8XMmTNFv379RGRkpIiLixNvvPGGOHHi\nhMjIyBCDBg0SZrNZnDx5UutmqqLta7Fs2TIxa9YsMWzYMDF8+HBx8803i8rKSq2bqYpNmzYJg8Eg\nUlJSRGpqqkhNTRVr164Ny/dGR6/FmjVrJL83eEIQY4zpnCITghhjjKmHg5wxxnSOg5wxxnSOg5wx\nxnSOg5wxxnSOg5wxxnSOg5wxxnSOg5wxxnTu/wMLlLTdBtVHggAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11b213510>" | |
} | |
], | |
"prompt_number": 115 | |
}, | |
{ | |
"cell_type": "heading", | |
"level": 5, | |
"metadata": {}, | |
"source": "Inbound or Outbound Distribution For Communities" | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "inn=[]\nouut=[]\nfor x in all_comm:\n temp=data_310[data_310.community_id==x][['direction']].values\n ln=len(data_310[data_310.community_id==x][['direction']])\n i=0.0\n o=0.0\n for j in temp:\n if j==\"in\":\n i+=1\n elif j==\"out\":\n o+=1\n inn.append((i/ln)*100)\n ouut.append((o/ln)*100)\n print x, (i/ln)*100, (o/ln)*100, ln", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 501 20.4409297867 79.5231248502 8346\n11 19.0566037736 80.9433962264 2120\n19" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 18.1654676259 81.8345323741 1112\n295 23.6662106703 75.3761969904 731\n29 18.8544152745 80.4295942721 419\n297 23.4615384615 76.5384615385 260\n27 29.8387096774 70.1612903226 248\n322" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 13.8528138528 86.1471861472 231\n12 18.7817258883 81.2182741117 197\n308 13.3858267717 86.6141732283 127\n14 18.75 81.25 112\n306 30.1886792453 69.8113207547 106\n305 14.4329896907 85.5670103093 97\n313 20.9302325581 79.0697674419 86\n6 23.5294117647 76.4705882353 85\n455 18.6666666667 78.6666666667 75\n473 27.1428571429 72.8571428571 70\n719" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 22.0588235294 73.5294117647 68\n779 20.0 80.0 60\n294 18.9655172414 81.0344827586 58\n4 26.4150943396 73.5849056604 53\n30 35.8490566038 64.1509433962 53\n351 9.61538461538 90.3846153846 52\n28 46.9387755102 53.0612244898 49\n465 52.2727272727 40.9090909091 44\n352 33.3333333333 66.6666666667 42\n502 61.9047619048 38.0952380952 42\n1030 2.5641025641 97.4358974359 39\n402" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 34.2105263158 65.7894736842 38\n528 7.89473684211 92.1052631579 38\n731 76.4705882353 23.5294117647 34\n31 23.3333333333 76.6666666667 30\n445 20.0 80.0 30\n551 25.9259259259 70.3703703704 27\n296 57.6923076923 42.3076923077 26\n321 16.0 84.0 25\n314 12.5 87.5 24\n515 62.5 37.5 24\n570 20.8333333333 79.1666666667 24\n516 0.0 100.0 23\n703" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 18.1818181818 81.8181818182 22\n566 33.3333333333 66.6666666667 21\n639 38.0952380952 57.1428571429 21\n894 23.8095238095 76.1904761905 21\n299 35.0 65.0 20\n312 52.9411764706 47.0588235294 17\n413 0.0 100.0 16\n571 0.0 75.0 16\n788 31.25 56.25 16\n872 6.25 81.25 16\n360 40.0 60.0 15\n844 46.6666666667 46.6666666667 15\n947" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 20.0 66.6666666667 15\n587 42.8571428571 57.1428571429 14\n747 14.2857142857 85.7142857143 14\n934 14.2857142857 64.2857142857 14\n9 15.3846153846 84.6153846154 13\n491 15.3846153846 84.6153846154 13\n483 25.0 75.0 12\n539 0.0 100.0 12\n798 0.0 100.0 12\n334 27.2727272727 72.7272727273 11\n557 9.09090909091 72.7272727273 11\n648 0.0 100.0 11\n840 54.5454545455 45.4545454545 11\n1016" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 18.1818181818 81.8181818182 11\n18 40.0 60.0 10\n388 0.0 100.0 10\n537 10.0 90.0 10\n565 60.0 40.0 10\n649 10.0 90.0 10\n725 30.0 70.0 10\n732 10.0 90.0 10\n807 0.0 100.0 10\n922 50.0 50.0 10\n969 100.0 0.0 10\n316 66.6666666667 33.3333333333 9\n781 44.4444444444 55.5555555556 9\n8" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 25.0 75.0 8\n309 37.5 62.5 8\n327 12.5 87.5 8\n723 37.5 62.5 8\n828 0.0 100.0 8\n1001 0.0 100.0 8\n311 57.1428571429 42.8571428571 7\n361 28.5714285714 71.4285714286 7\n422 42.8571428571 57.1428571429 7\n467 14.2857142857 85.7142857143 7\n482 28.5714285714 71.4285714286 7\n531 57.1428571429 42.8571428571 7\n662" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 42.8571428571 57.1428571429 7\n956 14.2857142857 85.7142857143 7\n461 33.3333333333 66.6666666667 6\n478 66.6666666667 33.3333333333 6\n745 33.3333333333 66.6666666667 6\n916 16.6666666667 83.3333333333 6\n946 0.0 100.0 6\n961 16.6666666667 66.6666666667 6\n326 20.0 80.0 5\n359 40.0 60.0 5\n364 40.0 60.0 5\n366 20.0 80.0 5\n398" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 60.0 40.0 5\n399 0.0 100.0 5\n470 100.0 0.0 5\n476 20.0 80.0 5\n535 20.0 80.0 5\n583 40.0 60.0 5\n711 0.0 100.0 5\n759 40.0 60.0 5\n803 20.0 80.0 5\n908 0.0 100.0 5\n909 0.0 100.0 5\n920 0.0 100.0 5\n#N/A" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 60.0 40.0 5\n301 75.0 25.0 4\n303 50.0 50.0 4\n310 25.0 75.0 4\n323 50.0 50.0 4\n513 25.0 75.0 4\n532 25.0 75.0 4\n588 25.0 75.0 4\n658 0.0 100.0 4\n686 0.0 100.0 4\n695 25.0 75.0 4\n841" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 75.0 25.0 4\n903 50.0 50.0 4\n915 0.0 75.0 4\n995 25.0 75.0 4\n1009 25.0 75.0 4\n307 66.6666666667 33.3333333333 3\n346 66.6666666667 33.3333333333 3\n390 66.6666666667 33.3333333333 3\n400 0.0 100.0 3\n439 66.6666666667 33.3333333333 3\n446 33.3333333333 66.6666666667 3\n450 33.3333333333 66.6666666667 3\n451" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 66.6666666667 33.3333333333 3\n474 33.3333333333 66.6666666667 3\n486 33.3333333333 66.6666666667 3\n495 0.0 100.0 3\n496 0.0 100.0 3\n505 33.3333333333 66.6666666667 3\n511 33.3333333333 66.6666666667 3\n563 33.3333333333 66.6666666667 3\n569 33.3333333333 66.6666666667 3\n576 33.3333333333 66.6666666667 3\n598 0.0 100.0 3\n623" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 3\n634 33.3333333333 66.6666666667 3\n653 0.0 100.0 3\n659 0.0 100.0 3\n667 33.3333333333 66.6666666667 3\n674 0.0 100.0 3\n694 33.3333333333 66.6666666667 3\n717 0.0 100.0 3\n829 66.6666666667 33.3333333333 3\n835 33.3333333333 66.6666666667 3\n848 100.0 0.0 3\n881" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 33.3333333333 66.6666666667 3\n943 66.6666666667 33.3333333333 3\n994 0.0 100.0 3\n1002 0.0 100.0 3\n1036 0.0 100.0 3\n300 50.0 50.0 2\n332 0.0 100.0 2\n341 50.0 50.0 2\n342 0.0 100.0 2\n348 50.0 50.0 2\n357 50.0 50.0 2\n362" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 50.0 50.0 2\n370 50.0 50.0 2\n372 0.0 100.0 2\n380 50.0 50.0 2\n391 50.0 50.0 2\n395 0.0 100.0 2\n397 50.0 50.0 2\n404 0.0 100.0 2\n412 100.0 0.0 2\n418 50.0 50.0 2\n430 50.0 50.0 2\n443 100.0 0.0 2\n453 50.0 50.0 2\n454" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 50.0 50.0 2\n463 0.0 100.0 2\n469 100.0 0.0 2\n517 50.0 50.0 2\n518 0.0 100.0 2\n541 50.0 50.0 2\n544 0.0 100.0 2\n568 0.0 100.0 2\n577 0.0 100.0 2\n591 50.0 50.0 2\n599 50.0 50.0 2\n637 0.0 100.0 2\n688" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 2\n697 0.0 100.0 2\n700 50.0 50.0 2\n714 50.0 50.0 2\n733 0.0 100.0 2\n734 50.0 50.0 2\n736 0.0 100.0 2\n748 0.0 100.0 2\n770 50.0 50.0 2\n786 50.0 50.0 2\n787 0.0 100.0 2\n789 0.0 100.0 2\n802" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 50.0 50.0 2\n808 0.0 100.0 2\n810 50.0 50.0 2\n813 50.0 50.0 2\n820 0.0 100.0 2\n869 50.0 50.0 2\n877 100.0 0.0 2\n884 50.0 50.0 2\n902 0.0 100.0 2\n930 0.0 100.0 2\n933 50.0 50.0 2\n938 50.0 0.0 2\n940" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 50.0 50.0 2\n985 50.0 50.0 2\n1018 100.0 0.0 2\n1023 0.0 100.0 2\n1037 50.0 50.0 2\n16 0.0 100.0 1\n315 0.0 100.0 1\n343 0.0 100.0 1\n345 0.0 100.0 1\n363 100.0 0.0 1\n373 0.0 100.0 1\n374 100.0 0.0 1\n379" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n409 0.0 100.0 1\n410 0.0 100.0 1\n417 0.0 100.0 1\n425 0.0 100.0 1\n432 0.0 100.0 1\n434 100.0 0.0 1\n435 0.0 100.0 1\n436 100.0 0.0 1\n438 0.0 100.0 1\n447 100.0 0.0 1\n448 100.0 0.0 1\n457 100.0 0.0 1\n460" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n462 100.0 0.0 1\n472 0.0 100.0 1\n477 100.0 0.0 1\n481 0.0 100.0 1\n488 0.0 100.0 1\n499 0.0 100.0 1\n507 100.0 0.0 1\n508 0.0 100.0 1\n509 100.0 0.0 1\n510 0.0 100.0 1\n514 100.0 0.0 1\n525 0.0 100.0 1\n547" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n556 0.0 100.0 1\n578 0.0 100.0 1\n580 0.0 100.0 1\n581 0.0 100.0 1\n584 0.0 100.0 1\n592 100.0 0.0 1\n594 0.0 100.0 1\n600 0.0 100.0 1\n608 0.0 100.0 1\n622 0.0 100.0 1\n626 0.0 100.0 1\n628 0.0 100.0 1\n631" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n635 0.0 100.0 1\n638 0.0 100.0 1\n647 0.0 100.0 1\n670 0.0 100.0 1\n671 0.0 100.0 1\n672 0.0 100.0 1\n676 0.0 100.0 1\n679 0.0 100.0 1\n680 0.0 100.0 1\n681 0.0 100.0 1\n682 0.0 100.0 1\n689 100.0 0.0 1\n690 100.0 0.0 1\n698" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n705 0.0 100.0 1\n715 0.0 100.0 1\n716 0.0 100.0 1\n718 0.0 100.0 1\n722 0.0 100.0 1\n726 100.0 0.0 1\n729 0.0 100.0 1\n738 0.0 100.0 1\n740 100.0 0.0 1\n750 0.0 100.0 1\n751 0.0 100.0 1\n752 0.0 100.0 1\n760" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n763 0.0 100.0 1\n771 0.0 100.0 1\n773 0.0 100.0 1\n777 0.0 100.0 1\n782 0.0 100.0 1\n784 0.0 100.0 1\n800 0.0 100.0 1\n801 100.0 0.0 1\n806 0.0 100.0 1\n809 0.0 100.0 1\n812 0.0 100.0 1\n814" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 1\n819 0.0 100.0 1\n822 0.0 100.0 1\n824 100.0 0.0 1\n826 0.0 100.0 1\n827 0.0 100.0 1\n830 0.0 100.0 1\n833 100.0 0.0 1\n834 0.0 100.0 1\n837 0.0 100.0 1\n857 100.0 0.0 1\n858" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n860 0.0 100.0 1\n863 0.0 100.0 1\n873 0.0 100.0 1\n887 0.0 100.0 1\n896 0.0 100.0 1\n897 0.0 100.0 1\n898 100.0 0.0 1\n900 0.0 100.0 1\n907 0.0 100.0 1\n911 0.0 100.0 1\n917" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n921 0.0 100.0 1\n925 0.0 100.0 1\n928 100.0 0.0 1\n936 0.0 100.0 1\n966 0.0 0.0 1\n967 0.0 100.0 1\n968 0.0 100.0 1\n970 0.0 100.0 1\n976 0.0 100.0 1\n977 0.0 100.0 1\n980 0.0 100.0 1\n987" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 1\n988 0.0 100.0 1\n991 0.0 100.0 1\n1003 0.0 100.0 1\n1004 0.0 100.0 1\n1007 0.0 100.0 1\n1011 0.0 100.0 1\n1014 0.0 100.0 1\n1015 0.0 100.0 1\n1028 0.0 100.0 1\n1033 0.0 100.0 1\n" | |
} | |
], | |
"prompt_number": 97 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions are inward for top 25 communities per volume\"\nplt.plot(inn[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions are inward for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl0VFW2BvCvGERB5qECIkajIRBCEkUQUDuICT58zIqo\n0JFBfajPGQFbH1kOULQjAtoqiAEVRW0jtoBAayGoiAo0ICAqYU4iEEKYQ5L9/tiGQEgqNdxbt27V\n91urVpPKrXNPlze7Tu27zzkOEREQEZFt1bC6A0REFBgGciIim2MgJyKyOQZyIiKbYyAnIrI5BnIi\nIpvzKpAXFBTgpptuQrt27dC+fXt8//33yM/PR2pqKmJjY5GWloaCggKz+0pERJXwKpA/8MAD6N27\nNzZt2oR169YhLi4OLpcLqamp2LJlC3r27AmXy2V2X4mIqBKO6iYEHTx4EMnJydi6desZz8fFxWHZ\nsmVwOp3Izc1FSkoKNm/ebGpniYjobNWOyLOzs9G8eXMMHz4cl19+Oe68804cOXIEeXl5cDqdAACn\n04m8vDzTO0tERGerNpAXFxdj9erVuOeee7B69WrUq1fvrDSKw+GAw+EwrZNEROSBVCMnJ0eio6NP\n/bx8+XLp3bu3xMXFSU5OjoiI7NmzR9q2bXvWa2NiYgQAH3zwwQcfPjxiYmKqC81nqHZEHhUVhQsv\nvBBbtmwBACxduhTx8fHo06cPMjMzAQCZmZno37//Wa/9/fffISJ8iGDChAmW9yFUHnwv+F7wvfD8\n+P3336sLzWeo5c1BU6dOxe23346ioiLExMRg1qxZKCkpweDBgzFz5kxER0dj3rx5Pp2YiIiM4VUg\nT0xMxA8//HDW80uXLjW8Q0RE5BvO7AySlJQUq7sQMvhelON7UY7vhf+qrSMPqHGHAyY2T0QUlnyN\nnRyRExHZHAM5EZHNMZATEdkcAzkRkc0xkBMR2RwDORGRzTGQExHZHAM5EZHNMZATEdkcAzkRkc0x\nkBMR2RwDORGRzTGQExHZHAM5EZHNMZATEdkcAzkRkc0xkBMR2RwDORGRzTGQExHZHAM5EZHNMZAT\nEdkcAzkRkQmOHwf27AnOuRwiIqY17nDAxOaJiELWY48Be/cCs2b5/lpfY2ct309BRESefPstMGcO\nsG5dcM7H1AoRkYGOHgXuuAN49VWgefPgnJOpFSIiAz3wALBvH/Duu/63YUpqJTo6Gg0aNEDNmjVR\nu3ZtrFq1Cvn5+bjllluwfft2REdHY968eWjUqJHfHScisju3G/joI2D9+uCe16vUisPhgNvtxpo1\na7Bq1SoAgMvlQmpqKrZs2YKePXvC5XKZ2lEiolB2+DAwYgTw+utAkybBPbdXqZWLL74YP/74I5o2\nbXrqubi4OCxbtgxOpxO5ublISUnB5s2bz2ycqRUiihCjR2vJoT9VKhX5Gju9CuSXXHIJGjZsiJo1\na+Luu+/GnXfeicaNG+PAgQMAABFBkyZNTv3sb2eIiOxoyRJg5EhNqTRsGHh7puTIv/nmG7Rs2RJ7\n9+5Famoq4uLizjqpw+HwradERGHg4EEN4jNmGBPE/eFVIG/ZsiUAoHnz5hgwYABWrVp1KqUSFRWF\nnJwctGjRotLXZmRknPp3SkoKUlJSAu40EVGoeOghoHdvIC3N/zbcbjfcbrffr682tXL06FGUlJSg\nfv36OHLkCNLS0jBhwgQsXboUTZs2xdixY+FyuVBQUHDWDU+mVogonH3+OXDffTrxp35949o1PEee\nnZ2NAQMGAACKi4tx++23Y/z48cjPz8fgwYOxY8eOKssPGciJKFzl5wMdO+oMzh49jG3blJudweoM\nEZFdDB2qZYavvGJ821xrhYjIZJ98Anz/PbB2rdU9URyRExH5YO9eTal89BHQvbs552BqhYjIRIMH\nA23aAM8/b945mFohIjLJBx/opJ/MTKt7ciaOyImIvJCbCyQmAp99BnTubO65mFohIjKYCNC/PxAf\nD0ycaP75mFohIjLYO+8A2dnAvHlW96Ry3CGIiKgaM2YAkyYBdepY3ZPKMZATEVUjJweIibG6F1Vj\nICciqkZODvDn2oEhiYGciMiDw4eBkhKgQQOre1I1BnIiIg9yc4GoKCCUt1xgICci8iDU0yoAAzkR\nkUcM5ERENpeTo6mVUMZATkTkQW4uR+RERLbG1AoRkc0xkBMR2VxZ+WEoYyAnIvLADiNyLmNLRFSF\nkyeBunWB48eBmjWDd15fYydH5EREVfjjD6BZs+AGcX8wkBMRVcEOaRWAgZyIqEoM5ERENmeHihWA\ngZyIqEockRMR2RwDORGRzdlhwSyAgZyIqEp2WDAL8DKQl5SUIDk5GX369AEA5OfnIzU1FbGxsUhL\nS0NBQYGpnSQiskJYpVamTJmC9u3bw/HnXkculwupqanYsmULevbsCZfLZWoniYiCTSSMqlZ27dqF\nBQsWYNSoUaemjM6fPx/p6ekAgPT0dGRlZZnbSyKiIDtwADjvPH2EumoD+UMPPYTnnnsONWqUH5qX\nlwen0wkAcDqdyMvLM6+HREQWsEtaBQBqefrlv/71L7Ro0QLJyclwu92VHuNwOE6lXCqTkZFx6t8p\nKSlISUnxp59EREEVzEDudrurjLHe8Lj64eOPP445c+agVq1aOH78OAoLCzFw4ED88MMPcLvdiIqK\nQk5ODnr06IHNmzef3ThXPyQim3rnHWDBAuC994J/bkNXP5w4cSJ27tyJ7OxsvP/++7juuuswZ84c\n9O3bF5mZmQCAzMxM9O/fP7BeExGFGDulVnyqIy9LoYwbNw5LlixBbGwsvvzyS4wbN86UzhERWcVO\ngZwbSxARVeK224DevYGhQ4N/bm4sQURkADuNyBnIiYgqwUBORGRzDORERDZ29Chw4gTQqJHVPfEO\nAzkRUQVla6x4mOsYUhjIiYgqsFNaBWAgJyI6i11WPSzDQE5EVAFH5ERENsdATkQUBKWluvmDGZha\nISIKgrFjgcmTzWmbI3IiIpOdOAG89RawYYM57TOQExGZ7LPPtMb7t9/MaT83l4GciMhUb70FjBsH\n/P678W2XlAD79gEtWhjftlkYyInIVnbvBlauBEaPBo4dAwoLjW3/jz+AJk2AWh43wgwtDOREZCuz\nZwM33wzUqwdcconxo3K75ccBBnIishERTasMH64/x8QYH8jtVnoIMJATkY2sWAHUrg106aI/X3op\nR+QAAzkR2cisWcCIEeWrEpoxImcgJyIyyaFDwCefAMOGlT8XE2N8CSJTK0REJvnwQ+DaawGns/w5\njsgVAzkR2UJZWuV0bdroCPrECePOw0BORGSCLVuAX38Fevc+8/latYALLwS2bTPuXHab1QkwkBOR\nDcyaBQwdqhUrFRmZXhHREbndcuQ2mrtERJGouFgnAS1eXPnvjSxBPHhQPyzq1TOmvWDhiJyIQtri\nxZo+iY+v/PdGjsjtmFYBGMiJKMSdPpOzMkaWINoxrQIwkBNRCNu3D1i6FBgypOpjjByR27FiBagm\nkB8/fhxdunRBUlIS2rdvj/HjxwMA8vPzkZqaitjYWKSlpaGgoCAonSWiyPLuu0CfPkDDhlUfc8kl\nWrVSWhr4+cIykJ977rn46quvsHbtWqxbtw5fffUVVqxYAZfLhdTUVGzZsgU9e/aEy+UKVn+JKEKI\nADNnek6rAEDdukDjxrq8baDsOKsT8CK1UrduXQBAUVERSkpK0LhxY8yfPx/p6ekAgPT0dGRlZZnb\nSyKKOKtX67T8lJTqjzUqvRKWI3IAKC0tRVJSEpxOJ3r06IH4+Hjk5eXB+ec8WafTiby8PNM7SpHr\n1Vd1o12KLLNm6Wi8hhd38iI9kFdbR16jRg2sXbsWBw8eRK9evfDVV1+d8XuHwwFH2VJklcjIyDj1\n75SUFKR48/FK+PZbYMcOzzd5IsW77wKHD5u3YzqFnuPHgblzdVTuDaNqya0qP3S73XC73X6/3iEi\n4u3BTz/9NM477zzMmDEDbrcbUVFRyMnJQY8ePbB58+azG3c44EPz9KeTJ4GOHfUGz8qVVvfGWrm5\nQLt2+p7s2QM0aGB1jygY3n9f8+NLlnh3/Ny5QFYW8MEHgZ23SRNdDqBZs8DaCZSvsdPjl5Z9+/ad\nqkg5duwYlixZguTkZPTt2xeZmZkAgMzMTPTv3z+ALlNFr7+uG7+uX697Ekay+fOBG24ALr+cH2qR\npLIFsjwxopb8+HHgyBGgadPA2rGCxxH5+vXrkZ6ejtLSUpSWlmLYsGEYM2YM8vPzMXjwYOzYsQPR\n0dGYN28eGjVqdHbjHJH77MABIC5Oa2dHjABeegm4+mqre2Wd3r2BO+4A1qwB6tQBTsvUUZjasQNI\nTgZ27QLOO8+71+zfr8H8wIHyTSd8tX07cM01en6r+Ro7PebIExISsLqSJFWTJk2wdOlS33tH1Xrm\nGaB/fyAhAejaFfjuu8gN5IWFurXX++/rH/Qrr1jdIwqGzEzgllu8D+KApkQAID/f/xG1XWd1Alw0\nK6T89ptexD//rD936xZ4zs/OFi7UEVKDBvqhdvvtQEkJULOm1T0js5SWAm+/7ft173CUV64EEsjt\nWLECcIp+SHnsMeDRR8t3QOnWTatXIjU79cknwIAB+u9mzYBWrfS+AYWvr7/WlQevuML31wZagmjX\nBbMABvKQ4XZrHvjBB8ufu/BCXTg/O9uyblnmxAlg0SKdnl2me3f9YKPwVbZAlj957kADuZ1TKwzk\nIaC0FHj4YcDlAs49t/x5h6N8VB5pvvxS7xOcvj9jt27AN99Y1ycyV2GhVikNHerf6wOtJWdqhQIy\ne7YG8MGDz/5dpAbyTz7Rm76n44g8vH3wAdCzJ9C8uX+vD7QEkakV8tuRI8ATT2iZYWVfJ8sqVyJJ\nSYmOzCoG8thYHbXt2WNNv0LBV18BH39sdS/MUd2649VhaoUs8/e/A3/5C9ClS+W/T07WmWaHDgW3\nX1ZauVInRMXEnPl8jRqR+w0F0JveY8ZoXf2mTVb3xlibNmkd9w03+N/GBRdoHfnRo/69nqkV8suu\nXcC0acCkSVUfU6eOBvNVq4LXL6tlZZVXq1QUyXnylSuBggLgueeA227TG8LhYtYs4K9/1Zv7/qpR\nA4iOBrZu9f21JSXA3r1n3pOxEwZyCz3+ODB6NNCmjefjIim9IlJ5frxMJOfJp04F7r0XuPtu4KKL\ngCeftLpHxjh2TO8TBZJWKeNvemX/fl3b6JxzAu+DFRjILfLjjzoN35vlWSMpnbBhg+6anpRU+e87\nddJj/P36bFc5OTpBqqw0b8YMXRWywmKktjRzpqYW27YNvC1/A7md8+MAA7klRICHHgKefhqoX7/6\n47t21a/VRmxlFerK0ipV1RHXrQt06KAfhJHkjTd02nrZkkbNmunNwfR0zQvbVVGR3if629+MaS+Q\nQG7X/DjAQG6Jf/5Tb17ecYd3x0dF6R/wL7+Y2q2Q4CmtUibS8uRFRboi5n33nfl8r176oXf33fad\n/Ttnji5T3LmzMe1deql/JYh2Lj0EGMiD7sQJnYr/wgu+rRkSCemV7duBnTs1D+5JpOXJP/5YV8Ts\n0OHs302erBUfs2cHv1+BKi7WG/1GjcYBplYoSKZOBeLjdeKDLyIhkGdl6ZT86ioXyt6LSEg1AVrZ\nVHE0XubcczVX/uij/lVrWGnePF0/59prjWszOloHA8XFvr2OqRXy2t69OoJ67jnfXxsJlSueyg5P\n16qVroi4ZYv5fbLa6tVaptq3b9XHdOyoFVBDh/oewKxSWgo8+6xOhjNSnTo6svZ1TXGmVshrGRla\n/+vP3fmEBB1p5Ocb3q2QsG+fBq3rr/fu+EjJk0+dqiWq1X1LeeABXTVw4sTg9CtQWVl64zo11fi2\n/UmvMLVCXtm4EfjwQ2DCBP9eX6uW3hAK1+3OPvtM/6i93UwgEvLk+/ZpwBs1qvpja9TQtexffTX0\nrxER3UDliSf8383HE38DOUfkVK1HH9Wvv2U7mfgjnNMrWVnVV6ucLhJG5DNm6Hvi7UbArVoBr72m\nKZZQXtJh0SJNAZ2+RLGR/AnkTK3Y1JtvahlgMHzxhZZE3XNPYO2E6w3PI0d0YsuNN3r/moQEXTxr\n3z7z+uWtkyeB3buNbbO4WEfX//u/vr1uwAAgJUVTLaFIROdP/O1v+i3CDL6uglj2oefNnI5QFZGB\nfMMGYPx4rb/duNHccxUW6h/j888HPv33qquAH36wzw0tb33xhc7sa9zY+9fUrKmvsfobym+/6Qds\nQoKxm/bOn68bi1x+ue+vffllYPly4KOPjOuPUdxunQ5/003mncPXdcntnh8HIjCQFxfr7vSTJulj\n8GDzpnuL6JTq667zXHXgrSZNdIW3DRsCbyuUnL6lmy+szJOLaO12167AsGG61MKtt+ro3AjTpvk+\nGi9z/vlaknjvvVrxEkqefVYHUWbuuxoTo6WY3k6Ssnt+HIjAQP7yy/oVatQoYORIXdPD3z+Y6jz/\nvFaaTJliXJvhll45eRL4/HOgXz/fX2tVnrywUPPQLpeul3P//bq8bP36/t/MPt2GDcDmzcDAgf63\n0bmzXtd33BE69fbffaffYG6/3dzzNGigN83z8rw73u75cSDCAvmWLfrH9+aberfc4dCbQytW6FRh\nI335pc7e/OgjrW01SrgF8mXLgMsu028avrrqKi1ZLCoyvl9VWblSlxWuX1/Xe0lM1Odr1NAR+uzZ\nwOLFgZ1j2jRN+wWaihs/Hjh+XDctCQXPPguMGwfUrm3+uXy54RkOqRWIiUxu3iclJSLXXCPy8stn\n/+4//xFp1kxk0yZjzrVzp0hUlMjSpca0d7qffxa55BLj27XKPfeITJrk/+s7dhRZudK4/lSluFjk\n2WdFWrQQ+fjjqo/78kuRli1FcnL8O09+vkijRv6/vqLsbJHmzUXWrDGmPX+tXi3SqpXIsWPBOd9t\nt4lkZnp37GOPiUycaG5/fOVr7IyYEflrr+ni8ZVNde7YUSdS3Hxz4PnyEyf0Rs4DD/g+Dd8bcXE6\nKSg31/i2g620FPj0U9/KDisKRp581y6dqLR4sY7CPaU8evQA7rpL0wclJb6f6+23gd69jRshRkcD\nL76o17aV3+QmTtQS3NM3FzeTLyNyplZsYts2nVU5c2bVN1lGjdLKg0DLth5+WOt5vVln3B81aoRP\nPfmPP2qKIi7O/zbMzpNnZQFXXKEfyv/+t1aSVOfJJzWIe9r5qTKlpcD06VWvq+Kv22/X6/+WW3Rm\nsZHVNd7YuBH4+mv9gAuWSEuthH0gF9EL6JFHPAcMh0OXCl22TO/4+2P2bL35NWuWOTPWyoRLIPd1\nElBlunfXQG70Mq7HjunU+Icf1n4+8YT3lRY1a+o1NH26lgF6a+FCXa74qqv863NVHA4N5ps36/2I\n5GS9KXvkiLHnqcqkSeVLCASLL7Xk4VC1EvY58rfeErn8cpGTJ707fu1azZdv3uzbedas0ddt2OB7\nH321dKlI9+7mn8dscXEi338fWBulpXo/YutWY/okIrJunUj79iK33ipSUOB/OwsWiLRuLbJ3r3fH\n9+ol8vbb/p/PW9u36/+3Cy4QmT1b7x+Z5bffRJo2Dex99EdOjv49eqNZM5G8PHP74ytfY2e1R+/Y\nsUNSUlKkffv2Eh8fL1OmTBERkf3798v1118vl112maSmpsqBAwcC7ozRdu/WGz1r1/r2un/8Q2+i\nHT3q3fH5+XoDcu5c3/voj8JCkbp1RU6cCM75zLBpk978MiKIDBok8s47gbcjou00a6YBtbQ08PbG\njBG58cbq2/rlF71Wg3UzUETkm29ErrxSpHNnkW+/Neccd94p8uST5rTtSWmpSL16IgcPej7uxAmR\n2rXN/TDzh+GBPCcnR9b8ecv70KFDEhsbKxs3bpQxY8bI5MmTRUTE5XLJ2LFjA+6MkUpLRfr29e8i\nKi0VueUWkbvuqv7YkhL9Q33wQd/PE4jExOBUa5hl0iStWDHCiy+KjB4deDt5eTp6XLcu8LbKFBWJ\ndOki8sILno+7/36R8eONO6+3Skp0VH7BBVrpsWOHcW3v2CHSpInIvn3GtemLhAStlvFkxw4dUIQa\nwwN5Rf369ZMlS5ZI27ZtJTc3V0Q02Ldt27bSzmzf7usZjDF3rkh8vMjx4/69/uBBkUsvFXnvPc/H\nPfWUyNVX6x9sMI0erQHMrjp3FlmyxJi2Vq7UD7ZA3XOPBlSjlZUAVpVGKiwUadzY2CDqq0OHdNDT\npInI//2fyOHDgbd5//0ijz4aeDv+6t9f5MMPPR+zapXIFVcEpz++MDWQZ2dnS5s2baSwsFAaNWp0\n6vnS0tIzfj69M02aiKSmirz/fvC+Nv7xh4jTGXj+dfVq/Zr9yy+V/37hQh3J7NkT2Hn8MXu2yE03\nBf+8Rti1SwOXUR9+J0549zXak82b9b+1t/lsX338scjFF1eeK54+XdNDoWD7dpEhQzS3P2eO/ymH\n3Fz9b2xUPbw/HnlExOXyfMynn4r8938Hpz++8DWQV7NcfbnDhw9j0KBBmDJlCupXWCbM4XDAUUWZ\nxujRGdi0SWeZ3XVXCtLTUzBihE6NN8v99+v6F4Fu6JqcDDz1lK7HsnLlmTWw2dm6g/nHH1tzx7tb\nN50lJ2JuhYwZPv1UVzo0aobfOefo4lLff+//RgVjx+peqt4uGeurgQN1tu+oUbrFWdl/MxGdyfnq\nq+ac11dt2gBz52ol0JgxwEMPATfcAPzXf+lmz02betfOiy9qpYyVZX0xMcCaNZ6PCZXSQ7fbDbfb\n7X8D3kT7oqIiSUtLk5deeunUc23btpWcPz9u9+zZU2Vq5XTZ2SITJoi0aSOSnCwybZreKDRSVpam\nRI4cMaa90lKRm28W+Z//KX/u6FHtf2WzRIOltFRnGVqVugpEaqrIRx8Z2+a4cXpt+cPtFrnoIvO/\nMR47JpKUJPLaa+XPLVki0qGDMTdWzbB9u97879dPpEEDkauu0nTiDz9UPVrfv19TNFZfm198IdKj\nh+djJkyw5mZsdbwMzeXHV3dAaWmpDBs2TB6scDdvzJgx4vrze8ukSZN8utlZUiKyeLF+hWvYUEuh\nliwJ/M5xfr7euFi2LLB2KiooEImJ0fRQaanIHXdo363+4+vXL3iVMkbJzxepX9+YHOzp5s/XDwhf\nlZSIdOpU/b0Qo/zyi6Zw/vMf/blvX5HXXw/OuQN1/Lj+nT78sJaOtmghkp6ufxenD8gmTBAZOdKq\nXpb77TcdNHpy990ir74anP74wvBAvnz5cnE4HJKYmChJSUmSlJQkCxculP3790vPnj0DLj/cv19k\n6lQdqVx0kcjYsSKLFunNF18NH25cJURFP/2kf4CPP64jKKMDkT8mTzbn5pyZ3nlHpE8f49vdu1dH\njMXFvr3u3Xe1BC+Y5WfvvCPStq3I+vVaJRMK15I/tm7V/P6NN+qHc/fuIs88o38nv/5qde907sg5\n53gueOjbV+Sf/wxen7xleCAPhK+d+eknkSee0MWt6tXTsq3HHhP5/PPqb2R98YV+EBQW+t/f6kyb\npsGiqpufwbZ8uY4mA/WvfxlbcufJwIE6ScsMbdv6Nmfg2DG9Zoz+BueN4cM1/fDww8E/txmOHdMB\n2P33i2RkWN2bcjExnif3XXmlyHffBa8/3vI1djr+fJEpHA4H/G3+2DG9wbhsmT5++AFo1063sfrL\nX4Crr9bpzIBu1ZSQALzxBpCWZlz/K1NYqOsdh4Jjx/Tm3N69uiO5PzZs0PcyKkpvDHm7+bE/VqzQ\nG8cbN5b/tzPSyJG6Loq3W+o995ze1MvKMr4v1TlyRNc9efll4OKLg3/+SNGrly4P0Lt35b9v00aX\nUbjoouD2qzq+xs6QDeQVHT8OrFqlW0UtW6YVCm3balDftUt3RXnrLUNOZStdumhAuvZa31979Chw\n5ZVarbFggV7Uzz1nfB8BDVxJSbrZhj+bSHhj5kzd+/Odd6o/dt8+HRisWKHXEYWne+7R/86VbR4j\nopVohYXG7hlgBF9jp9flh1Y791wNVmUB68QJHaUvW6bLur7wgrX9s0rZRhP+BPKHHtISy7/+VUcs\nHTtqmVzXrsb38/HH9UPHrCAO6AJazzzj3bFPP62rATKIhzdPqyDu368LeYVaEPeHbQJ5RXXqaErg\n6qut7om1unb1b7XGDz/UuubVq7WmuXlzrWcePtz4FMuyZbpT0vr1xrVZmdhYHV3t2aNLCVfl11/1\nPdu0ydz+kPViYvRbWmXCYR3yMmG/jG24KxuR+5LB2rZNN+adO1fXAy8zaJBuXfbkk8b17/Bh/XD4\nxz9082gz1ajh3VZ448bpJgfNm5vbH7KepxF5WCxf+ycGcptr3VpHz96uvXzypN5kGzsW6NTp7N9P\nm6ajVaN2kxk3TtM+ffoY0151qgvkK1bohhaBbiBC9nDJJTpwqWwD6lCZ1WkEBvIw4MtGExkZQMOG\nmh+vTFmKZcQIrYoJxJdf6nT8l18OrB1flG00URkRHYk/+6y51TkUOurVAxo3BnbvPvt3TK1QSPEm\nnQBoYH37bSAzU9MQVRk0SCtMAkmxHDqk5YBvvGFOqWFVOnXSksrKPoQ+/LD8GwlFjqrSK0ytUEjx\nJpDv3avVKZmZQIsW1bcZaIplzBjguut0saVgqlsX6NBBK5pOd+KEpnmef97zhxiFH0+BnKkVChmJ\nicDWrVqxUZnSUuCOO3RFyOuv967NZs3Kq1h8TbEsWaJ16S++6NvrjFLZB9v06UB8vO5yT5GFI3Ky\nhdOXca3MlClaa//UU761O2iQ1pk/8YT3ryks1KVaZ8zQXLwVKubJ8/N1A+C//92a/pC1qgrkzJFT\nyKkqvfLTTxrE3nvPv/W/p03T13qbYnnkEZ0WbfZSCZ5ULMl85hngppt0hh9FnpiYyqu6wmlEbtsJ\nQXSmrl2B114787lDh4AhQzQY+7ueR7NmmpYYPhxYu9ZztceiRZpWWbfOv3MZpVUrXQ/nl1/028rs\n2cDPP1vbJ7JO2Yj89E1YjhzRG9+hsm5SoDgiDxNdu+oiY6fXy957ry4yNnhwYG0PHKipG08ploIC\n4M47NaW7shhDAAAIUUlEQVQSCn8cZaPy8eO11NLptLpHZJWyXY3y88ufK0ur2G13rapwRB4mWrTQ\nGvCNG7VqY84crdz48Udj2p86tXwtlu7dz/79ww/rpB9vb6aarXt3/Sbxxx/ArFlW94as5HCUj8rL\ngno4pVUAjsjDStnEoF9/1cD6wQc6IcIIp1exHD165u8+/1xXpQylm4nduuk6Ms884/8SvxQ+Kt7w\nDKfSQ4CBPKx066YLBA0ZojM4O3Y0tv2BA3W979NTLAcOAHffrUvInn++secLREIC8NJLwNChVveE\nQkHFQB5OFSsAA3lY6dZNF8Jq08b7zRV8NXUq8P77umYJoGuWDBgQevXZNWsCDz6o/0tU2YicgZxC\nUny81nDPnGneTZyyKpYRIzSgf/st4HKZcy4io1QsQQy31ApvdoaRmjWBN980/zwDBui6JUOHairH\nqDw8kVmYWiGqxPTpGsyvucbqnhBV74ILtPyw7EY9UytE0KVBBwywuhdE3qlZUyfFbd2qP4dbaoWB\nnIgiQll6pbhYR+ferAJqFwzkRBQRygL5H3/oTftwqmhiICeiiFAWyMMtPw4wkBNRhCgrQQy3/DjA\nQE5EEaJsRB5upYcAAzkRRYiLLwZ27tRHxAXyESNGwOl0IiEh4dRz+fn5SE1NRWxsLNLS0lBQUGBq\nJ4mIAlWnji5nvGpVBKZWhg8fjkWLFp3xnMvlQmpqKrZs2YKePXvCxTnaRGQDl16qy0pE3Ij8mmuu\nQePGjc94bv78+UhPTwcApKenIysry5zeEREZKCZG95WNuEBemby8PDj/3HLF6XQiLy/P0E4REZkh\nJkb/N+JSK9VxOBxwhMt+SUQU1soCebiNyP1a/dDpdCI3NxdRUVHIyclBCw9zXTMyMk79OyUlBSkp\nKf6ckogoYDExQMOGnjcRt4Lb7Ybb7fb79Q4RkeoO2rZtG/r06YP169cDAB577DE0bdoUY8eOhcvl\nQkFBQaU3PB0OB7xonogoKIqKgI8+Am67zeqeeOZr7Kw2kN96661YtmwZ9u3bB6fTiaeeegr9+vXD\n4MGDsWPHDkRHR2PevHlo1KhRwJ0hIiITAnkwO0NERL7HTs7sJCKyOQZyIiKbYyAnIrI5BnIiIptj\nICcisjkGciIim2MgJyKyOQZyIiKbYyAnIrI5BnIiIptjICcisjkGciIim2MgJyKyOQZyIiKbYyAn\nIrI5BnIiIptjICcisjkGciIim2MgJyKyOQZyIiKbYyAnIrI5BnIiIptjICcisjkGciIim2MgJyKy\nOQZyIiKbYyAnIrI5BnIiIpsLKJAvWrQIcXFxuOyyyzB58mSj+kRERD7wO5CXlJTgvvvuw6JFi7Bx\n40bMnTsXmzZtMrJvYcXtdlvdhZDB96Ic34tyfC/853cgX7VqFS699FJER0ejdu3aGDJkCD799FMj\n+xZWeJGW43tRju9FOb4X/vM7kO/evRsXXnjhqZ9bt26N3bt3G9IpIiLynt+B3OFwGNkPIiLyl/jp\nu+++k169ep36eeLEieJyuc44JiYmRgDwwQcffPDhwyMmJsaneOwQEYEfiouL0bZtW/z73/9Gq1at\n0LlzZ8ydOxft2rXzpzkiIvJTLb9fWKsWpk2bhl69eqGkpAQjR45kECcisoDfI3IiIgoNpszs5ESh\nctHR0ejYsSOSk5PRuXNnq7sTVCNGjIDT6URCQsKp5/Lz85GamorY2FikpaWhoKDAwh4GT2XvRUZG\nBlq3bo3k5GQkJydj0aJFFvYweHbu3IkePXogPj4eHTp0wCuvvAIgMq+Nqt4Ln68Nf292VqW4uFhi\nYmIkOztbioqKJDExUTZu3Gj0aWwjOjpa9u/fb3U3LPH111/L6tWrpUOHDqeeGzNmjEyePFlERFwu\nl4wdO9aq7gVVZe9FRkaGvPDCCxb2yho5OTmyZs0aERE5dOiQxMbGysaNGyPy2qjqvfD12jB8RM6J\nQmeTCM1eXXPNNWjcuPEZz82fPx/p6ekAgPT0dGRlZVnRtaCr7L0AIvPaiIqKQlJSEgDg/PPPR7t2\n7bB79+6IvDaqei8A364NwwM5JwqdyeFw4Prrr0enTp3w5ptvWt0dy+Xl5cHpdAIAnE4n8vLyLO6R\ntaZOnYrExESMHDkyIlIJFW3btg1r1qxBly5dIv7aKHsvrrrqKgC+XRuGB3JOFDrTN998gzVr1mDh\nwoWYPn06li9fbnWXQobD4Yjo62X06NHIzs7G2rVr0bJlSzzyyCNWdymoDh8+jEGDBmHKlCmoX7/+\nGb+LtGvj8OHDuOmmmzBlyhScf/75Pl8bhgfyCy64ADt37jz1886dO9G6dWujT2MbLVu2BAA0b94c\nAwYMwKpVqyzukbWcTidyc3MBADk5OWjRooXFPbJOixYtTgWsUaNGRdS1cfLkSQwaNAjDhg1D//79\nAUTutVH2XgwdOvTUe+HrtWF4IO/UqRN+/fVXbNu2DUVFRfjggw/Qt29fo09jC0ePHsWhQ4cAAEeO\nHMHixYvPqFqIRH379kVmZiYAIDMz89SFG4lycnJO/fuTTz6JmGtDRDBy5Ei0b98eDz744KnnI/Ha\nqOq98PnaMOFGrCxYsEBiY2MlJiZGJk6caMYpbGHr1q2SmJgoiYmJEh8fH3HvxZAhQ6Rly5ZSu3Zt\nad26tbz11luyf/9+6dmzp1x22WWSmpoqBw4csLqbQVHxvZg5c6YMGzZMEhISpGPHjtKvXz/Jzc21\nuptBsXz5cnE4HJKYmChJSUmSlJQkCxcujMhro7L3YsGCBT5fG5wQRERkc9zqjYjI5hjIiYhsjoGc\niMjmGMiJiGyOgZyIyOYYyImIbI6BnIjI5hjIiYhs7v8BUwwySOauAc4AAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x1186e4e10>" | |
} | |
], | |
"prompt_number": 116 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions are outward for top 25 communities per volume\"\nplt.plot(ouut[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions are outward for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXgAAAEACAYAAAC57G0KAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4U1X6B/BvKEVkkU2aFgpWllLLWmUR12JN1UGwDIgg\naKXIIIw6KGqrjFJxIaiMgNsog1pxQZ7xJyACYsWgbKJSt0EoSytbG5BSBYoU2vP74zWlO8nNTW5y\n8/08Tx8gyT33NCRvTt77nnMsSikFIiIynQZGd4CIiHyDAZ6IyKQY4ImITIoBnojIpBjgiYhMigGe\niMik6g3waWlpsFqt6NmzZ8VtRUVFsNlsiI2NRXJyMoqLiyvumzlzJrp27Yq4uDisXr3ad70mIqKz\nqjfAjxs3DqtWrapym91uh81mQ25uLpKSkmC32wEAW7duxfvvv4+tW7di1apVmDx5MsrLy33XcyIi\nqle9Af7KK69Eq1atqty2bNkypKamAgBSU1OxZMkSAMDSpUsxevRohIeHIyYmBl26dMHmzZt91G0i\nIjobj3PwTqcTVqsVAGC1WuF0OgEABw4cQHR0dMXjoqOjsX//fp26SUREnvLqIqvFYoHFYqn3fiIi\nMkZDTw+wWq0oLCxEZGQkCgoKEBERAQBo37499u7dW/G4ffv2oX379jWO79KlC3bt2uVFl4mIQk/n\nzp2xc+dOj47xeAQ/dOhQZGVlAQCysrKQkpJScfuiRYtQWlqKvLw87NixA/37969x/K5du6CU4o9S\nmD59uuF9CJQfPhd8Lvhc1P+jZWBc7wh+9OjRWLt2LX799Vd06NABM2bMQEZGBkaOHIkFCxYgJiYG\nixcvBgDEx8dj5MiRiI+PR8OGDfHyyy8zRUNEZKB6A/x7771X6+3Z2dm13v7II4/gkUce8b5XRETk\nNc5kNVBiYqLRXQgYfC7O4HNxBp8L71iUUn7d8MNiscDPpyQiCnpaYidH8EREJsUAT0RkUgzwREQm\nxQBPRGRSDPBERCbFAE9EZFIM8EREJsUAT0RkUgzwREQmxQBPRGRSDPBERCbFAE9EZFIM8EREJsUA\nT0RkUgzwREQmxQBPRGRSDPBERCbFAE9EZFIM8EREJsUAT0RkUgzwREQmxQBPRGRSDPBERCbFAE9E\nZFIM8EREJsUAT0RkUpoD/Ny5c9GzZ0/06NEDc+fOBQAUFRXBZrMhNjYWycnJKC4u1q2jRETkGU0B\n/qeffsJ//vMffP311/j++++xfPly7Nq1C3a7HTabDbm5uUhKSoLdbte7v0RE5CZNAX7btm0YMGAA\nGjdujLCwMFx99dX44IMPsGzZMqSmpgIAUlNTsWTJEl07S0TkC6dPAydPGt0L/WkK8D169MCXX36J\noqIilJSUYMWKFdi3bx+cTiesVisAwGq1wul06tpZIiJfeOUVICPD6F7or6GWg+Li4pCeno7k5GQ0\nbdoUffr0QVhYWJXHWCwWWCwWXTpJRORLW7cChYVG90J/mgI8AKSlpSEtLQ0AMG3aNERHR8NqtaKw\nsBCRkZEoKChARERErcdmZmZW/D0xMRGJiYlau0FE5LVdu4Dffze6F1U5HA44HA6v2rAopZSWAw8e\nPIiIiAjs2bMH1113HTZt2oSnnnoKbdq0QXp6Oux2O4qLi2tcaLVYLNB4SiIin+jcGSgrA/Lzje5J\n3bTETs0B/qqrrsLhw4cRHh6O559/HoMGDUJRURFGjhyJPXv2ICYmBosXL0bLli297iQRka+cOgU0\nawZYLMCJE/JnIPJrgNeKAZ6IAsnOncC11wLFxcDu3UDr1kb3qHZaYidnshJRSNu1S1I0UVHmu9DK\nAE9EIa1ygC8oMLo3+tJcRUNEZAauAH/smPkCPEfwRBTSzDyCZ4AnopC2axfQpQtz8EREpqKUVM5w\nBE9EZDKFhUDTpkDz5kBkJAM8Ub1On5YZgUTBYOdOGb0DTNEQ1UspYMQI4Pbbje4JkXtcF1gBpmgo\nSJWUAD/95PvzvP225DO/+Qb44APfn4/IW5UDfMuWwB9/yHIFZsEAHwIWLgQuu0xezL5y4AAwdSrw\n5pvyc/fdwKFDvjsfkR4qB3iLRfLwZkrTMMCHgA0bgO7dgVGjgNJS/dtXCpg4EbjrLuDii4GBA4Gx\nY4G//13/c3mrrAz47Teje0GBwlUi6WK2NA0DfAjYuBF47TV58U6bpn/7CxcCe/YA//znmdtmzAB+\n/BFYvFj/83nj9deByy+Xi8FElUfwgPkqaRjgTe7QIeDgQRnBv/46sGgRsGqVfu0fOAA88ICkZRo1\nOnP7uefKbffeCwTSzo1ffCHXCd54w+iekNF++032Ya28LxFH8BRUNm4EBgwAGjQAzj9fRttpafrk\nGV2pmUmTgISEmvcPGACMGyf3B8oK0evXA//+NzB9uqw9QqFr1y6gU6eq67+brVSSAd7kNm6UC6wu\niYnAnXcCt90GlJd717YrNVNf2iczE9i+Xb45GK2gQNb8HjsWuOYa4LnnjO4RGalyDbwLUzQUVDZs\nkIuelT32mJSDPfus9nbrSs1Ud8458pgpU4x/47ieiwYNgKeeAl54QX4PCk3V8+8AUzQURE6dAr79\nVlIllTVsCLzzDvCvfwFffeV5u0oBf/tb3amZ6vr1AyZMkCobI1M1GzbIBVYAuOAC6dNjjxnXHzJW\nXQGeKRoKCt9/LznGFi1q3texo+SiR4/2vGzwrbeAffs8q8h59FEgL08+WIyyfn3VdNXDDwMffQT8\n8INxfSLjVC+RBMw3gueerCY2bx7wv/8Br75a92MmTwaKioD33nNvs+H9+2XUvno10KePZ/3ZsgW4\n/nrgu++Adu08O9ZbJ07IReZDh4AmTc7c/sILwMcf61tZRMGhY0dg7VrgwgvP3Hb6tFSA/fEHEBZm\nXN9qwz1ZqYoNG6qOWGszezawdauUUJ5N5aoZT4M7IJOgJk2S9I6/P+O/+QaIj68a3AH5fXbvBj75\nxL/9IWOdPCnlwx06VL29YUPZdNsss7AZ4E2segVNbc49VypcMjKAn3+u/7FaUjPVTZsmbWRlaW9D\ni8r598oaNQJmzQIefJCrYIaSvDwJ7g1r2bTUTGkaBniT2rdPFhmrnmOsTXw88PTTspTBH3/U/pj9\n+yUInq1q5mwaNZLg/uCD0kd/qZ5/rywlRa5TvPWW//pDxqrtAquLmUolGeBNauNGKQl0J68OSG18\nt25S+lidq2pm8mRtqZnqeveWGa4TJvgnVaNU/ekqi0Vq4h99FDh+3Pf9IePVVgPvwhE8BTxXgHeX\nxSLr1Xz8MbBkSdX73npLRvCPPKJf/zIyJAfqTu7fW7m5smtPdHTdjxkwALjySikdJfOrbwRvplJJ\nUwZ4pSSf7I810AOVOxdYq2vZEnj3XbnwuHev3KZXaqa68HBpMyNDZsP6Ul359+qefhqYM8c8b26q\nG1M0QaS8XIL5Sy8BN98s/0E33AAkJQFHjhjdO//74w9ZybFfP8+PHThQZp2OGSMlY3qmZqrr2RO4\n7z5g/Hjfpmrqy79XduGFsnbO9Om+6wsFhtpq4F2YojFYeblM4pk3Dxg+HLBagZtuklmbQ4YAmzcD\n+fly29NPG91b//v2W+Cii2qWBLorPV1G60lJ+qdmqnvoIVkf5rXXfHcOd0fwgFT5fPihzB8gcyor\nk/jQqVPt95spRRMUE53KymS24dq1gMMBfPkl0KYNcPXVZ36q17MC8p/Uowfw9ddVJzOY3bPPSopl\n3jztbRQUANddJ/l3X4zeK/vpJ1kErbCw9rI1bxQVATEx8qe7bc+ZA2RnA8uX69uXUFVaKteEuneX\nyWZG27NHvqnu31/7/Tt3AsnJMj8ikPh1otPMmTPRvXt39OzZE7feeitOnjyJoqIi2Gw2xMbGIjk5\nGcXFxVqbByBP8LRpMuNs9Ghg2zbgllsk/ZCbC8yfLysD1hbcAUnV/OMfkucNJVry79VFRcmHqq+D\nOyAfwjExsla73jZuBPr39+yDY/Jkea199pn+/QkV+/bJ+3PYMFlvfexYuZYTCOrLvwNnUjRmmHCv\nKcDn5+dj/vz52LJlC3788UeUlZVh0aJFsNvtsNlsyM3NRVJSEux2u8dtnzwpuwDZbFLZUFIi0+K3\nbTuzdoon09ynTpUc7MaNHnfFbWVlgTNJRinPK2gCwbBhNat39OBu/r2yRo0Au11KRr1dUjlUnDol\n37AzMoBevWRg8PnnkkLdsUMGC8uWSWrEaPWVSAJScRUeDvz+u//65CuaAvx5552H8PBwlJSU4PTp\n0ygpKUG7du2wbNkypKamAgBSU1OxxIN37LZt8obq0EECeVqapBmef16+2mnVpAnw5JMS6H3xiayU\nfOhcc01g7MaelydraHTsaHRPPJOSIgFe7/8jT/LvlQ0fLrN8335b3/6YyYEDUuY6YoSM0qdOlQ/H\nV1+VXbzefVdG7m3bAq1aSXXWM88Y3euzj+AB81xo1RTgW7dujalTp6Jjx45o164dWrZsCZvNBqfT\nCavVCgCwWq1wnmWvthMnZNOIq66SHGzDhvKGXLNGgmbjxlp6V9Ptt8u5/vtffdqr7I035MOpfXtg\n5EgZyRjJlZ5xd4JToIiPl//vLVv0a/PUKVmD5tJLPT/WNflp2jT5FkmivFwGTAkJklpbvVoKG7Zt\nk+d6xgz59ljbQl333SfLYhi9Br87Ad4spZKaLmnt2rULc+bMQX5+Plq0aIGbb74Zb1cb6lgsFljq\niDJ33ZWJLVskl96zZyIyMhIxZIh8LfKFBg1kUa0JE4ChQ2UTCj3s2CFVIA6HzAIdNky+eWRlyTmN\nEIzpGUACakqKVLBccok+bX73Xd3LJbvjssvkw2HOHN9WEgWTxYtloPTSS5JC9eTaRtu2QGqqfHAa\nOaGsvhJJl0AYwTscDjgcDu8aURosWrRIjR8/vuLfb731lpo8ebKKi4tTBQUFSimlDhw4oLp161bj\nWAAqOlqp6dOV+uUXLWfXbvBgpWbP1qet0lKl+vVTat68M7cdP67UFVcode+9SpWX63MeT/Xpo9TG\njcac21sbNijVvbt+7T3/vFITJ3rXxo4dSrVpo5TTqU+fgtmJE0rFxCjlcGhvY98+pVq1UurgQf36\n5YnycqXOO0+pw4frf9yUKfrFCr1oCdeaxplxcXHYtGkTTpw4AaUUsrOzER8fjyFDhiDrz2UCs7Ky\nkJKSUuvx+fmyV6e/88TPPgvMnAkcPux9W5mZMiK5++4ztzVpIhtIrF0LPPGE9+fw1NGjUl3kzi5L\ngWjAAPm/2bFDn/a05t8r69JF9q99/HF9+hTMXnhB1hG6+mrtbbRvL5Vwc+bo1y9PHD4s365bt67/\ncWZJ0WgawSul1KxZs1R8fLzq0aOHuv3221Vpaak6fPiwSkpKUl27dlU2m00dOXJEl08hPU2aJJ/O\n3li7VqnISKUKC2u/v6BAqS5dlHrxRe/O46nPPlPqssv8e069TZyo1DPPeN9OeblS7doptXOn9239\n+qv8f8+cqVRZmfftBaNDh5Q6/3yltm/3vq3du5Vq3VqpoiLv2/LUpk1KXXLJ2R+XlaXUmDG+748n\ntMROv0dbowO80ylfuXfs0HZ8UZFSHTsqtXx5/Y/bvVup6Gil3n1X23m0eOIJpR54wH/n84VVq5Qa\nOND7dvLzlbJa9UuV/fKLUldeqdQ110iawVe2bVPq9dd9175W99yj1N1369deaqpSM2bo15673nlH\nqZEjz/641auVSkryfX88oSV2BuVSBd5wlXOlp3t+rFKycfTQocDgwfU/9sILgZUrpXJgxQptffWU\nHhOcjDZokCwU5+3XY1f9u17VRB07Sl13YqJcBF62TJ92XUpKgH/+U1JKGRlyrkCRmytbOuq5Rs/D\nD0vK59gx/dp0x9lq4F3MkqIJuQAPyGJa33wDrFvn2XELF8q0endreXv0kNruO+7w/FyeKi8HNm0K\nzgqayho1koXivA2geuTfqwsLkzXj/+//ZIb03/+uz9yHjz+W18qOHbLG0vz5MpA4edL7tvWQni6z\nUPVcZqBbN5k78u9/69emO9wpkQQCo4pGFz74JlEvA05Zq4ULlerf3/2c6s6dkoP8/nvPz7V6tVIR\nEUp9953nx7pr61alLrzQd+370/vvK3Xddd610aePVOX4ypEjSt1yi1I9eij144/a2vjlF6VSUuR6\nzSefVL3vppuUevxx7/vprbVrlbrgAqmg0dv338u1jZIS/duuy+WXu1cFVFamVHi4Un/84fs+uUtL\n7AzZAF9WplTfvu7lyEtLlRowQMrutFq8WL+LfrX5z38C76KQVr//rlTz5koVF2s/vkkT3785y8sl\nX37++Uq99JL7+f6TJ5Wy2+Va0IwZtQfPPXvk/txcffvsCU/eI1oNHerfYoTISKX27nXvsdHRci0n\nUDDAe8jhcG908uijSiUne19B8eqrSnXqpNT+/d61U5vx4/1fteNLgwdrDyyffiojNX/Zvl2piy+W\nYHXoUP2PdTiUio9X6oYbzv5hP3u2Utdea9ycinfekbkevqwc+uorpTp0kA89Xzt2TKnGjd3/ffr1\nC6w5JVpiZ0jm4F2uvloWRapvWd1162St8jff9H526t/+JnufXnedLF+rJzNcYK3MtTaNFr7Iv9cn\nNlZmEMfGyhyENWtqPsbplCUzbrtN5kh8/PHZc8H33gscOiQXOP3txAm5EDp7tm9nZffvD8TFyfUt\nX9u9W4of3P19TLEuvA8+aOplwCnrtX27fBWubWZdcbHM3Fu6VL/zlZcrNXWqlAIeO6ZPm4cPK9Ws\nmVKnTunTXiBwOpVq0UJb7jc5WaklS/Tvkzs++URScRkZkto7fVqpl19Wqm1bpR58UKmjRz1rb9Mm\nSSv4u2bcbldq2DD/nGvtWqU6d/b96/fDD5W68Ub3Hz9xovzfBQotsTOkR/CAjLpuvbX2mYqTJwPX\nXy9lkXqxWGRGbVycLE6mx+qJX30l2/PpvVmGkSIiZEu/2kbD9Skrk2oio77NJCcDOTmyPO4VV8ha\nNu+9J7/HM88AzZp51t6AAfJtxp9r4Rw6JK/RWbP8c76rrpIlwBcv9u153K2gcTFDqWTIB3gAeOwx\nWeVu+/Yzt73zjqxsOHu2/uezWCTtU1CgzwqXZkvPuAwbJouPeeJ//5MtHNu29U2f3BERIbtBTZgg\n5ZRr10oZpFYzZwJLl8oHlz88/rjsydu1q3/OB8gcgKee8u36++7WwLuYoVSSAR5S35ueLitDArKm\n+pQpsp611n1Nz6ZhQ1lR76GHZJNsb5g1wKekSD28J5up+Dv/XheLRa63jB3r/WSrli1loHHXXbIR\nui9t2wa8/74MevzJZpP3mi82fXHxdARvhhw8A/yf7rlHvlZnZ8ubMj3d94t2JSae/SLv2Zw+LXvO\nalnzPNB16iRfkz3ZjUvLDk7BYNQo+VYyd65vz5OeLj9t2vj2PNVZLDKKf/JJ322V584ywZUxRWMi\njRvLV+GbbpKdfO6/3z/nfeYZyXcePKjt+J9+khX6zrY6XrDyNE0TKCN4vVkswCuvyGt0zx7fnMPh\nkEFO5RVS/WnIEBmwrFqlf9unTsk+sTEx7h/DFI3J3HKLjOT9uWFH165SOqd1nQ+zpmdcPNnKr7AQ\nOHJELmCbUZcuktO/91792y4vlzWa7Hb9dlLzVIMGcjH5iSf0H8Xv2SMBu1Ej94+xWuWCczDvy8sA\nX4nFIi/w9u39e17X+iY//eT5scG6g5O7eveWN9iPP579sRs2yHNh1G5a/vDQQ5InX7pU33bffVd2\nVBs5Ut92PXXzzcCvv8q3CT15mn8H5MPgvPOkP8HKxG+F4NGqleQfH3jA82PNPoJ3beXnzsU3s+bf\nKzvnHEnV3HOPfisxnjghI+fZs43fyzcsTPry1FP6tqslwAPBn6ZhgA8Qd90lO12tXOn+MU6nzIg1\na0rCxd08vFnz79UNGiQX6DMz9WlvzhyZURooz92YMVLS6MnF9bPxJsAHcyUNA3yACA+XzYinTnW/\nFG7jRqmeMXNKApDAs3+/fADW5cQJuUDYr5/fumWo554D3npLlhf2xsGDMnK32/Xplx7Cw6WSR89R\nvKc18C7BXklj8tAQXAYPlhl9r73m3uPNnp5xCQuTCov60jTffgvExwNNm/qvX0aKiACefhqYONG7\ni4CZmXKR35PyQX8YN05mBOfk6NOepyWSLkzRkG4sFpn89PjjQHHx2R8fKgEekDRNfQE+FPLv1aWl\nyYQ5dwcELuXlMqJduFBmUj/6qG/6543GjeWa1MyZ3rellCw0xhw8Ga5XL1n75mxfT0tLge++k9xp\nKLj2Wvl9Dx2q/f5Qyb9X1qCBXHB99FG5HlObEydkItz8+bID1RVXyMzYpCQJ7gsWBO4cijvvBD79\ntO7fzV2FhfLNrnlzz49lDp5098QTwBtvyNfKuuTkyFdOLS/aYNS4sUxn/+ijmvcpFVrfZirr2VNG\n8vffL/n01atl8tyttwLdu0vwnjBBvuF07Sqvrfx84JdfpNRyyBCjf4O6NW8uFVRvv+1dO1ovsALB\nn4M30fqD5hEZKW/Y9PS6FyMLxYCWkiLrpKSlVb19xw5ZxyQ62ph+Ge2xx2RZjW7dZOmLPn1kz4GH\nHgIuukhKK4PVuHHApEnyftBawulNgA/2FA0DfIC67z4pf/ziC1lOtbqNGwN79OULgwfLm/3YsarL\n7oZi/r2ypk2BrVvlYrTRdex6u/JKSUd+/bX2dKS3AZ4pGtLduedK6dr999esklAqNINay5YyU/WT\nT6reHor59+oaNjRfcAfkdxo3Dnj9de1teBPgmzWT99vRo9rPbyQG+AA2apTUBFfPQe7dK7XynToZ\n0y8jpaTUnPQUih92oeT222UzkJISbcfv3Km9DNRiCe40DQN8AHOVTU6bBhw/fuZ21/ozZhyxnc1N\nNwErVsjqgIDM5N27V6qPyJyio2VnK083f3HxZgQPBHeahgE+wA0cKKVtzz135rZQvMDq0q6dbLPo\nWoxq40bJzZppu0KqKS1NW5rmt9+AkydlYphWwVxJwwAfBOx22RRk/375dygHeKDqpCfm30PD0KGy\nFEVenmfH7dolqUxvvu2GXIpm+/btSEhIqPhp0aIF5s2bh6KiIthsNsTGxiI5ORnF7kzHpLO64AKZ\nkj5tmuQht24FLrnE6F4ZxxXgy8uZfw8V55wDjB4NvPmmZ8d5m54BQjDAd+vWDTk5OcjJycG3336L\nJk2aYNiwYbDb7bDZbMjNzUVSUhLsgbSCUZDLyJDqkVdflQ2czz3X6B4ZJzYWaNFCRu/ffGPO7Qqp\nprQ0CfCerL2jR4CPjAzhHHx2dja6dOmCDh06YNmyZUhNTQUApKamYokvd9ANMeedB8yYIZNXOGKV\nUXxmJnDhhVI+SebXp4/sFbtmjfvHcATvpUWLFmH06NEAAKfTCavVCgCwWq1weruIBFWRliZT06+5\nxuieGC8lBfjsM+bfQ42nNfFaV5GsLJgDvFe1B6Wlpfjoo48wa9asGvdZLBZY6riykVlpp4LExEQk\nJiZ6042QERYGbN7MihEA6NtXtlbkt5nQcuutsrjakSOyE9rZaF0HvjKjUjQOhwMOL/cutCilfXvb\npUuX4pVXXsGqP7dBj4uLg8PhQGRkJAoKCjBo0CBs27at6gktFnhxSqIKX30lC2pVXraAzO+WW2RH\nq0mT6n/cyZNyrebYMe8GReXlstjdsWOebdqtNy2x06sUzXvvvVeRngGAoUOHIisrCwCQlZWFlJQU\nb5onqteAAQzuocjdNE1eHtChg/ffeBs0ANq29X7ZYiNoDvDHjx9HdnY2/vrXv1bclpGRgU8//RSx\nsbFYs2YNMjIydOkkEZGLzSY58R9/rP9xelxgdQnW2ayaP9uaNm2KX3/9tcptrVu3RnZ2ttedIiKq\nS1gYcMcdsmfCv/5V9+P0DPDBOpuVM1mJKOjccYcswldaWvdj9B7BM8ATEflBly6ymcnHH9f9GAZ4\nBngiClJnW4BMjxp4l2CdzcoAT0RBacQIYN262kfWZWVSRaPXngkcwRMR+VHTpsDw4cDChTXv279f\nljXQa80mBngiIj9zpWmqz//RM/8OMEVDROR3AwfKnxs3Vr3dFwHe6az5QRLoGOCJKGjVtSm33gG+\ncWNJCR0+rF+b/sAAT0RB7fbbgQ8+qLpvsd4BHgjONA0DPBEFtagoWTb6v/89c5ueJZKVzxNsF1oZ\n4Iko6FWuiVdKn2WCq2OAJyIywI03Aj//LIH98GFZAbJ1a33PEYwLjjHAE1HQa9QIGDNG9mz1Rf4d\nCM4FxxjgicgUXJty5+b6JsAzRUNEZJCePSUIv/oqA7wLAzwRmca4ccD69b5L0TAHT0RkkNGjgXPO\n0b9EEuAInojIUK1aAR9+KPv16q1FC+DUqaoTqgIdAzwRmcoNN8jSAnqzWIIvTcMAT0TkpmBL0zDA\nExG5iQGeiMikmKIhIjIpjuCJiEyKAZ6IyKQY4ImITIo5eCIikwq2EbxFKf9uI2uxWODnUxIR6aKs\nTCZRnTgBNGzo33NriZ2aR/DFxcUYMWIELrroIsTHx+Orr75CUVERbDYbYmNjkZycjOLiYq3NExEF\nnLAwoE0b4OBBo3viHs0B/h//+Af+8pe/4Oeff8YPP/yAuLg42O122Gw25ObmIikpCXa7Xc++EhEZ\nLpjSNJpSNL/99hsSEhKwe/fuKrfHxcVh7dq1sFqtKCwsRGJiIrZt21b1hEzREFEQ+8tfgMmTZZtA\nf/JbiiYvLw9t27bFuHHjcPHFF2PChAk4fvw4nE4nrFYrAMBqtcLpdGppnogoYAVTJY2mywSnT5/G\nli1b8OKLL6Jfv36YMmVKjXSMxWKBxWKp9fjMzMyKvycmJiIxMVFLN4iI/M5fKRqHwwGHw+FVG5pS\nNIWFhRg4cCDy8vIAAOvWrcPMmTOxe/dufP7554iMjERBQQEGDRrEFA0RmcqLLwJbtwIvv+zf8/ot\nRRMZGYkOHTogNzcXAJCdnY3u3btjyJAhyMrKAgBkZWUhJSVFS/NERAErMjJ4LrJqruR84YUXMGbM\nGJSWlqLHBMbwAAAJlElEQVRz58544403UFZWhpEjR2LBggWIiYnB4sWL9ewrEZHhoqKCJwfPiU5E\nRB7YvRu45hogP9+/59USOxngiYg8UFICtG4ts1nrqCPxCb/OZCUiCkVNmgDnnAMEw0R9BngiIg8F\ny2xWBngiIg8xwBMRmVSwzGZlgCci8hBH8EREJsUAT0RkUsEym5UBnojIQ8Eym5UBnojIQ0zREBGZ\nFFM0REQm5Vqq4MQJo3tSPwZ4IiIPWSzBUQvPAE9EpEEw5OEZ4ImINOAInojIpDiCJyIyKQZ4IiKT\nCoZSSQZ4IiINgmE2KwM8EZEGTNEQEZkUUzRERCYVGSkbcB86ZHRP6sYAT0SkQcOGwLXXAitXGt2T\nujHAExFpdOONwPLlRveibhallPLrCS0W+PmUREQ+4XQCcXHyZ6NGvj2XltjJETwRkUZWKxAbC6xb\nZ3RPascAT0TkhUBO0zDAExF5YfBgEwb4mJgY9OrVCwkJCejfvz8AoKioCDabDbGxsUhOTkZxcbFu\nHSUiCkQJCcDx40BurtE9qUlzgLdYLHA4HMjJycHmzZsBAHa7HTabDbm5uUhKSoLdbteto0REgchi\nkVH8xx8b3ZOavErRVL+iu2zZMqSmpgIAUlNTsWTJEm+aJyIKCoGah9dcJtmpUye0aNECYWFhmDhx\nIiZMmIBWrVrhyJEjACT4t27duuLfFSdkmSQRmczx47I2zd69QIsWvjmHltjZUOvJ1q9fj6ioKBw6\ndAg2mw1xcXE1OmOxWLQ2T0QUNJo2BS6/HFi9Grj5ZqN7c4bmAB8VFQUAaNu2LYYNG4bNmzfDarWi\nsLAQkZGRKCgoQERERK3HZmZmVvw9MTERiYmJWrtBRBQQXGkavQK8w+GAw+Hwqg1NKZqSkhKUlZWh\nefPmOH78OJKTkzF9+nRkZ2ejTZs2SE9Ph91uR3FxcY0LrUzREJEZ5ecD/frJGvFhYfq377cUjdPp\nxLBhwwAAp0+fxpgxY5CcnIy+ffti5MiRWLBgAWJiYrB48WItzRMRBZ2YGFlh8uuvgUsvNbo3gmvR\nEBHp5OGHZfT+5JP6t821aIiIDBRo5ZIcwRMR6aSsTBYgy8kBOnTQt22O4ImIDBQWBlx/feDMamWA\nJyLSUSClaZiiISLS0ZEjwAUXSLlkkyb6tcsUDRGRwVq1Ai6+GPj8c6N7wgBPRKS7QEnTMEVDRKSz\nn38GkpOBPXtkOWE9MEVDRBQA4uJkE+4ffjC2HwzwREQ6s1gCI03DAE9E5AM33mh8PTxz8EREPnDy\nJBARAezcCbRt6317zMETEQWIc84BkpKAlSuN6wMDPBGRjxidh2eKhojIRwoLpaLm4EGpqvEGUzRE\nRAEkMhKIjQXWrTPm/AzwREQ+ZGQ1DQM8EZEPGZmHZ4AnIvKhhATg6FEgN9f/52aAJyLyIYsFGDzY\nmDQNAzwRkY8ZlaZhmSQRkY8dOwZERQH79gEtWmhrg2WSREQBqFkz4IorgE8/9e95GeCJiPzAiDQN\nUzRERH6Qnw/07w8UFABhYZ4fzxQNEVGAiomR1SW//tp/52SAJyLyE3+naRjgiYj8JKgCfFlZGRIS\nEjBkyBAAQFFREWw2G2JjY5GcnIzi4mJdOklEZAaXXgrs3Svlkv7gVYCfO3cu4uPjYflz23C73Q6b\nzYbc3FwkJSXBbrfr0kmzcjgcRnchYPC5OIPPxRlmey4aNgSGDAG++cY/59Mc4Pft24cVK1bgzjvv\nrLiyu2zZMqSmpgIAUlNTsWTJEn16aVJme/F6g8/FGXwuzjDjc/HGG0BKin/OpTnA33fffXj22WfR\noMGZJpxOJ6xWKwDAarXC6XR630MiIhP5M+HhF5oC/PLlyxEREYGEhIQ66zItFktF6oaIiAygNHj4\n4YdVdHS0iomJUZGRkapJkyZq7Nixqlu3bqqgoEAppdSBAwdUt27dahzbuXNnBYA//OEPf/jjwU/n\nzp09jtVez2Rdu3YtnnvuOXz00Ud46KGH0KZNG6Snp8Nut6O4uJgXWomIDKJLHbwrFZORkYFPP/0U\nsbGxWLNmDTIyMvRonoiINPD7WjREROQffp3JumrVKsTFxaFr166YNWuWP08dcGJiYtCrVy8kJCSg\nf//+RnfHr9LS0mC1WtGzZ8+K20J1klxtz0VmZiaio6ORkJCAhIQErFq1ysAe+s/evXsxaNAgdO/e\nHT169MC8efMAhOZro67nwuPXhpaLrFqcPn1ade7cWeXl5anS0lLVu3dvtXXrVn+dPuDExMSow4cP\nG90NQ3zxxRdqy5YtqkePHhW3Pfjgg2rWrFlKKaXsdrtKT083qnt+VdtzkZmZqWbPnm1gr4xRUFCg\ncnJylFJKHT16VMXGxqqtW7eG5GujrufC09eG30bwmzdvRpcuXRATE4Pw8HCMGjUKS5cu9dfpA5IK\n0ezYlVdeiVatWlW5LVQnydX2XACh+dqIjIxEnz59AADNmjXDRRddhP3794fka6Ou5wLw7LXhtwC/\nf/9+dOjQoeLf0dHRFR0ORRaLBddeey369u2L+fPnG90dw3GSXFUvvPACevfujfHjx4dESqK6/Px8\n5OTkYMCAASH/2nA9F5deeikAz14bfgvwnPRU1fr165GTk4OVK1fipZdewpdffml0lwJGqE+SmzRp\nEvLy8vDdd98hKioKU6dONbpLfnXs2DEMHz4cc+fORfPmzavcF2qvjWPHjmHEiBGYO3cumjVr5vFr\nw28Bvn379ti7d2/Fv/fu3Yvo6Gh/nT7gREVFAQDatm2LYcOGYfPmzQb3yFhWqxWFhYUAgIKCAkRE\nRBjcI+NERERUBLI777wzpF4bp06dwvDhw3Hbbbch5c8FW0L1teF6LsaOHVvxXHj62vBbgO/bty92\n7NiB/Px8lJaW4v3338fQoUP9dfqAUlJSgqNHjwIAjh8/jtWrV1epoghFQ4cORVZWFgAgKyur4gUd\nigoKCir+/uGHH4bMa0MphfHjxyM+Ph5TpkypuD0UXxt1PRcevzZ8cAG4TitWrFCxsbGqc+fO6umn\nn/bnqQPK7t27Ve/evVXv3r1V9+7dQ+65GDVqlIqKilLh4eEqOjpavf766+rw4cMqKSlJde3aVdls\nNnXkyBGju+kX1Z+LBQsWqNtuu0317NlT9erVS910002qsLDQ6G76xZdffqksFovq3bu36tOnj+rT\np49auXJlSL42ansuVqxY4fFrgxOdiIhMilv2ERGZFAM8EZFJMcATEZkUAzwRkUkxwBMRmRQDPBGR\nSTHAExGZFAM8EZFJ/T8kvWG2GL8YMwAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x1186a59d0>" | |
} | |
], | |
"prompt_number": 117 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "in_y=[]\nin_n=[]\nout_y=[]\nout_n=[]\nprint \"community\", \"in_money\", \"in_no_money\", \"out_money\", \"out_no_money\", \"total-list\"\nfor x in all_comm:\n temp=data_310[data_310.community_id==x][['mon_dir']].values\n ln=len(data_310[data_310.community_id==x][['mon_dir']])\n i1=0.0\n i2=0.0\n o1=0.0\n o2=0.0\n for j in temp:\n if j==\"in_y\":\n i1+=1\n elif j==\"in_n\":\n i2+=1\n elif j==\"out_y\":\n o1+=1\n elif j==\"out_n\":\n o2+=1\n in_y.append((i1/ln)*100)\n in_n.append((i2/ln)*100)\n out_y.append((o1/ln)*100)\n out_n.append((o2/ln)*100)\n print x, (i1/ln)*100, (i2/ln)*100,(o1/ln)*100, (o2/ln)*100, ln", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "community in_money in_no_money out_money out_no_money total-list\n501" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 13.8269829859 6.61394680086 68.0325904625 11.4905343877 8346\n11" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 15.8018867925 3.25471698113 73.1603773585 7.78301886792 2120\n19 15.8273381295 2.3381294964 76.1690647482 5.6654676259 1112\n295 11.2175102599 12.4487004104 47.6060191518 27.7701778386 731\n29 12.8878281623 5.96658711217 66.8257756563 13.6038186158 419\n297" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 20.3846153846 3.07692307692 76.1538461538 0.384615384615 260\n27 8.87096774194 20.9677419355 63.3064516129 6.85483870968 248\n322 12.5541125541 1.2987012987 84.8484848485 1.2987012987 231\n12 16.7512690355 2.03045685279 72.5888324873 8.62944162437 197\n308 7.87401574803 5.51181102362 85.8267716535 0.787401574803 127\n14 9.82142857143 8.92857142857 75.8928571429 5.35714285714 112\n306 12.2641509434 17.9245283019 58.4905660377 11.320754717 106\n305 4.12371134021 10.3092783505 76.2886597938 9.27835051546 97\n313" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 10.4651162791 10.4651162791 75.5813953488 3.48837209302 86\n6 9.41176470588 14.1176470588 30.5882352941 45.8823529412 85\n455 4.0 14.6666666667 54.6666666667 24.0 75\n473 14.2857142857 12.8571428571 35.7142857143 37.1428571429 70\n719 1.47058823529 20.5882352941 11.7647058824 61.7647058824 68\n779 5.0 15.0 11.6666666667 68.3333333333 60\n294 5.1724137931 13.7931034483 74.1379310345 6.89655172414 58\n4 16.9811320755 9.43396226415 58.4905660377 15.0943396226 53\n30 15.0943396226 20.7547169811 49.0566037736 15.0943396226 53\n351 3.84615384615 5.76923076923 75.0 15.3846153846 52\n28" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 34.693877551 12.2448979592 36.7346938776 16.3265306122 49\n465 4.54545454545 47.7272727273 27.2727272727 13.6363636364 44\n352 4.7619047619 28.5714285714 52.380952381 14.2857142857 42\n502 21.4285714286 40.4761904762 33.3333333333 4.7619047619 42\n1030 0.0 2.5641025641 97.4358974359 0.0 39\n402 5.26315789474 28.9473684211 31.5789473684 34.2105263158 38\n528 0.0 7.89473684211 50.0 42.1052631579 38\n731 0.0 76.4705882353 23.5294117647 0.0 34\n31 6.66666666667 16.6666666667 66.6666666667 10.0 30\n445 6.66666666667 13.3333333333 20.0 60.0 30\n551 22.2222222222 3.7037037037 48.1481481481 22.2222222222 27\n296 15.3846153846 42.3076923077 30.7692307692 11.5384615385 26\n321" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 12.0 4.0 84.0 0.0 25\n314 8.33333333333 4.16666666667 87.5 0.0 24\n515 29.1666666667 33.3333333333 12.5 25.0 24\n570 12.5 8.33333333333 16.6666666667 62.5 24\n516 0.0 0.0 0.0 100.0 23\n703 0.0 18.1818181818 22.7272727273 59.0909090909 22\n566 19.0476190476 14.2857142857 61.9047619048 4.7619047619 21\n639 23.8095238095 14.2857142857 42.8571428571 14.2857142857 21\n894 4.7619047619 19.0476190476 66.6666666667 9.52380952381 21\n299 30.0 5.0 20.0 45.0 20\n312 11.7647058824 41.1764705882 35.2941176471 11.7647058824 17\n413 0.0 0.0 31.25 68.75 16\n571" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 31.25 43.75 16\n788 6.25 25.0 25.0 31.25 16\n872 0.0 6.25 62.5 18.75 16\n360 6.66666666667 33.3333333333 53.3333333333 6.66666666667 15\n844 0.0 46.6666666667 20.0 26.6666666667 15\n947 13.3333333333 6.66666666667 46.6666666667 20.0 15\n587 14.2857142857 28.5714285714 28.5714285714 28.5714285714 14\n747 0.0 14.2857142857 85.7142857143 0.0 14\n934 7.14285714286 7.14285714286 64.2857142857 0.0 14\n9 7.69230769231 7.69230769231 69.2307692308 15.3846153846 13\n491 0.0 15.3846153846 61.5384615385 23.0769230769 13\n483 8.33333333333 16.6666666667 0.0 75.0 12\n539" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 33.3333333333 66.6666666667 12\n798 0.0 0.0 0.0 100.0 12\n334 18.1818181818 9.09090909091 63.6363636364 9.09090909091 11\n557 9.09090909091 0.0 0.0 72.7272727273 11\n648 0.0 0.0 100.0 0.0 11\n840 0.0 54.5454545455 27.2727272727 18.1818181818 11\n1016 0.0 18.1818181818 36.3636363636 45.4545454545 11\n18 0.0 40.0 40.0 20.0 10\n388 0.0 0.0 100.0 0.0 10\n537 0.0 10.0 60.0 30.0 10\n565 40.0 20.0 40.0 0.0 10\n649 10.0 0.0 20.0 70.0 10\n725 0.0 30.0 10.0 60.0 10\n732" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 10.0 0.0 50.0 40.0 10\n807 0.0 0.0 80.0 20.0 10\n922 40.0 10.0 50.0 0.0 10\n969 0.0 100.0 0.0 0.0 10\n316 22.2222222222 44.4444444444 33.3333333333 0.0 9\n781 0.0 44.4444444444 22.2222222222 33.3333333333 9\n8 0.0 25.0 12.5 62.5 8\n309 0.0 37.5 37.5 25.0 8\n327 0.0 12.5 62.5 25.0 8\n723 12.5 25.0 12.5 50.0 8\n828 0.0 0.0 12.5 87.5 8\n1001 0.0 0.0 0.0 100.0 8\n311" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 57.1428571429 0.0 42.8571428571 7\n361 0.0 28.5714285714 0.0 71.4285714286 7\n422 28.5714285714 14.2857142857 0.0 57.1428571429 7\n467 0.0 14.2857142857 14.2857142857 71.4285714286 7\n482 0.0 28.5714285714 57.1428571429 14.2857142857 7\n531 0.0 57.1428571429 28.5714285714 14.2857142857 7\n662 0.0 42.8571428571 42.8571428571 14.2857142857 7\n956 0.0 14.2857142857 85.7142857143 0.0 7\n461 16.6666666667 16.6666666667 33.3333333333 33.3333333333 6\n478 0.0 66.6666666667 33.3333333333 0.0 6\n745 0.0 33.3333333333 66.6666666667 0.0 6\n916 0.0 16.6666666667 66.6666666667 16.6666666667 6\n946 0.0 0.0 0.0 100.0 6\n961" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 16.6666666667 66.6666666667 0.0 6\n326 0.0 20.0 40.0 40.0 5\n359 0.0 40.0 60.0 0.0 5\n364 40.0 0.0 40.0 20.0 5\n366 0.0 20.0 80.0 0.0 5\n398 20.0 40.0 40.0 0.0 5\n399 0.0 0.0 0.0 100.0 5\n470 0.0 100.0 0.0 0.0 5\n476 0.0 20.0 20.0 60.0 5\n535 0.0 20.0 40.0 40.0 5\n583 20.0 20.0 40.0 20.0 5\n711" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 40.0 60.0 5\n759 40.0 0.0 60.0 0.0 5\n803 0.0 20.0 0.0 80.0 5\n908 0.0 0.0 80.0 20.0 5\n909 0.0 0.0 100.0 0.0 5\n920 0.0 0.0 100.0 0.0 5\n#N/A 60.0 0.0 20.0 20.0 5\n301 0.0 75.0 25.0 0.0 4\n303 0.0 50.0 25.0 25.0 4\n310 0.0 25.0 75.0 0.0 4\n323 0.0 50.0 50.0 0.0 4\n513 25.0 0.0 75.0 0.0 4\n532" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 25.0 75.0 0.0 4\n588 25.0 0.0 75.0 0.0 4\n658 0.0 0.0 0.0 100.0 4\n686 0.0 0.0 75.0 25.0 4\n695 0.0 25.0 75.0 0.0 4\n841 0.0 75.0 25.0 0.0 4\n903 0.0 50.0 0.0 50.0 4\n915 0.0 0.0 75.0 0.0 4\n995 0.0 25.0 75.0 0.0 4\n1009 0.0 25.0 75.0 0.0 4\n307 0.0 66.6666666667 0.0 33.3333333333 3\n346 0.0 66.6666666667 0.0 33.3333333333 3\n390" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 66.6666666667 0.0 33.3333333333 0.0 3\n400 0.0 0.0 33.3333333333 66.6666666667 3\n439 0.0 66.6666666667 0.0 33.3333333333 3\n446 33.3333333333 0.0 33.3333333333 33.3333333333 3\n450 0.0 33.3333333333 0.0 66.6666666667 3\n451 0.0 66.6666666667 0.0 33.3333333333 3\n474 33.3333333333 0.0 0.0 66.6666666667 3\n486 0.0 33.3333333333 33.3333333333 33.3333333333 3\n495 0.0 0.0 100.0 0.0 3\n496 0.0 0.0 33.3333333333 66.6666666667 3\n505 0.0 33.3333333333 66.6666666667 0.0 3\n511" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 33.3333333333 0.0 0.0 66.6666666667 3\n563 0.0 33.3333333333 66.6666666667 0.0 3\n569 0.0 33.3333333333 66.6666666667 0.0 3\n576 0.0 33.3333333333 0.0 66.6666666667 3\n598 0.0 0.0 33.3333333333 66.6666666667 3\n623 0.0 0.0 33.3333333333 66.6666666667 3\n634 33.3333333333 0.0 66.6666666667 0.0 3\n653 0.0 0.0 100.0 0.0 3\n659 0.0 0.0 100.0 0.0 3\n667 0.0 33.3333333333 0.0 66.6666666667 3\n674 0.0 0.0 66.6666666667 33.3333333333 3\n694" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 33.3333333333 33.3333333333 33.3333333333 3\n717 0.0 0.0 100.0 0.0 3\n829 0.0 66.6666666667 0.0 33.3333333333 3\n835 0.0 33.3333333333 66.6666666667 0.0 3\n848 33.3333333333 66.6666666667 0.0 0.0 3\n881 33.3333333333 0.0 66.6666666667 0.0 3\n943 66.6666666667 0.0 33.3333333333 0.0 3\n994 0.0 0.0 100.0 0.0 3\n1002 0.0 0.0 100.0 0.0 3\n1036 0.0 0.0 100.0 0.0 3\n300 0.0 50.0 50.0 0.0 2\n332 0.0 0.0 100.0 0.0 2\n341" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 50.0 50.0 0.0 2\n342 0.0 0.0 100.0 0.0 2\n348 0.0 50.0 50.0 0.0 2\n357 0.0 50.0 0.0 50.0 2\n362 50.0 0.0 0.0 50.0 2\n370 0.0 50.0 50.0 0.0 2\n372 0.0 0.0 100.0 0.0 2\n380 0.0 50.0 50.0 0.0 2\n391 50.0 0.0 50.0 0.0 2\n395 0.0 0.0 0.0 100.0 2\n397 0.0 50.0 50.0 0.0 2\n404 0.0 0.0 100.0 0.0 2\n412" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 100.0 0.0 0.0 0.0 2\n418 0.0 50.0 50.0 0.0 2\n430 0.0 50.0 50.0 0.0 2\n443 50.0 50.0 0.0 0.0 2\n453 0.0 50.0 50.0 0.0 2\n454 0.0 50.0 0.0 50.0 2\n463 0.0 0.0 100.0 0.0 2\n469 100.0 0.0 0.0 0.0 2\n517 0.0 50.0 50.0 0.0 2\n518 0.0 0.0 0.0 100.0 2\n541 50.0 0.0 50.0 0.0 2\n544 0.0 0.0 100.0 0.0 2\n568" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 2\n577 0.0 0.0 100.0 0.0 2\n591 50.0 0.0 50.0 0.0 2\n599 0.0 50.0 50.0 0.0 2\n637 0.0 0.0 50.0 50.0 2\n688 50.0 50.0 0.0 0.0 2\n697 0.0 0.0 100.0 0.0 2\n700 50.0 0.0 50.0 0.0 2\n714 50.0 0.0 50.0 0.0 2\n733 0.0 0.0 50.0 50.0 2\n734 0.0 50.0 0.0 50.0 2\n736 0.0 0.0 100.0 0.0 2\n748 0.0 0.0 100.0 0.0 2\n770" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 50.0 50.0 0.0 2\n786 0.0 50.0 0.0 50.0 2\n787 0.0 0.0 0.0 100.0 2\n789 0.0 0.0 50.0 50.0 2\n802 0.0 50.0 50.0 0.0 2\n808 0.0 0.0 100.0 0.0 2\n810 0.0 50.0 0.0 50.0 2\n813 0.0 50.0 50.0 0.0 2\n820 0.0 0.0 100.0 0.0 2\n869 50.0 0.0 50.0 0.0 2\n877 0.0 100.0 0.0 0.0 2\n884 0.0 50.0 0.0 50.0 2\n902 0.0 0.0 0.0 100.0 2\n930" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 2\n933 0.0 50.0 0.0 50.0 2\n938 0.0 50.0 0.0 0.0 2\n940 50.0 0.0 50.0 0.0 2\n985 50.0 0.0 50.0 0.0 2\n1018 100.0 0.0 0.0 0.0 2\n1023 0.0 0.0 50.0 50.0 2\n1037 0.0 50.0 50.0 0.0 2\n16 0.0 0.0 0.0 100.0 1\n315 0.0 0.0 100.0 0.0 1\n343 0.0 0.0 100.0 0.0 1\n345 0.0 0.0 100.0 0.0 1\n363 0.0 100.0 0.0 0.0 1\n373" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 1\n374 100.0 0.0 0.0 0.0 1\n379 0.0 0.0 100.0 0.0 1\n409 0.0 0.0 100.0 0.0 1\n410 0.0 0.0 0.0 100.0 1\n417 0.0 0.0 100.0 0.0 1\n425 0.0 0.0 100.0 0.0 1\n432 0.0 0.0 100.0 0.0 1\n434 0.0 100.0 0.0 0.0 1\n435 0.0 0.0 100.0 0.0 1\n436 0.0 100.0 0.0 0.0 1\n438 0.0 0.0 0.0 100.0 1\n447 0.0 100.0 0.0 0.0 1\n448" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 0.0 0.0 1\n457 0.0 100.0 0.0 0.0 1\n460 0.0 0.0 100.0 0.0 1\n462 100.0 0.0 0.0 0.0 1\n472 0.0 0.0 0.0 100.0 1\n477 0.0 100.0 0.0 0.0 1\n481 0.0 0.0 100.0 0.0 1\n488 0.0 0.0 0.0 100.0 1\n499 0.0 0.0 0.0 100.0 1\n507 100.0 0.0 0.0 0.0 1\n508 0.0 0.0 100.0 0.0 1\n509 100.0 0.0 0.0 0.0 1\n510" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 1\n514 0.0 100.0 0.0 0.0 1\n525 0.0 0.0 100.0 0.0 1\n547 0.0 0.0 100.0 0.0 1\n556 0.0 0.0 100.0 0.0 1\n578 0.0 0.0 0.0 100.0 1\n580 0.0 0.0 0.0 100.0 1\n581 0.0 0.0 100.0 0.0 1\n584 0.0 0.0 100.0 0.0 1\n592 0.0 100.0 0.0 0.0 1\n594 0.0 0.0 100.0 0.0 1\n600 0.0 0.0 100.0 0.0 1\n608" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 1\n622 0.0 0.0 100.0 0.0 1\n626 0.0 0.0 0.0 100.0 1\n628 0.0 0.0 100.0 0.0 1\n631 0.0 0.0 100.0 0.0 1\n635 0.0 0.0 100.0 0.0 1\n638 0.0 0.0 100.0 0.0 1\n647 0.0 0.0 0.0 100.0 1\n670 0.0 0.0 100.0 0.0 1\n671 0.0 0.0 0.0 100.0 1\n672 0.0 0.0 100.0 0.0 1\n676 0.0 0.0 100.0 0.0 1\n679 0.0 0.0 100.0 0.0 1\n680" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 0.0 100.0 1\n681 0.0 0.0 0.0 100.0 1\n682 0.0 0.0 100.0 0.0 1\n689 0.0 100.0 0.0 0.0 1\n690 0.0 100.0 0.0 0.0 1\n698 0.0 0.0 100.0 0.0 1\n705 0.0 0.0 100.0 0.0 1\n715 0.0 0.0 100.0 0.0 1\n716 0.0 0.0 0.0 100.0 1\n718 0.0 0.0 100.0 0.0 1\n722 0.0 0.0 100.0 0.0 1\n726 0.0 100.0 0.0 0.0 1\n729 0.0 0.0 0.0 100.0 1\n738" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 1\n740 0.0 100.0 0.0 0.0 1\n750 0.0 0.0 100.0 0.0 1\n751 0.0 0.0 100.0 0.0 1\n752 0.0 0.0 100.0 0.0 1\n760 0.0 100.0 0.0 0.0 1\n763 0.0 0.0 0.0 100.0 1\n771 0.0 0.0 100.0 0.0 1\n773 0.0 0.0 100.0 0.0 1\n777 0.0 0.0 0.0 100.0 1\n782 0.0 0.0 100.0 0.0 1\n784 0.0 0.0 100.0 0.0 1\n800 0.0 0.0 0.0 100.0 1\n801" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 100.0 0.0 0.0 1\n806 0.0 0.0 100.0 0.0 1\n809 0.0 0.0 0.0 100.0 1\n812 0.0 0.0 0.0 100.0 1\n814 0.0 100.0 0.0 0.0 1\n819 0.0 0.0 100.0 0.0 1\n822 0.0 0.0 100.0 0.0 1\n824 100.0 0.0 0.0 0.0 1\n826 0.0 0.0 0.0 100.0 1\n827 0.0 0.0 100.0 0.0 1\n830 0.0 0.0 0.0 100.0 1\n833 100.0 0.0 0.0 0.0 1\n834" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 1\n837 0.0 0.0 100.0 0.0 1\n857 0.0 100.0 0.0 0.0 1\n858 0.0 0.0 100.0 0.0 1\n860 0.0 0.0 100.0 0.0 1\n863 0.0 0.0 100.0 0.0 1\n873 0.0 0.0 0.0 100.0 1\n887 0.0 0.0 100.0 0.0 1\n896 0.0 0.0 100.0 0.0 1\n897 0.0 0.0 100.0 0.0 1\n898 0.0 100.0 0.0 0.0 1\n900 0.0 0.0 0.0 100.0 1\n907 0.0 0.0 0.0 100.0 1\n911" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 100.0 0.0 1\n917 0.0 0.0 100.0 0.0 1\n921 0.0 0.0 100.0 0.0 1\n925 0.0 0.0 0.0 100.0 1\n928 0.0 100.0 0.0 0.0 1\n936 0.0 0.0 100.0 0.0 1\n966 0.0 0.0 0.0 0.0 1\n967 0.0 0.0 100.0 0.0 1\n968 0.0 0.0 100.0 0.0 1\n970 0.0 0.0 100.0 0.0 1\n976 0.0 0.0 100.0 0.0 1\n977 0.0 0.0 100.0 0.0 1\n980" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": " 0.0 0.0 0.0 100.0 1\n987 0.0 0.0 100.0 0.0 1\n988 0.0 0.0 0.0 100.0 1\n991 0.0 0.0 100.0 0.0 1\n1003 0.0 0.0 100.0 0.0 1\n1004 0.0 0.0 0.0 100.0 1\n1007 0.0 0.0 0.0 100.0 1\n1011 0.0 0.0 100.0 0.0 1\n1014 0.0 0.0 100.0 0.0 1\n1015 0.0 0.0 100.0 0.0 1\n1028 0.0 0.0 100.0 0.0 1\n1033 0.0 0.0 100.0 0.0 1\n" | |
} | |
], | |
"prompt_number": 107 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions are inward and does not involve money for top 25 communities per volume\"\nplt.plot(in_n[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions are inward and does not involve money for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8lOW1B/DfAGGTYABhEgQNBhN2EqXEqmAgTtCLRBDc\nqjhFUGvb24t6gUi1om1xQK0iYnurgaagKCjECMhOUCgalaQiW0ATiRACEhIgLNne+8fphJBttnfN\n/L6fTz5CmHnfx2E4eeY85zmPTVEUBUREZFktjB4AEREFhoGciMjiGMiJiCyOgZyIyOIYyImILI6B\nnIjI4lp586DIyEh07NgRLVu2REhICLKyslBcXIx7770XP/zwAyIjI7Fs2TKEhYVpPV4iIqrDqxm5\nzWZDZmYmsrOzkZWVBQBwuVxwOBzIzc1FYmIiXC6XpgMlIqKGeZ1aqbtvKCMjA06nEwDgdDqRnp6u\n7siIiMgrXs/Ib731VgwZMgRvvfUWAKCoqAh2ux0AYLfbUVRUpN0oiYioUV7lyLdv346IiAgcP34c\nDocDffr0ueTPbTYbbDabJgMkIqKmeRXIIyIiAABdu3bFuHHjkJWVBbvdjqNHjyI8PByFhYXo1q1b\nvef17t0b3333nbojJiJq5qKionDw4EGvH+8xtXL27FmcPn0aAFBWVob169dj4MCBSE5ORlpaGgAg\nLS0NY8eOrffc7777Doqi8EtR8Nxzzxk+BrN88bXga8HXoukvXyfAHmfkRUVFGDduHACgsrISDzzw\nAJKSkjBkyBDcc889SE1NrSk/JCIi/XkM5L169UJOTk6973fu3BkbN27UZFBEROQ97uzUSUJCgtFD\nMA2+FhfxtbiIr4X/bIqiaHawhM1mg4aXJyJqlnyNnZyRExFZHAM5EZHFMZATEVkcAzkRkQa2bAH+\n8Ad97sVATkSkgQMHgMJCfe7FQE5EpIHjx4GuXfW5FwM5EZEGjh0DGmhBpQkGciIiDRw7xhk5EZGl\nHT/OGTkRkaUxtUJEZHF6plbYa4WISGXV1UCbNkBZGdC6te/PZ68VIiKDnTwJhIb6F8T9wUBORKQy\nPWvIAQZyIiLV6bnQCTCQExGpjoGciMjimFohIrI4zsiJiCyOgZyIyOKYWiEisjjOyImILE7P7fkA\nAzkRker07HwIsNcKEZGqKiuBdu2A8+eBli39uwZ7rRARGejECSAszP8g7g8GciIiFemdVgEYyImI\nVKV3xQrAQE5EpCq9a8gBBnIiIlVxRk5EZHEM5EREFsfUChGRxXFGTkRkcQzkREQWZ9rUSlVVFeLi\n4jBmzBgAQHFxMRwOB6Kjo5GUlISSkhJNB0lEZBWmnZHPmzcP/fr1g81mAwC4XC44HA7k5uYiMTER\nLpdL00ESEVlBeTlw5oxs0deTx0D+448/Ys2aNZgyZUpNE5eMjAw4nU4AgNPpRHp6urajJCKygJ9+\nAq64Amihc9La4+2eeOIJvPTSS2hRa2RFRUWw2+0AALvdjqKiIu1GSERkEUakVQCgVVN/uGrVKnTr\n1g1xcXHIzMxs8DE2m60m5dKQWbNm1fw6ISEBCQkJ/oyTiMj0/D1QIjMzs9EY640m+5HPnDkTixcv\nRqtWrXD+/HmcOnUKd911F7788ktkZmYiPDwchYWFGDFiBPbt21f/4uxHTkRB5J13gNWrgXffDew6\nqvYjnz17NgoKCpCXl4f33nsPI0eOxOLFi5GcnIy0tDQAQFpaGsaOHRvYqImImgGjUis+peTdKZSU\nlBRs2LAB0dHR2Lx5M1JSUjQZHBGRlRhRQw7wqDciItVMmQLExwOPPBLYdXjUGxGRQSyRWiEiosYZ\nlVphICciUgln5EREFsdATkRkYefOSa+V0FD9781ATkSkguPHZTbexEZ3zTCQExGpwKi0CsBATkSk\nCqMqVgAGciIiVXBGTkRkcf52PlQDAzkRkQrci51GYCAnIlIBUytERBbHxU4iIovjjJyIyOIYyImI\nLExRmFohIrK0sjLZmn/ZZcbcn4GciChARqZVAAZyIqKAGZlWARjIiYgCxhk5EZHFMZATEVkcUytE\nRBbHGTkRkcUZ2fkQYCAnIgqYkZ0PAQZyIqKAMbVCRGRxRi922hRFUTS7uM0GDS9PRGQ4RQHatAFO\nnQLatlXnmr7GTs7IiYgCUFoKtGunXhD3BwM5EVEAjE6rAAzkREQBMXqhE2AgJyIKCAM5EZHFMbVC\nRGRxnJETEVmc6QP5+fPnER8fj9jYWPTr1w9PP/00AKC4uBgOhwPR0dFISkpCSUmJLoMlIjIb06dW\n2rZtiy1btiAnJwfffPMNtmzZgm3btsHlcsHhcCA3NxeJiYlwuVx6jZeIyFRMPyMHgPbt2wMAysvL\nUVVVhU6dOiEjIwNOpxMA4HQ6kZ6eru0oiYhMyujOh4AXgby6uhqxsbGw2+0YMWIE+vfvj6KiItjt\ndgCA3W5HUVGR5gMlIjIjozsfAkArTw9o0aIFcnJyUFpailGjRmHLli2X/LnNZoPNZtNsgEREZlVd\nDZw4AVxxhbHj8BjI3S6//HKMHj0aX3/9Nex2O44ePYrw8HAUFhaiWxM/jmbNmlXz64SEBCQkJAQy\nXiIi0zh5EggNBUJCArtOZmYmMjMz/X5+k90Pf/rpJ7Rq1QphYWE4d+4cRo0aheeeew7r1q1Dly5d\nMGPGDLhcLpSUlDS44Mnuh0TUnO3dC4wbB+zbp+51fY2dTc7ICwsL4XQ6UV1djerqakycOBGJiYmI\ni4vDPffcg9TUVERGRmLZsmUBD5yIyGrMULECsB85EZHfPvgAWLoU+PBDda/LfuRERDoxy4ycgZyI\nyE8M5EREFmeG7fkAAzkRkd84IycisjgGciIii2NqhYjI4swyI2cdORGRHyorgbZtgQsXgJYt1b02\n68iJiHRw4gTQubP6QdwfDORERH4wS1oFYCAnIvKLGQ6UcGMgJyLygxkOlHBjICci8gNTK0REFmeW\nGnKAgZyIyC+ckRMRWRwDORGRxTG1QkRkcZyRExFZHAM5EZGFlZcDZ88CYWFGj0QwkBMR+ej4ceCK\nKwCbzeiRCAZyIiIfmWl7PsBATkTkMzNtzwcYyImIfGamhU6AgZyIyGdMrRARWRxTK0REFsfUChGR\nxZlpez7AQE5E5DPOyImILI6BnIjI4phaISKysLNngYoKIDTU6JFcxEBOROQDd+mhWfqsAAzkREQ+\nMVtaBWAgJyLyidkWOgEGctM6fRo4fNjoURBRXZYM5AUFBRgxYgT69++PAQMG4PXXXwcAFBcXw+Fw\nIDo6GklJSSgpKdF8sMHk7beBJ54wehRE5nX4MHDkiP73tWRqJSQkBK+++ip2796Nzz//HAsWLMDe\nvXvhcrngcDiQm5uLxMREuFwuPcYbNL79Fti3z+hRUHNw/jzw2muAohg9EnU9+yzw4ov639eSM/Lw\n8HDExsYCADp06IC+ffvi8OHDyMjIgNPpBAA4nU6kp6drO9Igs3s3cOAAUF1t9EjI6laulE93K1ca\nPRL1KAqwcSPw9df639tsnQ8BH3Pk+fn5yM7ORnx8PIqKimC32wEAdrsdRUVFmgwwGCkKsGcP0KYN\ncOiQ0aMhq0tNBSZNAmbOBCorjR6NOg4ckE8a33yj//+T2TofAj4E8jNnzmD8+PGYN28eQutUwtts\nNtjMVFRpcQUFQIcOwHXXAfv3Gz0asrK8PODf/wb++lege3dg0SKjR6SOTZuA0aOBK6/UPwVpxtRK\nK28eVFFRgfHjx2PixIkYO3YsAJmFHz16FOHh4SgsLES3Rv7PZs2aVfPrhIQEJCQkBDzo5m73bqB/\nf6B3bwnko0YZPSKyqoULgQcekE93Lhdw113y+/btjR5ZYDZulP+XCxeAr74CBgzQ795aLHZmZmYi\nMzPT7+fbFKXpJRBFUeB0OtGlSxe8+uqrNd+fPn06unTpghkzZsDlcqGkpKTegqfNZoOHy1MDXn4Z\n+PFHoFcvIDcXWLDA6BGRFVVVAZGRwJo1wMCB8r0JE4Cf/QyYMcPQoQWkqkoC6e7dwLvvAvn5wPz5\n+txbUeSH4E8/AZddpt19fI2dHlMr27dvx5IlS7BlyxbExcUhLi4Oa9euRUpKCjZs2IDo6Ghs3rwZ\nKSkpAQ2cLnLPyGNimFoh/61fL+kUdxAHgD//WSYKxcXGjStQO3fK/1dEBHD99foueJ45A7RsqW0Q\n94fHGXlAF+eM3C9Dh0q5WEQEMHy45MyJfDV+vKTlHn300u8/9hhw+eXA3LnGjCtQL74IFBXJv5FT\np+TfSWkp0MqrRHFgvv8eSEyUtQctqT4jJ31VVwN79wL9+gFXXSUf4crKjB4VWc2xY7IgeN999f/s\nueekksWqE4SNG4Fbb5Vfd+wI9Ogh/2b0YMaFToCB3HQOHZI3Z1iYfITr3Vvy5ES+WLwYGDdO3kt1\nde8us/JadQiWce4ckJUF3HLLxe/pmV5hICevuPPjbsyTk68URVo8TJ7c+GOmTwc+/lj2K1jJ9u3A\n4MGX9gLXM5CbcXs+wEBuOnv2MJBTYHbskGB+002NPyYsTCpXZs7Ub1xq2LhRctS1DRkiJYh64Iyc\nvMIZeX3btgHvv2/0KKwjNVVm45726P3mN1IB8q9/6TMuNdTOj7vFxem3w5OBnLzCQF7f3LnAtGlS\nP0xNO30aWLECeOghz49t2xZ44QWZmVuhuOzECVkvio+/9Pt6LngytUIe1a5YcYuJkTevFf6haaG0\nFNi6Vcrl1q83ejTm9/77QEIC8J82SB5NnAicPAmsXq3psFSxZQswbBjQunX9P9MrT84ZOXn0ww9A\np04StNzCwmQnmRF9l83g44+lQuG//xt46y2jR2N+qanAlCneP75lS6nLfvpp83/iaSit4qZXntyM\nnQ8BBnJTqZtWcQvm9MqyZcDddwP33y8zsqNHjR6Ree3eLeWrvvbmueMOmTwsWaLNuNSyaVPjgVyv\nGbkZOx8CDOSmwkB+KXdaJTlZys3Gjwf+8Q+jR2VeqanAL3/p+w5Hmw2YMwf4wx+kNawZ5efLLs7G\nmmPpseCpKMyRkxcYyC/lTqu4U02PPCL10Txso74LF2RG/fDD/j3/ppuA2FjgzTfVHZdaNm2SssPG\nKnH0WPAsLQXatZNOkmbDQG4iDOSXcqdV3IYOlfWCALp9NlsZGTJbjYry/xqzZ8vMvLRUvXGppan8\nuJvWeXKzLnQCDOSmUV0tDfJrV6y4xcQE3/mdtdMqbjabLORx0bM+d+14IPr3l8MaXnpJnTGppbq6\n6fy4m9Z5cgZy8igvD+jS5dKtx269egGFhdJnIlhkZFyaVnF78EHgk0+kppjEoUMyE73rrsCv9fzz\ncppQYWHg11LLrl1SvXXVVU0/TutAbtb8OMBAbhqNpVUAICREDgg4eFDXIRlq+XLgnnvqf79zZ6my\nWLxY/zGZ1aJF0uWwXbvAr9Wzp+TZX3gh8GupxZvZOKD9gidn5ORRU4EcCK48uTutMmZMw3/+yCOS\nXgnWTVK1VVdLIPeldtyTp58GPvjAPF03G+qv0pCOHeUHkVaNwBjIySMG8osaS6u4DR8us64dO/Qd\nlxlt2iQpudhY9a7ZuTPw5JPAM8+od01/lZdLr50RI7x7vJbpFaZWyKO6XQ/rCqZA3lhaxY2Lnhd5\nalfrr//5H2mm9Ze/ACUl6l/fW59/Lu/9zp29e7yWgZwzcmpSVZUE6YYqVtz69AmOQF5aKuWFjaVV\n3JxOYOVKc5bKeaOqSloyBJIeOnECWLcO+MUv1BuXW/v2Usf/5Zey2D5pkgRVvdNZ3pQd1sZATobJ\ny5OPbB06NP4Y94y8ueeFMzKk6VNjaRW3bt3kH/i77+oyrICUlEjOf/58+STxs59JPjc2VnK//uZ0\nlyyRH3hhYeqO1y0uDli6VN53fftKxZB705BeP0B9DeRaLngytUJN8pQfB4ArrpAGR8eO6TMmo3hK\nq9Tm3ulpFtXVskD4wQfAs89KDfzVV8uOw5QU+Xu+7jo5NLiwUALD2LGS858xQ05o95Y3pwCppVs3\nOVEoNxd45RXpeRMZKT+UvvxSu8nFqVNSetjUARl1abngyRk5NcmbQA40/zy5t2kVN4dD0gs7d2o6\nLI+++gq48UYJIklJUhpps0lP8I0bJSDt2AH87W/Ar38tgaljR+mJ8rvfSbA6ckRSax984F1g/PJL\n6YtS++xKrbVoIbPj5ctlK3xUFHDvvZLO+L//k17oatq6VXqPt23r2/O0SK9UV8t7rUsXda+rFgZy\nE2AgFxkZUp3gKa3i1qKFzEiNXPQ8ckQOOZ4yBfjxR2nu9NFHUoc9YQJw7bUyzqZEREjwX7JEDkS+\n7TbPpX+pqVLv7ekUIK2Eh0uZ4sGD0gZ33TrZsPPYY+r1O/E1reJ2/fXqb9UvLpb3ZUiIutdVCwO5\nCTCQi7q9VbwxaZIcplBWps2YmnL+vATxX/1Kgmqguerhw4HsbGlDe+ONwO9/D5w9W/9xZWUyK3Y6\nA7ufGlq0kPGuWCHv4yuvBEaOVCcFGEggV3tGbua0CsBAbriqKpl99e3r+bHNOZB72gTUmB49JFWx\nbJk242qMogCPPioVHWoeYBwSIjXc33wji+D9+gHp6ZemW5YvB26+GejeXb37qqF7d2mFO2mSrF8E\nkjs/ckR6z8fF+f7cuDhJV6m54GnmhU6Agdxw330nH1Mvu8zzY5tzIPc1rVKbETXlL78MfPstsHCh\nNumN7t2lImfhQvlBcccd8l4B1GmQpaVZs6S0MpDe8Zs2yfuhZUvfn6vFgidn5NQkb9MqgCwuHTok\nu92aG3/SKm6jR0tuevduVYfUqDVrgFdflVx4+/ba3mvkSCAnRxY14+PlyLuDB4H/+i9t7xuI1q2B\nf/5TKl3y8/27hrf9VRqjdp6cgZyatHt30xuBamvTRlIJ33+v7Zj05q6z9jWt4taqlXyc16MUce9e\nOYXnww9l1qeH1q0lKGZny0f8J54w76Kb26BBwLRp8lr5ehCIonjfX6UxaufJmVoxqeLihheS9ObL\njBxonumVQNIqbpMnS9WHlkeVnTwpteFz5gA//7l292lMz57Ae+9JULeCp56SNaB583x73v79klLp\n3dv/ew8Zom4g54zcpB5/XD6mGo2BXBbv/E2ruF1zjew6XLlSnTHVVVkpNdNjxsjsnzxr2RJIS5OT\nh3xJe7mrVQJZe3AveFZU+H+N2hjITai8XOpeV6yQ1XGjVFYCBw54V7Hi1twCeUkJ8Omnl54E5C93\ne1st/O//SmCZO1eb6zdX11wjgXziRO/XdvwtO6wtNFS9Bc9z54Dt2yVdZFZBGci3bZOA6HTKdmmj\nfPedVCf4smDW3AK5u7dKx46BX+vOO6WSRO0DOFJT5VSi997z/YR6kqqiiAjgT3/y/NjKStndO3Jk\n4PdVK0+elib9cWJiAr+WVoIykK9aJeVcTz4p/0iN6qDna1oFaH6BXI20ilubNjLzU3PRc/t22cGY\nkQF06qTedYOJzSZ/J3//O/DFF00/9uuvpT+N3R74fdXIk1dVSamp2dclgjqQX3WVlHH97W/GjMOf\nQB4eDly4IIu1VqdmWsVtyhSpX1YjN3rokPyQSUsz92zMCiIigDfekP4zTRUZBFqtUpsaM/IVK+SH\nys03qzMmrQRdIM/NlS3O7hNVpk2TVfULF/Qfiz+B3GZrPrNyNdMqbn37Sn+Tjz8O7DplZZKqeeop\n4Pbb1RlbsJswQVIUM2Y0/hg18uNugS54KopUKDU1XrMIukDuno27V8QHDZKgbsRhvv4EckAC+b59\n6o9Hb2qmVWoLtL2tokhlyqBBkn4j9cyfLy0HNmyo/2dlZdLVcfhwde4V6ILnli3y6eGOO9QZj5Y8\nBvKHH34YdrsdAwcOrPlecXExHA4HoqOjkZSUhBIjz4LykTuQ1zZ9OvDSS75vXAhERYUsyvXp4/tz\nm8OM3L0JSM20ituECZKLPXTIv+f/6U9AQYG0ZjWqu2Bz1amTtB2YPFnq8mvbtk36tTd1wIqvAsmT\nz5kjn9g9da80A49DnDRpEtauXXvJ91wuFxwOB3Jzc5GYmAiXy6XZANVUUiLbduvm4G65RTrXffSR\nfmM5eFB2abZr5/tzm0Mgd28CUjOt4ta+PXD//RIw6lIUmWUVFcnfQXa2/EBZtUpOw/njH2VRbsUK\n3/tgk3ccDklb/e53l35fzbSKm7958pwc+cSsxTF6WvBYTDVs2DDk12mYkJGRga1btwIAnE4nEhIS\nLBHM168Hhg2rX+5ns8msfM4cObFFj1mYv2kVoHmc37l8OXDffdpd/5FH5Af0unVy4MGpU/Lf06dl\ne3toqPwQCQ29+NWxo3ytWiWLc6SdOXMkh/3BB/IJCpBAvmCBuve5/nopG/XV3LnA1KlSCWUFNkXx\n3GwyPz8fY8aMwa5duwAAnTp1wsn/fC5SFAWdO3eu+f0lF7fZ4MXldfPQQ8ANN8gpLXVVVclC2dtv\nq5eja8rzz8sGiT//2ffnnjsnH1HPnLFmXXNJiVQM/fijNjNyt507ZRG7drAODTV/n5Jg8cUXklrL\nyZG/k6go4Kef1P37OX1aKr1KSry/bl6eLMp+/72278+m+Bo7Aw4DNpsNtiamsLNmzar5dUJCAhIS\nEgK9pV+qqqRr3R//2PCft2wpu/fmztUnkO/eLR8v/dGunbw58/MD60dhFC3TKrVdd52216fAxMdL\nT/dHHpH6/+HD1f8hGxoqk4Y9e4DBg717zl/+ImPSM4hnZmYiMzPT/wsoXsjLy1MGDBhQ8/uYmBil\nsLBQURRFOXLkiBITE9Pg87y8vC62b1eUgQObfsy5c4oSHq4ou3ZpP55+/RQlO9v/5yclKcqqVeqN\nR0+jRyvKkiVGj4LM4MIFRbnuOkW56ipFee01be7xwAOKkprq3WOPHVOUTp0U5T/hzTC+xk6/1mOT\nk5ORlpYGAEhLS8PYsWP9/0mik4aqVepq21YWYF56SduxlJfL9nx/KlbcrLrg6d4E5G/LWmpeWreW\n0t/jx2URVAu+9CZfsEBy9uHh2oxFKx4D+f33348bb7wR+/fvR8+ePbFo0SKkpKRgw4YNiI6OxubN\nm5GSkqLHWAOyerV39aC/+pUEfX9L17xx8KB83AukKsKqgVyvtApZR79+QGGh9335feVt5UpZGfDm\nm5JitRqPOfKlS5c2+P2NGzeqPhitHDokXQ7j4z0/tlMn2Qzy2muSK9NCIBUrbjExUvlhJYois69f\n/tLokZDZBNKL3pO4OGmmVlHRdA4+NVWq2qKjtRuLVixQ6h641atlm7W35/9NnSr9OrTqZ6JWILfa\njPzFF6UqYdw4o0dCwcS94NlUT/SKCpm4mb05VmOCIpB7kx+vrUcPqSj561+1GY8agfzKKy/WR1vB\nkiWy0Wb1au3PuSSqy1N6ZdkyIDLSu0/tZtTsA3lZGfDZZ0BSkm/PmzZN+kKcO6f+mNQI5C1aSHMo\nK8zKN2+WniWrV0v/dSK9NRXIFUXKjq3QHKsxzT6Qb94s/RbCwnx7Xr9+wNCh0sJUTeXlsuFAjbao\nVkiv7NolOzjffz/wH15E/mqq58q6dRLMb7tN3zGpqdkHcl/TKrVNny5N5auq1BtPbq40zldj66/Z\nA/nhw8Do0bJwPGKE0aOhYNZUS9s5c+TfupUbpDXrQK4ogQXym2+WpvIrVqg3JjXSKm5mDuSnTsmh\nHb/+tXUaD1Hz1aGDTKDqLnhmZclW/HvvNWZcamnWgTwnB7jsssDKidzNtNRqGRMMgbyiQjZV3HST\ntfOO1Lw0lCefO1fWb6zef6dZB/JAZuNuY8bIgumWLeqMSc1AHh0NHDigbx91TxRF+me0aQO8/rq1\nP65S81I3T37ggLQwnjLFuDGphYHcgxYtpIJlzhx1xrR7t3o72EJDZQNTQYE611PD88/L5gueOE9m\nU3er/ssvA48/Lp/arc6rNrZ+X9zANrZFRdLLpKhI+jkE4sIF4JprpHzOfdanv9e5/HKgtFS9Pscj\nRwIpKb6XV2ph4UI5XWfHDnVOQSdS05kzQLdu8u/vxAmZUO3fD3TtavTI6vM1dmo+IzeqHfmaNdKE\nJ9AgDkjQnTpV8mmB2L8f6NVL3Wb1ZsmTr1sHzJwJfPIJgziZU+0Fz9dfl0V4MwZxf2geyGfO1PoO\nDVMjrVLbo49KsMrL8/8ae/aoX0tthkCekwM8+KCc9qJGfTyRVoYMkfWuv/+9eR2srXkgX7ECeOMN\nre9yqQsX5Nio229X75qXXy7N5l95xf9rqLnQ6WZ0ID90SH5gvvmmlGsSmdn118s6jsMh6dLmQvNA\nvnatNEv68EOt73TRp59KwFT7Y9PUqdKG1d8eLFoF8n371L2mt0pKpFb8ySeBu+82ZgxEvrj+esmR\nW7U5VmM0ryvo1UvSHKNGyULDsGFa31H9tIpbeDiQmQkkJgLnzwNPPOHb87UI5FdfLR0Fy8r0XX2/\ncEG6GCYm+v46EBklPh545x3Z6dmc6Fa1smGD5FE3b9a254aiyCGu6enAoEHa3KOgQKpFJk3yfg3g\n/HkpFSwtVWcBtraBA4F//lO/N6eiAE6nVAEsX+59e2Ai8o7pqlbcHA7JL99+u5yerpV9+4DKSglu\nWunZU9I377wDPPOMd5U5+/dLTk7tIA7onyd/4QV5nZcsYRAnMgNdt2w8+KCc1HP77dJa1teOhN5w\np1W03lEYESFpFodDWt2+/HLT99QireKmZyBfvFgO3fj8c/YVJzIL3Xd2TpsmaYmxYyXdoDat8uMN\n6dpVSpm2bQN+85umt8o3h0C+dSvw1FOyMYq14kTmoXsgt9nkSKWuXYGHHlK3T0hxMZCdrW/L1E6d\nJP+/a5f0bGis5a3VA/n+/cA99wBLl2p3SC4R+ceQXistW8pH9GPHpOJBreXWdeuAhASgXTt1ruet\njh2lzPKHHyR91FDPY60DeW6udrtojx+XMkOXS6pUiMhcDGua1batVJZs2iT5ZTWsWiUHGRjhssvk\n/qdOSW/jCxcu/tm5c7LA27u3NvcOC5N89ZEj6l/73Dk5v/T++6VKh4jMx9Duh2FhMpOdP18qIAJR\nWSnXMirat2ZnAAAG7UlEQVSQA/JJYOVK+fW4cRfP+9y3T0oitex5rEV6pbpaygyvvloqVYjInAxv\nY9ujhzRaevJJyTX7a8cO4Kqr5HpGat1azqcMC5NF17IybdMqbloE8t//Xmb5ixZJO18iMidT/PPs\n318aLj3wAPCvf/l3DT2rVTwJCZE1gKuvlh2tn39uvUD+1lvyd5KeLmkwIjIvUwRyABg+XDqSTZgg\nfcSnT5eyPm8PPjZTIAdkQfftt2V36YIF1grkGzYAzz4rrYCvuEKdaxKRdkx3sER1NbBzpzSn+ugj\noLBQ8t7JyXJ4QkP9RPLygBtukMeaLQWgKBLQ775bmw1Qbrm5wG23yUGygfj2W6nz//BDffriEFF9\nvsZO0wXyuvLzgY8/lsD+xRcyc09OlrM0IyLkMW+8IWfxLVoU+JitqqJCjn4rKfE/FVJYKD8QX3xR\nmu4TkTGaXSCvrbRUFkYzMqRC5dprJaivXi07DsePV+1WltSnj+S1Bwzw/bllZcAtt8iO22eeUX9s\nROS9Zh3Ia6uokH4tGRlAVpYE9o4dNbmVZdx5p+yW9fUHWlUVcNddQOfOcu6m1n1qiKhpvsZOy55z\nHhIiudyRI40eiXn4suBZVQX8+9/SP2XVKvne8uUM4kRWZNlATvXFxEh73YZUVABffSV//umnwPbt\nQPfukk6ZMkVSVFq02CUi7TGQNyMxMVL/DUhnyS++kKC9dav8undvWSx++GFZGO7WzdjxEpE6LJsj\np/qOH5dNSEOGSAln//4SuG+5BbjpJunUSETmFzSLnVSfosimql69gJ//XMoRich6dD3qbe3atejT\npw+uvfZazJkzJ5BLkQpsNuCxx2TjFIM4UfDwO5BXVVXht7/9LdauXYs9e/Zg6dKl2Lt3r5pja1Yy\nMzONHoJp8LW4iK/FRXwt/Od3IM/KykLv3r0RGRmJkJAQ3Hffffjoo4/UHFuzwjfpRXwtLuJrcRFf\nC//5HcgPHz6Mnj171vy+R48eOHz4sCqDIiIi7/kdyG3cOUJEZA6Kn3bs2KGMGjWq5vezZ89WXC7X\nJY+JiopSAPCLX/ziF798+IqKivIpHvtdflhZWYmYmBhs2rQJ3bt3x9ChQ7F06VL07dvXn8sREZGf\n/N7Z2apVK7zxxhsYNWoUqqqqMHnyZAZxIiIDaLohiIiItKfJeTrcKHRRZGQkBg0ahLi4OAwdOtTo\n4ejq4Ycfht1ux8CBA2u+V1xcDIfDgejoaCQlJaGkpMTAEeqnoddi1qxZ6NGjB+Li4hAXF4e1a9ca\nOEL9FBQUYMSIEejfvz8GDBiA119/HUBwvjcaey18fm/4u9jZmMrKSiUqKkrJy8tTysvLlcGDByt7\n9uxR+zaWERkZqZw4ccLoYRji008/VXbu3KkMGDCg5nvTpk1T5syZoyiKorhcLmXGjBlGDU9XDb0W\ns2bNUl555RUDR2WMwsJCJTs7W1EURTl9+rQSHR2t7NmzJyjfG429Fr6+N1SfkXOjUH1KkGavhg0b\nhk51OnVlZGTA6XQCAJxOJ9LT040Ymu4aei2A4HxvhIeHIzY2FgDQoUMH9O3bF4cPHw7K90ZjrwXg\n23tD9UDOjUKXstlsuPXWWzFkyBC85e4xG8SKiopgt9sBAHa7HUVFRQaPyFjz58/H4MGDMXny5KBI\nJdSVn5+P7OxsxMfHB/17w/1a3HDDDQB8e2+oHsi5UehS27dvR3Z2Nj755BMsWLAAn332mdFDMg2b\nzRbU75fHH38ceXl5yMnJQUREBJ566imjh6SrM2fOYPz48Zg3bx5C63R5C7b3xpkzZzBhwgTMmzcP\nHTp08Pm9oXogv/LKK1FQUFDz+4KCAvTo0UPt21hGREQEAKBr164YN24csrKyDB6Rsex2O44ePQoA\nKCwsRLcgPt2iW7duNQFrypQpQfXeqKiowPjx4zFx4kSMHTsWQPC+N9yvxYMPPljzWvj63lA9kA8Z\nMgQHDhxAfn4+ysvL8f777yM5OVnt21jC2bNncfr0aQBAWVkZ1q9ff0nVQjBKTk5GWloaACAtLa3m\njRuMCgsLa369cuXKoHlvKIqCyZMno1+/fpg6dWrN94PxvdHYa+Hze0ODhVhlzZo1SnR0tBIVFaXM\nnj1bi1tYwvfff68MHjxYGTx4sNK/f/+gey3uu+8+JSIiQgkJCVF69OihLFy4UDlx4oSSmJioXHvt\ntYrD4VBOnjxp9DB1Ufe1SE1NVSZOnKgMHDhQGTRokHLnnXcqR48eNXqYuvjss88Um82mDB48WImN\njVViY2OVTz75JCjfGw29FmvWrPH5vcENQUREFqfJhiAiItIPAzkRkcUxkBMRWRwDORGRxTGQExFZ\nHAM5EZHFMZATEVkcAzkRkcX9P5w9jkr+g6WNAAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x116595990>" | |
} | |
], | |
"prompt_number": 118 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions are inward and involve money for top 25 communities per volume\"\nplt.plot(in_y[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions are inward and involve money for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VFWWB/BfsQkxgKgkQYIGA5EQkkqUBhdoE2JAW2Ww\ncWxRY1qC0zIfdWjQZrHV8OlpDN322ICOrYJt3BhXFm2MLFKyuGAkyKICsmiAJAJJgBC2pN78cXjZ\nqKpUvXpr8vt+PvkIlapX16Jycurcc+91KYqigIiIHKud1QMgIqLwMJATETkcAzkRkcMxkBMRORwD\nORGRwzGQExE5XMBAfvLkSQwdOhSpqakYOHAgpk+fDgDIy8tDbGws0tLSkJaWhsLCQlMGS0RE53K1\n1EdeU1ODiIgI1NbWYtiwYXj66aexatUqdO3aFZMnTzZrnERE5EeLpZWIiAgAwOnTp1FXV4cePXoA\nALiOiIjIHloM5F6vF6mpqYiOjkZGRgaSkpIAAPPmzYPb7UZubi6qqqoMHygREfnWYmlFdeTIEYwa\nNQr5+fkYOHAgevbsCQB4/PHHUVpaigULFhg6UCIi8q1DsHfs3r07br75ZhQVFSE9Pb3+9gkTJuDW\nW2895/79+vXDrl27dBkkEVFbER8fjx9++CGkxwQsrRw6dKi+bHLixAmsWLECaWlpKCsrq7/PokWL\nkJycfM5jd+3aBUVR+KUoePLJJy0fg12++FrwtXDaa3H6tIKhQxV4veY8n5YEOGBGXlpaipycHHi9\nXni9XmRnZyMzMxP33nsvNm3aBJfLhb59++KFF14I+YmJiJygshL48kvg+HEgMtLq0fgWMJAnJydj\n48aN59z+6quvGjYgIiI7qayU/1ZU2DeQc2WnCRrPKbR1fC0a8LVoYOfXoqKi6X/tKOiulZAv7HLB\noEsTEZlm2TLg5puBVauAESOMfz4tsZMZORFRAGomrpZY7IiBnIgogMY1crtiICciCoCBnIjI4Soq\ngKgoBnIiIseqrATi4xnIiYgcq6IC6NePgZyIyLHUjJxdK0REDsWMnIjI4VgjJyJyMEVhICcicrQT\nJwCXC7j4YuDUKfmyIwZyIiI/KiuBHj0kmF94oX0nPBnIiYj8qKiQAA4wkBMROZKakQMSyO1aJ2cg\nJyLyo3lGzkBOROQwjTPyHj0YyImIHIelFSIih2NphYjI4Zpn5OxaISJyGGbkREQO1ypq5CdPnsTQ\noUORmpqKgQMHYvr06QCAiooKZGVlISEhASNHjkRVVZUpgyUiMlPjjNyxXSudO3fG6tWrsWnTJmze\nvBmrV6/GunXrkJ+fj6ysLOzYsQOZmZnIz883a7xERKZpFRk5AERERAAATp8+jbq6OvTo0QNLly5F\nTk4OACAnJweLFy82dpRERBZoNYHc6/UiNTUV0dHRyMjIQFJSEsrLyxEdHQ0AiI6ORnl5ueEDJSIy\nk9cLVFU1BPILLgCOHpXb7aZDS3do164dNm3ahCNHjmDUqFFYvXp1k++7XC64XC6fj83Ly6v/c3p6\nOtLT08MaLBGRWY4dAyIigA5no2T79kDXrsCRIw3BXQ8ejwcejyesa7gURVGCvfOf/vQndOnSBfPn\nz4fH40FMTAxKS0uRkZGB77//vumFXS6EcGkiIlvZswfIyAD27m24LT4eWL5c/msULbEzYGnl0KFD\n9R0pJ06cwIoVK5CWlobRo0ejoKAAAFBQUIAxY8ZoHDIRkT01ro+r7Nq5ErC0UlpaipycHHi9Xni9\nXmRnZyMzMxNpaWm44447sGDBAsTFxeHtt982a7xERKZo3HqosuuEZ8BAnpycjI0bN55z+4UXXoiV\nK1caNigiIqv5ysjtGsi5spOIyAd/gdyO+60wkBMR+eCk0goDORGRD06a7GQgJyLygRk5EZHDcbKT\niMjhmJETETkcu1aIiByOpRUiIofzVVpRu1bsto0UAzkRUTNnzgA1NbLbYWOdO8suiDU11ozLHwZy\nIqJmqqpk//F2PiKkHcsrDORERM34qo+rGMiJiBzAV31cZcfOFQZyIqJmmJETETlcoEBux/1WGMiJ\niJppqbTCQE5EZHMsrRARORwnO4mIHI4ZORGRw7FGTkTkcOxaISJyOJZWiIgcrlWVVkpKSpCRkYGk\npCQMGjQIc+fOBQDk5eUhNjYWaWlpSEtLQ2FhoSmDJSIyQ6CMvGtX4ORJ2SHRLlyK4n9n3bKyMpSV\nlSE1NRXV1dW46qqrsHjxYrz99tvo2rUrJk+e7P/CLhcCXJqIyJZOnJAgfuIE4HL5vk9UFLB1q/xX\nb1piZ4dA34yJiUFMTAwAIDIyEomJidi/fz8AMEgTUaukZuP+gjjQUF4xIpBrEXSNfO/evSguLsbV\nV18NAJg3bx7cbjdyc3NRVVVl2ACJiMwUqD6uslvnSsCMXFVdXY3bb78dc+bMQWRkJCZOnIgnnngC\nAPD4449jypQpWLBgwTmPy8vLq/9zeno60tPTdRk0EZFRAtXHVXpOeHo8Hng8nrCuEbBGDgBnzpzB\nLbfcgptuugmTJk065/t79+7Frbfeii1btjS9MGvkRORAS5cCL70EfPCB//tkZwNZWcC99+r//Fpi\nZ8DSiqIoyM3NxcCBA5sE8dLS0vo/L1q0CMnJySEOlYjInoIprdhtv5WApZX169fj9ddfR0pKCtLS\n0gAAs2bNwsKFC7Fp0ya4XC707dsXL7zwgimDJSIymtmlFT0EDOTDhg2D1+s95/abbrrJsAEREVkp\n2Ix8xw5zxhMMruwkImokmIzcbl0rDORERI0Em5EzkBMR2ZQTa+QM5EREjQQbyO3UtcJATkTUCEsr\nREQOF0xGfsEFQFUV4KOpzxIM5EREZylKcIG8Qwfg/POBo0fNGVdLGMiJiM46dgzo0gXo2LHl+9qp\nvMJATkR0VjD1cRUDORGRDQVTVlHZqXOFgZyI6KxQAzkzciIim2FphYjI4ULJyO203woDORHRWczI\niYgcjjVyIiKHCzUjZ9cKEZHNMCMnInI4BnIiIocLpbTCrhUiIhvSkpErirFjCgYDORHRWaFk5F26\nAC4XcOKEsWMKBgM5ERGA2lrg+HGgW7fgH2OXzhUGciIiyEER3bsD7UKIinaZ8Aw45JKSEmRkZCAp\nKQmDBg3C3LlzAQAVFRXIyspCQkICRo4ciaqqKlMGS0RklFDq4ypHBPKOHTvimWeewbZt2/DFF1/g\nueeew3fffYf8/HxkZWVhx44dyMzMRH5+vlnjdZyaGmD6dKtHQUQt0RLI7dK5EjCQx8TEIDU1FQAQ\nGRmJxMRE7N+/H0uXLkVOTg4AICcnB4sXLzZ+pA7l8QD5+faooxGRf6FMdKockZE3tnfvXhQXF2Po\n0KEoLy9HdHQ0ACA6Ohrl5eWGDdDpCgvlv1u2WDsOIgrMyaWVDsHcqbq6GmPHjsWcOXPQtWvXJt9z\nuVxwuVw+H5eXl1f/5/T0dKSnp2seqFMVFgJDhgDffAP88pdWj4aI/NGakYf7advj8cDj8YR1jRYD\n+ZkzZzB27FhkZ2djzJgxACQLLysrQ0xMDEpLSxEVFeXzsY0DeVu0e7ecsj1pErBxo9WjIaJAtGbk\nP/0U3vM2T3JnzpwZ8jUCllYURUFubi4GDhyISZMm1d8+evRoFBQUAAAKCgrqAzw19fHHwKhRQGoq\nsHmz1aMhokAqKpxbWgkYyNevX4/XX38dq1evRlpaGtLS0lBYWIhp06ZhxYoVSEhIwCeffIJp06aZ\nNV5HKSyUQJ6cDGzbBtTVWT0iIvKnsjL00opdulYCllaGDRsGr9fr83srV640ZECtxenT0rEyfz7Q\ntSsQEwPs3AkMGGD1yIjIFydPdnJlp0E++wy44gqgZ0/5u9vN8gqRnbWJ9kMKTWEhcOONDX9PSZHO\nFSKyJ60ZuR3WiDCQG0Stj6vcbgZyIjvTkpF36yart8+cMWZMwWIgN0BpKfDjj8DQoQ23sbRCZG9a\nMnKXC7jgAtlwy0oM5AZYvhy44QagQ6Op5Lg4+ce2Qz2NiJo6eVK2sY2ICP2xduhcYSA3QPOyCiBb\nYyYnMysnsiO19dDPIvWA7DDhyUCus7o6YMWKcwM5wPIKkV1pKauo7DDhyUCus6+/lp7xPn3O/R47\nV4jsSctEp4oZeSvUvO2wMXauENlTuBk5A3kr46s+rkpOBr79ViZViMg+wsnIOdnZylRWAlu3AsOH\n+/5+ZCRwySWyVJ+I7IMZOdVbuVKCeOfO/u/D8gqR/WjZ+VDFQN7KBKqPqxjIiexHy86HKnattCKK\n0rD/eCBsQSSyH5ZWCIDsN96pE9C/f+D7sQWRqKnvvgMGDpRGAKuw/ZAANJRVWloZFhcHHDsGHD5s\nyrCC8tZb1m/6Q23X55/LQroRI4D1660ZQzgZObtWWpFAbYeNuVySldulvPLZZ8Cdd8oPE5EVtmwB\nJkwACgqA224Dliwxfwzhth9WVgJ+zuAxBQO5Do4fB778UjKKYNipvDJzpqxCXbfO6pFQW7V5s6yx\nGDUKWLYMmDgRePFFc8cQTkbesaNstnXsmL5jCgUDuQ48HmDwYDnSLRh26Vz57DNg+3bg6aeBtWut\nHg21RYoigTwlRf4+eDCwZg0we7YkGYpizhjCCeSA9Z0rDOQ6CKbtsDG7dK7MnAk89hiQkdFQpyQy\nU3m5lCR69Wq4rV8/STKWLgUeeMD4ldDV1cB550mzglZWT3gykOsgmLbDxgYNkpl6K5fqq9l4To6c\nKxoTI7VKIjNt2SLZePMmgeho+aS7Zw9w++3AiRPGjSHcbBywPpB3aPku5lmxQmrNdXWBv2prm/79\nmmvkN7cVdu2S2pjbHfxjzj8fiI2VQJqUZNzYAlGzcTULGT5c6uSpqdaMh9omtT7uS9euwIcfAuPH\ny0EtH3ygfUIykHAmOlVWd67YJiOfP1+yw5oaCc7t2wNdugDdu0vG2Ls30LevnEyfkgL84hfAddcB\n118PzJgB7NtnzbjVbDzUDemtLK80zsZVw4axTk7mUzNyfzp1Al59Fbj2WnmP/vST/mNoExn5+PHj\n8a9//QtRUVHYcvazd15eHubPn4+ePXsCAJ566incGEqRuJn/+R9g7lzg009bXlDjy5Yt8vi//EXz\nEDQrLATGjQv9cWrnipbHhqt5Ng5IRj5jhkz8aDklhUiLzZulSyWQdu2Av/5V6ujXXQd89JGUJ/Wi\nR0ZudSBvMSO/7777UFhY2OQ2l8uFyZMno7i4GMXFxZqDuKIATz4JvPCCzFRrCeIAMGkSsGABcPSo\ntsdrdfq0/PLJygr9sVZ1rvjKxgH5tKMoUpMkMkNtLfD998GXFydPlmQtM1PihV70ysht3bUyfPhw\n9PDxf6mE2Rfk9UoAXrJE/lEuvVT7tS67TMobZveerl8PDBgAXHxx6I+1KpD7ysYBycLVOjmRGXbu\nlG2dIyODf8y4ccAbbwBjxwLvvafPOMLZ+VBl+4zcn3nz5sHtdiM3NxdVVVUhPba2FsjNBYqKZGY6\nOlrrKBo88ggwZ45kyWYJte2wsUsvlfmAgwf1HVMg/rJxFevkZKbG/eOhuOEGmZuaOFGf/VnC2flQ\nZXUg19S1MnHiRDzxxBMAgMcffxxTpkzBggULzrlfXl5e/Z/T09ORnp6OU6eAu++WMsjy5dLBoYcr\nrwQSEmTfkOxsfa7Zko8/Bv73f7U9tvFS/cxMfcflT16e72xcNXw48Nxz5oyFaMsW/x0rLbnySkmi\nvvhCNtwKR2VleBUBILyuFY/HA4/HE9bzawrkUVFR9X+eMGECbr31Vp/3axzIAclAf/1rWc76wQfS\nhK+nRx8F/vAH4J57jJ+wO3BAZtCHDNF+DbW8YkYgX78e2LHDfzYOyA9VWZl8Sjg7j01kmM2bA78f\nW5KaCmzaFP44rJ7sVJNc1cyZM0O+hqbSSmlpaf2fFy1ahOQgfq0eOSJ17Kgo4O239Q/igFxfUaQf\n3WjLl8tHvA5hdOKbuXmWv9p4Y+3bS08+6+RkhnAyckC/eabW0H7YYiAfN24crr32Wmzfvh19+vTB\nyy+/jKlTpyIlJQVutxuffvopnnnmmYDXOHhQloG73cArr4QX/AJxuaRW/te/GnP9xkJdzemLWROe\n69fLxFIw2Q8nPMkMR48CP/8MxMdrv4b68xPufix6ZeSWnhKkGES9dEmJogwYoCiPPaYoXq9Rz9bg\n1ClF6d1bUTZuNO45amsV5aKL5P8tHMePK0qXLopy+rQ+4/InK0tRXnopuPt++qmi/OIXxo6HtPvD\nHxRl506rRxG+9ev1eZ/FxirK7t3hXaNvX0X54YfwruH1Ksp55ylKTU1411GUhtgZCkNXdv7wg2R4\n48cD//3f5iw06dQJePhh4G9/M+45iopkcUJsbHjXiYiQSZbt2/UZly9qNn7vvcHdf8gQOe3o+HHj\nxkTaeL2y5qI1fGIKtDQ/FHrUyfVoP3S5rM3KDQ3k118PTJsmk5Bm+t3vZPWXEct5gfDaDpszem/y\nYGrjjXXuLD8cX3xh3JhIm127ZK7JyiPR9NLS0vxghRvI6+pk98Pu3cMfi5X7rRgayJ9+WoKq2bp3\nB+67D/j73425vh71cZWRdfJQs3EV6+T2VFQki2e++87qkYRPr4w83J+fI0dkc6727cMfi5UTnoYG\nciv2EVH913/JxGqIa5VaVFEBbN0qi2f0YOTmWaFm4youDLKnr74C/v3fnZ+RK0r4HSuqcDNyPSY6\nVa02kFupTx/g5pulpqinlSuBX/5SShB6MKq0ojUbB2Rjog0beCCz3RQVAXfcIWsYamqsHo12JSWy\ns6keaxUuv1yCp9batB6th6pWWyO32iOPyK6Ip07pd82PP9avPg7IL5yTJ6UVS08treIMpEcPIC5O\nn8UWpI+6OqC4GBg6VDaXM3KC3Gh61ccB2RkxnGSIGbkDuN2ys9rChfpcT1FkolOv+jggs916l1fW\nrZOOIS3ZuIrlFXvZvl32JOrRQ5akO7m8old9XBVOeUXvjJyB3CCPPiqTrnoc4rp1q5RU+vUL/1qN\n6V1e0Vobb4wTnvby1VdymArg/ECuZ0YOhDfhqUfroarVdq3YgbqM/qOPwrvOqVPAn/8M/OpX+vfD\n69m5okc2DkhGvm6dOaeYU8uKiuSEecD5gdxuGTlLKw6gLtt/+mnt19i3T3ria2uBWbP0G5tKz0Cu\nRzYOSO0+IkI22iLrtZZAfuqU9MMnJup3zUGDpPSkZQtrllYc5De/kSz1669Df+yaNbLaccwY4J13\npOdUb0lJEjDD3Ut9zRp9snEV6+T2cOaMZLFXXil/79dPFrvpOYlvlu+/l9Oo9Or6AqQDpm9fbf31\nek92smvFQB07Sl95KFm5ogDz5knf7j//KStUjdpioEsX6RL5/nvt1/B65SisP/85/GxcxTq5PWzb\nJqdgqUlEp04SuJz4aUnrYRItcbu1lVeYkTvM/ffL9rZ797Z83xMngN/+Fpg/H/j8c327VPwJt7zy\n2mvyC0vPRVh2yMhPnABGj5a+9raqcVlF5dTyil4LgZrTWidn+6HDdOsmx8u1sOMufvxRAtjp03I0\n2uWXmzO+cPYmr64GZsyQ/zc9PzUkJsrK2AMH9LtmKLxe+YW6bh2waJE1Y7CD1hTIjcrIU1O1JUJ6\nZuTdusnPYm2tPtcLRZsJ5IDsivjaa/5/a37yiSy4uPtu4M039TuGLhjhZOSzZ8t+71dfre+Y2rVr\n6F6xwh//KL9E3nxT/m3aqqKihtZDlVMDuVEZuVpaCbXLSs/2w3btZJ8nvbcFCeq5zX9K6/TuLR/T\n//GPprcrimx7e9ddEjQmTzZny93GtAbyH3+Uc0Ofekr/MQHWBfL582VyedEiID1d6sRHjpg/Dqud\nOiUB2+1uentiovMC+eHDkrFedpn+146OlgnUkpLQHqdn+yFgXXmlTQVyAJgyRSYxT56Uvx8/3hDA\nv/wSGDHCmnH17i3dCeXloT1u2jTgoYekXdAIw4ebXydfsUKy8WXLgIsvlh/Qq6+Wrpy2ZvNmWZIf\nEdH09oQEaeNz0n44W7ZIq6BRSVKoE56nTsnrp+cnb6s6V9pcIE9OlnraG28Au3cD114rXQDr1hmT\nKQRLXaofSlb+2WcybiP3e7/yStl8y6xseNs2KW29844EMNWIEW2zvOKrPg5Ip1OfPtJu6hRG1cdV\noU54qvVxPX+xMCM30aOPysKZa66RbpZXXpEfDKuFEsi9XmDSJCmpGFnL79RJ6rOff27cc6jKyoBb\nbpFJ2+HDm36vrQbyxkvzm3Nandyo+rgq1AlPPSc6VQzkJsrIkC1u33kHePBB8+vh/oTSufLGGzLu\nu+4ydkyAOW2INTUyf3HffZKRNzd4sLSOHjxo7Djsxl9GDjgvkNstI9ez9VBl1X4rbTKQu1zA88/L\nvuJ2EmxGfvw4MH26ZK7tTPgXNHphkNcL3HMPMGAA8Pjjvu/ToYOMw+Mxbhx2U1MjpRN/WayTArnX\nK2UzIzPyfv1kjinYMiAzcjJEUpLUo1taev2Xv0hQu/Zac8Z19dWyvYFRS8KnTpU3/0svBf501NbK\nK5s2SbA+7zzf33dSIN+9G7joIn3OxvSnfXuZTA32U62erYcqBnJC586yACnQUv2ffgKefRbIzzdv\nXN26AVdcoW2vmpb84x/A0qXA++/7D1iqzMy2FcgD1ccB+QSzY4c1C1BCpffWtf6EUl7Ru/UQsHHX\nyvjx4xEdHY3kRp+JKioqkJWVhYSEBIwcORJVVnTAt1It7U0+fTrwn/9pfoeNEW2IhYUy6bxsWXA/\nUMnJ0ou8b5++42hs6VLg0CHjrh+KQPVxQCa5Y2KAPXvMG5NWem9d608oE55tqrRy3333obCwsMlt\n+fn5yMrKwo4dO5CZmYl8M9PDVi5Qnfzzz6VGPHWqqUMCoP/CoG++AbKzgXffBeLjg3tMu3YyUb16\ntX7jaOynn4A775RPHzNmWB/QWwrkgJRXtOz6ZzY7ZuRGTHbaNpAPHz4cPZr92lq6dClycnIAADk5\nOVi8eLExo2uD/AVyrxf4/e9lP/TISPPHNWyYHOjs9YZ/rQMHgFtvlYVZ110X2mONrJO/+65sOrZx\no/wwqgH98GFjni+Qo0flF8vAgYHv55Q6uVkZeXKyvB7BLJQyIiN3VNdKeXk5oqOjAQDR0dEoD3U5\nIvmlllaa7xnxf/8ntdDsbGvGFRMjk1XhBo3qaukVf+AByX5DNWIEsGqVMScXvfOObFt82WVSu9+4\nUYJ4QoIc1mFmQN+4UX6pd+wY+H5OCOQ1NVIOS0gw/rnOP18WSgVzOHVrysg7hHsBl8sFl59Wg7y8\nvPo/p6enIz09Pdyna/UuuUSCVFkZ0KuX3FZTI0vx33zTnHZDf9Q6+aBB2h5fWyt976mpUuvXIiFB\nTpTftUvfs1NLSmTiMDOz4bbLLgNeeEHGOmuWPPfEibIXj94BoLlgyiqABPLnnjN2LOHatk1eu5Z+\nKelFLa+09D41KiOvrJSf4WDXp3g8HnjC7KvVFMijo6NRVlaGmJgYlJaWIioqyuf9GgdyCk7jpfpq\nIH/6aVmFOmyYtWMbNgxYuVKCWahOnpSyxZkzku1qXYTlcjWUV/QM5O+9JwuSfAWbuDjgxRelzDJr\nlmwdYHRALyqS82FbkpgoXU5er7W/5AMxqz6uUic877kn8P2MaD/s1Em6z6qrgz9NrHmSO3PmzJCf\nV9M//ejRo1FQUAAAKCgowJgxY7RchvxovMJz3z5gzhzZqtZqWhcGHTsmQalTJ2DJkvBPMDKiTq6W\nVQJRA3pRkSw86d9fFjAZ8VHa19a1vnTrJsHop5/0H4NezKqPq4Kd8DSi/RCwprzSYiAfN24crr32\nWmzfvh19+vTBP//5T0ybNg0rVqxAQkICPvnkE0ybNs2MsbYZjSc8Z8yQenJcnKVDAiAZ8KlTsnVu\nsA4dksDbv7+UhvQ4hk4N5HrVyfftk86PG24I7v59+8ripa++AkpLpWywbJk+YwEkCPz8c/A1ZbvX\nyc3OyIPZm1xRjCmtANYE8hZLKwsXLvR5+8qVK3UfDAm3W8opGzZIKSOYiRszuFwNWXkwfewlJcDI\nkcBtt8lZonrtaaOeX7ltm/Z6fWNqWSXUXzKXXy77pv/qV1JyCaYUEoyvvwbS0mSlYjDUQK7X8+tJ\nUSQpMTMj79VL3msHDsj20L4cPy5ltJYWoWlhReeKTatqbVtiokzmPfSQBMBga21mCHYDrR07JOjn\n5kqQ03tjMj3LK+++23JZJZDRo2UJul793MFOdKrsnJGXlcl/1fkeM7hcLZdXjMrGAZuWVsh8nTvL\nIpkzZ4Cz7fq2EUydfONGOdXniSeARx4xZhx6BfIDBySzD7as4kuHDvLv9PLL4Y8HCL4+rrJzIFe3\nrjV7h9GWVnga0XqosmKZPgO5TT38sEys2a0Twe2WiTV/PdVr1gA33ij7wYwfb9w4MjKATz+VVsRw\nvPee9LWH+xF7/Hjg1Vfl0O5wffVVaBm5euybEb314TJ661p/mJGTLfzHf4T2w2yWDh1kN8TPPjv3\nex98AIwdCyxcCPz618aOIyZGeu6Li8O7TjDdKsHo3182sfrww/CuU14uXT7BblsASOA4/3xg//7w\nntsIRh8m4U9Lx74Z0XqoYiAnR/C1gdbrr8tpS//6V9NFNUYKt7xSWiqBZuRIfcaTmwssWBDeNb7+\nGrjqqtBLEXY9jNmqjPyKK6Qb6dgx3983qvUQYCAnh2i+gdbcubL68ZNPgCFDzBtHuIH8/fflpCi9\nOhduv102Ngtnd8aWtq71x4518tpa6bhKSjL/uTt0kOfdssX3940srbBrhRxh6FDJtGpqgLw82fxq\n7dqWN3jS2/XXy0ZeWuvSepVVVBERwG9+I2fAahVqx4rKjoF8xw5p/zPyTNlAAk14Gj3ZyUBOthcR\nIf3bo0fLSs1166xZsHThhbJoZsOG0B9bViY/5KNG6Tum3FzpXtGyS6SitK5AbvZCoOYCTXgaPdnJ\nrhVyhKwsyYRXrwbOboRpCa3llUWLZAFN5876jueqq2TZvJY90w8ckHLEpZeG/lg1kNupc8XspfnN\nBZrwZEYU24PoAAAMdUlEQVROBCmpfPopcMEF1o5DayDXu6yicrm0T3qq9XEtPdc9e0qrqp12lLY6\nI09JAbZu9X0UHtsPiSDLx81e5OHLsGFSjqipCf4xP/8si5b0Lquo7r5b9l4J9YdZa1kFkH8Lu5VX\nrM7Iu3WTFaU7d577PSPbDyMi5JfHyZPGXN8XBnJytK5d5SO0r752f95/H7jpJqBLF2PGdOGFUrZ5\n443QHhdOIAfsFciPHJEN0y6/3Npx+JvwNLL90OVq2JfcLAzk5HihlleMKqs0ppZXgq1ZhzPRqbJT\nIN+6VcYT7MZfRvE34WlkaQUwv7zCQE6OF0ogP3hQAuZNNxk7powMOXdz48bg7r93r/SzX3KJ9ue0\nUyC3uj6u8jXh6fXKv42R8ztmd64wkJPjXXONZIBHjrR830WLZC8Yo8oqqnbtZP+V+fODu3+42Thg\nr0BudX1c5SsjP3JEDjA38tMCM3KiEHXuLIuU1qxp+b5mlFVUv/0t8NZbwU3E6hHIe/WSltBDh8K7\njh7skpHHxsououp2uoCxrYcqBnIiDYIprxw6JIuHzDqAITZWNhh7772W7xvq1rW+qJ0reu2LrpWi\nWLdZVnPq3uSNJzyNro8D5i/TZyCnViGYQL54sbQcRkSYMyYAmDCh5fKK19uwWVa47FBeKSmR1/ji\ni60dh6p5ndzI1kMVM3IiDQYPlgnDgwf938fMsorqllvklHtfvcyqH36QibeePcN/PjsEcrvUx1XN\n6+RGth6qGMiJNOjYUbbX9Xh8f//wYeCLL8w/17JTJyA7O/DpQXrUx1V2CeR2qI+rfAVyMzJydq0Q\naRCovLJ4sewPY8VOfLm5siOir6XigPata32xQyC3S31cNWAA8OOPcuAywMlOIlsLFMjDPWA5HImJ\nssJx2TLf39czI+/TR3qkq6r0uZ4WdsvIO3WSYL51q/zdrIycgZxIg5QU6UxpfrBDRYUs4b/5ZmvG\nBfjfSKuuTo6ru/JKfZ7H5ZJfHFZ1rpw6BezeLWOwE7e7oXPFjMlOR3WtxMXFISUlBWlpaRhi5tEw\nRD60aycrKptvIbtkiRw/FxlpzbgA4I47pM+9tLTp7d9/L/3fegYWK8sr330nnz70OnVJL43r5Jzs\nbMblcsHj8aC4uBgbtOzuT6QzX+UVK7pVmouMlKPgCgqa3q5nfVxlZSC3W31c1TiQm5GRd+8u54XW\n1Rn7PKoO4V5AsdNO9tTmjRgBzJ4ti1JcLsm+1q2TFZZWy82VDpapUxu2ANazPq5KTNR2sEUw6uok\nEB486Ptr7Vr59GE3brfU7uvqzMnI27eXbXSPHDH+uYAwA7nL5cINN9yA9u3b43e/+x3uv/9+vcZF\npMkVV8iS7N27gfh4YOlSKat07Wr1yGQbgfPOkxLL9dfLbUVF+gc+PTLyujrgiSfk8OTGgbqyUrLN\nnj3P/erXT/a9ufFGff4/9KT26e/aZc5kJ9BQXrF9IF+/fj169eqFgwcPIisrCwMGDMDw4cPrv5+X\nl1f/5/T0dKSnp4fzdEQtcrkayivx8VJWuesuq0clGp8edP318gtnyxYgLU3f54mLk6B77Jj2X2Av\nvgisWgVMntw0WF90kZxQ70TqhKdZwTXYOrnH44HH3wKIILkUnWojM2fORGRkJKZMmSIXdrlYdiFL\nvPwysGIF8Pzzcv7lvn3yMdcODh2SzHXvXmDPHuCee4Bt2/R/nrQ0CcZa6u+HDklWv2qVPevdWuXl\nSS/53/8um4sZfcLVqFHA738f+icULbFT82RnTU0Njh07BgA4fvw4li9fjuTW9K9OjqVm5EuWSBeL\nXYI4IPuPjBwJLFxoTH1cFU555bHH5FNMa/txTk2VuYMLLjDnmEIzO1c0f0gqLy/HbbfdBgCora3F\n3XffjZEjR+o2MCKt4uJkBedTTwF//KPVozlXbq4Ey6uusl8gLyqSeQWrd1A0Qmqq9Oz362fO8z3y\niD775wRDt9LKORdmaYUsNGEC8NprctBy9+5Wj6apujqgb1/Zp/zDD2WrW70tWiQlpg8+CP4xXq9M\nVk6cKHuptzaKIpOcAwbIvjt2ZWpphcjObrsNGDfOfkEckNa08eNlGb3bbcxzaMnIX3lFxnbvvYYM\nyXIul7zeZkx0ms2h889Egd18s/k7HYbi/vslIzfqyLn4eODAAXmOYPZfr6wEZsyQ/WDateL0LjXV\nHico6Y2lFaJWKjkZePXV4NobH3pIdmd8/nnjx2Wl1atlJ0Q7l460xE5m5EStlFpeaSmQf/MN8Pbb\nrXOCs7mMDKtHYIxW/CGKqG0Lpk6uKMCDDwJ/+lPrrB23FQzkRK1UMAcxv/EGcOKEtESSc7G0QtRK\ntZSRHz0qG3i9/750q5BzcbKTqJU6fVraL6uqfO8PPmWKfM/XgRdkHU52ElG9Tp1klevOncCgQU2/\nt22bdLQYsc8LmY81cqJWzFd5RVGAhx8GnnwSiIqyZlykLwZyolbMVyB/5x1ZFPPAA9aMifTHQE7U\nijUP5NXVUht/9lnn7itO52IgJ2rFmgfyWbOA9HSg0fkv1Aqwa4WoFTtxQhb6HD0qB1lcd52cXdmr\nl9UjI3+4+yERNdGlC9C7N/DDDzLBOX06g3hrxIycqJUbPVpOxSkqkn1VOna0ekQUCPvIiegcAwcC\ns2fLGZwM4q0TAzlRKzdihNTIR4yweiRkFJZWiIhshJOdRERtEAM5EZHDMZATETmc5kBeWFiIAQMG\noH///pg9e7aeYyIiohBoCuR1dXV48MEHUVhYiG+//RYLFy7Ed23hwD+NPB6P1UOwDb4WDfhaNOBr\nER5NgXzDhg3o168f4uLi0LFjR9x5551YsmSJ3mNrNfgmbcDXogFfiwZ8LcKjKZDv378fffr0qf97\nbGws9u/fr9ugiIgoeJoCucvl0nscRESklaLB559/rowaNar+77NmzVLy8/Ob3Cc+Pl4BwC9+8Ytf\n/ArhKz4+PuSYrGllZ21tLa644gqsWrUKl1xyCYYMGYKFCxciMTEx1EsREVGYNO210qFDBzz77LMY\nNWoU6urqkJubyyBORGQRw/ZaISIicxiyspOLhRrExcUhJSUFaWlpGDJkiNXDMdX48eMRHR2N5OTk\n+tsqKiqQlZWFhIQEjBw5ElVVVRaO0Dy+Xou8vDzExsYiLS0NaWlpKCwstHCE5ikpKUFGRgaSkpIw\naNAgzJ07F0DbfG/4ey1Cfm9omewMpLa2VomPj1f27NmjnD59WnG73cq3336r99M4RlxcnHL48GGr\nh2GJNWvWKBs3blQGDRpUf9ujjz6qzJ49W1EURcnPz1emTp1q1fBM5eu1yMvLU/72t79ZOCprlJaW\nKsXFxYqiKMqxY8eUhIQE5dtvv22T7w1/r0Wo7w3dM3IuFjqX0karV8OHD0ePHj2a3LZ06VLk5OQA\nAHJycrB48WIrhmY6X68F0DbfGzExMUhNTQUAREZGIjExEfv372+T7w1/rwUQ2ntD90DOxUJNuVwu\n3HDDDRg8eDBeeuklq4djufLyckRHRwMAoqOjUV5ebvGIrDVv3jy43W7k5ua2iVJCc3v37kVxcTGG\nDh3a5t8b6mtx9dVXAwjtvaF7IOdioabWr1+P4uJifPTRR3juueewdu1aq4dkGy6Xq02/XyZOnIg9\ne/Zg06ZN6NWrF6ZMmWL1kExVXV2NsWPHYs6cOejatWuT77W190Z1dTVuv/12zJkzB5GRkSG/N3QP\n5L1790ZJSUn930tKShAbG6v30zhGr7NHlvfs2RO33XYbNmzYYPGIrBUdHY2ysjIAQGlpKaKioiwe\nkXWioqLqA9aECRPa1HvjzJkzGDt2LLKzszFmzBgAbfe9ob4W99xzT/1rEep7Q/dAPnjwYOzcuRN7\n9+7F6dOn8dZbb2H06NF6P40j1NTU4NixYwCA48ePY/ny5U26Ftqi0aNHo6CgAABQUFBQ/8Zti0pL\nS+v/vGjRojbz3lAUBbm5uRg4cCAmTZpUf3tbfG/4ey1Cfm8YMBGrLFu2TElISFDi4+OVWbNmGfEU\njrB7927F7XYrbrdbSUpKanOvxZ133qn06tVL6dixoxIbG6u8/PLLyuHDh5XMzEylf//+SlZWllJZ\nWWn1ME3R/LVYsGCBkp2drSQnJyspKSnKv/3bvyllZWVWD9MUa9euVVwul+J2u5XU1FQlNTVV+eij\nj9rke8PXa7Fs2bKQ3xtcEERE5HA86o2IyOEYyImIHI6BnIjI4RjIiYgcjoGciMjhGMiJiByOgZyI\nyOEYyImIHO7/AUbecaCVyD0UAAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x118dcbe10>" | |
} | |
], | |
"prompt_number": 119 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions are outward and does not involve money for top 25 communities per volume\"\nplt.plot(out_n[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions are outward and does not involve money for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18k+W5B/BfgCIKCC3QFAFXVigUCm2xA3G+tNaUqViL\n+GEyZZ2i2/Ts+DKPiptnlrmDcUwdoNucIifTHZA5qdUBQpEiOBXHi/JqEcoEmkahFKEFW9r7/HGR\n0pY2yZM8T54nye/7+fRjmybPcxvSK1eu57rv26aUUiAioojVxewBEBFRaBjIiYgiHAM5EVGEYyAn\nIopwDORERBGOgZyIKML5DeSfffYZsrKyWr769OmD+fPno6amBg6HA6mpqcjPz0dtbW04xktERO3Y\ntPSRNzc3Y9CgQdi4cSMWLFiA/v374+GHH8ZTTz2Fo0ePwul0GjlWIiLqgKbSSllZGYYNG4YhQ4ag\ntLQURUVFAICioiKUlJQYMkAiIvJNUyBfsmQJpk+fDgDweDyw2+0AALvdDo/Ho//oiIjIr4BLKw0N\nDRg0aBB27tyJAQMGID4+HkePHm35fUJCAmpqagwbKBERdaxboHdcsWIFLrnkEgwYMACAZOHV1dVI\nSkqC2+1GYmLiOY8ZNmwY9u7dq99oiYhiQEpKCj7//POA7x9waWXx4sUtZRUAKCgogMvlAgC4XC4U\nFhae85i9e/dCKcUvpfD444+bPgarfPG54HPB58L3l9YEOKBAXldXh7KyMtx0000tt82aNQurV69G\namoq3n33XcyaNUvTiYmISB8BlVZ69uyJw4cPt7ktISEBZWVlhgyKiIgCx5mdYZKTk2P2ECyDz8VZ\nVn4u/v53oKoqfOez8nNhdZomBGk+uM0GAw9PRAbZtg0YNw5YtAi47TazRxN7tMZOZuRE1EZTE3DX\nXcCAAUCrDmOyMAZyImrj+eeB884D7rgD4NSQyMBATkQt/v1v4Ne/Bv78Z6BfP2bkkYKBnIgAAEoB\nd98N/PznwIgRQHw8M/JIwUBORACAJUuAgweBhx6SnxMSmJFHioCn6BNR9Dp8GHjgAaC0FIiLk9uY\nkUcOZuREhAcfBKZPB8aPP3sbM/LIwYycKMatXg2sWwds3972dmbkkYMZOVEMq6sDfvIT4I9/BHr1\navu7+HjJyDmnz/oYyIli2OOPA5ddBlx77bm/O/98oEsXoL4+/OMibVhaIYpR//oX8Mor55ZUWvPW\nyXv2DN+4SDtm5EQxqLFRpuH/7ncyFb8zrJNHBgZyohj0zDNAYqL/BbHYuRIZWFohijGffw7MnQt8\n/DFgs/m+LzPyyMCMnCiGKAX8+MfAL34BDB3q//7MyCMDAzlRDFm0CDh+HLj33sDuz4w8MrC0QhQj\nqquBWbNkAlC3AP/ymZFHBmbkRDHi3nuBmTOBjIzAH8OMPDIwIyeKAaWlwJYtgMul7XHMyCMDAzlR\nlPvmG+A//gP4y19ktqYWzMgjA0srRFFu506gTx8gN1f7Y5mRR4aAAnltbS1uvvlmpKWlYdSoUfjo\no49QU1MDh8OB1NRU5Ofno7a21uixElEQtm8HxowJ7rHMyCNDQIH8vvvuw3XXXYddu3bh008/xciR\nI+F0OuFwOFBRUYG8vDw4nU6jx0pEQdi+HUhPD+6xzMgjg00p34tUHjt2DFlZWdi3b1+b20eOHIl1\n69bBbrejuroaOTk52L17d9uD22zwc3giMtjkycCddwKFhdof29QEdO8ua7N0YSE2bLTGTr//NJWV\nlRgwYABuv/12jBs3DnfddRfq6urg8Xhgt9sBAHa7HR6PJ/hRE5FhQsnIu3YFevcGjh3Td0ykL79d\nK6dPn8bmzZvx3HPP4Tvf+Q7uv//+c8ooNpsNtk4WbSguLm75PicnBzk5OSENmIgCd/w48NVXgU3H\n74y3Th4fr9+4qK3y8nKUl5cH/Xi/pZXq6mpMnDgRlZWVAIANGzbgySefxL59+7B27VokJSXB7XYj\nNzeXpRUii/noI+Cee4BNm4I/xiWXAC+8AGRn6zcu8k330kpSUhKGDBmCiooKAEBZWRlGjx6NG264\nAa4zswtcLhcKgynAEZGhQimreLFzxfoCmhC0YMEC3HrrrWhoaEBKSgoWLVqEpqYmTJs2DQsXLkRy\ncjKWLl1q9FiJSCM9Ajk7V6wvoECekZGBjz/++Jzby8rKdB8QEelnxw7A4QjtGMzIrY8NRURRjBl5\nbGAgJ4pSNTXAiRPAkCGhHYcZufUxkBNFqR07gNGj/W/n5g8zcutjICeKUnqUVQBm5JGAgZwoSukV\nyJmRWx8DOVGU8pZWQsWM3PoYyImikFLMyGMJAzlRFPKuYXdmXbuQMCO3PgZyoiikV8cKAPTqBTQ0\nyJZxZE0M5ERRSK+yCiBvBvHxLK9YGQM5URTSM5ADrJNbHQM5URTSq2PFi3Vya2MgJ4oy3o4VPQM5\nM3JrYyAnijIHDsgFyn799DtmQgIzcitjICeKMnqXVQBe7LQ6BnKiKKP3hU6AGbnVMZATRRkjAjkz\ncmtjICeKMkaUVpiRWxsDOVEUaWoCdu0CRo3S97jMyK2NgZwoilRWAgMGABdeqO9xmZFbGwM5URQx\noqwCMCO3OgZyoihixIVOgBm51TGQE0URowK5NyNXSv9jU+gCCuTJyckYO3YssrKyMH78eABATU0N\nHA4HUlNTkZ+fj9raWkMHSkT+GVVa6d4dOO884MQJ/Y9NoQsokNtsNpSXl2PLli3YuHEjAMDpdMLh\ncKCiogJ5eXlwOp2GDpSIfGtsBPbsAdLSjDk+6+TWFXBpRbX7TFVaWoqioiIAQFFREUpKSvQdGRFp\nsmcPMGQIcP75xhyfdXLrCjgjv+aaa5CdnY0XX3wRAODxeGA/s4+U3W6Hx7u3FBGZwqiyihczcuvq\nFsid3n//fQwcOBBfffUVHA4HRo4c2eb3NpsNtk72lCouLm75PicnBzk5OUEPlog6Z9SFTi9m5MYp\nLy9HeXl50I8PKJAPHDgQADBgwABMmTIFGzduhN1uR3V1NZKSkuB2u5GYmNjhY1sHciIyzvbtwLRp\nxh2fGblx2ie5s2fP1vR4v6WV+vp6HD9+HABQV1eHVatWYcyYMSgoKIDL5QIAuFwuFBYWajoxEenL\n6NIKM3Lr8puRezweTJkyBQBw+vRp3HrrrcjPz0d2djamTZuGhQsXIjk5GUuXLjV8sETUsVOngH//\nG0hNNe4czMity28gHzp0KLZu3XrO7QkJCSgrKzNkUESkze7dQEqK9HsbJSFB3izIejizkygKGF1W\nAZiRWxkDOVEUMLpjBWCN3MoYyImiQDgCOTNy62IgJ4oC27cbX1phRm5dDOREEe7ECcDjkYudRmJG\nbl0M5EQRbudOYORIoGtXY8/Tp4+8aTQ1GXse0o6BnCjChaOsAgBdusgWclyx2noYyIki3I4dxl/o\n9GKd3JoYyIlCtGkTYOYKFeHoWPFindyaGMiJQvTZZ8CaNUBzsznnD1dpBWBGblUM5EQhqqqSi4B7\n94b/3EePAl9/DVx8cXjOx4zcmhjIiULkdst/t2wJ/7m9U/O7hOkvmRm5NTGQE4XI7ZZVB80I5OEs\nqwDMyK2KgZwoRFVVwHXXmZeRh+tCJ8CM3KoYyIlC5HYD118vgbzdHuWGC2fHCsCM3KoYyIlCVFUF\nZGdL14q3Xh4u4S6tMCO3JgZyohB4p6z36QNkZQGbN4fv3F9+Kec+s6VuWDAjtyYGcqIQuN0SSG02\nCeThrJN7yyo2W/jOyYzcmhjIiUJQVQVcdJF8P25c+AN5OMsqADNyq2IgJwqBNyMHwp+Rh7tjBWBG\nblUM5EQhaB3Ihw0DjhwJX8Ya7o4VADj/fLmoe/JkeM9LvjGQE4WgdWmlSxdg7Fhg61bjz6uUOaUV\nm02ycpZXrIWBnCgErTNyIHzllUOHJDvu39/4c7XHOrn1BBTIm5qakJWVhRtuuAEAUFNTA4fDgdTU\nVOTn56OWK81TjDIrkJtRVvFindx6Agrk8+bNw6hRo2A70+fkdDrhcDhQUVGBvLw8OJ1OQwdJZFWt\nSytA+HrJzSireDEjtx6/gfzgwYNYvnw57rzzTqgz849LS0tRVFQEACgqKkJJSYmxoySyqPYZ+ejR\nQGUlUF9v7HnN6FjxYkZuPX4D+QMPPIC5c+eiS6t1Mj0eD+x2OwDAbrfD4/EYN0Iii6qvB06dkgzV\nq3t32Qh52zZjz21maYUZufV08/XLt99+G4mJicjKykJ5eXmH97HZbC0ll44UFxe3fJ+Tk4OcnJxg\nxklkOa1ndbbmrZNPmGDMeZubgZ07gVGjjDm+P8zI9VdeXt5pjA2Ez0D+z3/+E6WlpVi+fDlOnTqF\nr7/+GjNmzIDdbkd1dTWSkpLgdruRmJjY6TFaB3KiaNK+rOJl9AXP/fuBfv1kfRczxMfL9nakn/ZJ\n7uzZszU93mdpZc6cOThw4AAqKyuxZMkSXH311XjllVdQUFAAl8sFAHC5XCg0c+dZIpO0v9DpZXQg\nN7OsAjAjtyJNfeTeEsqsWbOwevVqpKam4t1338WsWbMMGRyRlXWWkWdkyMXI06eNOa+ZHSsAa+RW\n5LO00tpVV12Fq666CgCQkJCAsrIywwZFFAk6C+S9egGDBwO7dxuTOe/YAeTn63/cQDEjtx7O7CQK\nUmelFcDYfnKzSyvMyK2HgZwoSJ1l5IBxS9qePg1UVABpafofO1DMyK2HgZwoSG6374zciED++efA\noEHABRfof+xA9e0L1NZKGyRZAwM5UZCqqjrPyLOyZBVEvTdjNrusAgBxcfJGcvy4ueOgsxjIiYJw\n6hRQVyf93B3p3x/o3Vum6+tp40YgM1PfYwaDdXJrYSAnCkJ1NZCU5Hu/TL3LK0oBy5YBBQX6HTNY\nrJNbCwM5URB8lVW89A7k27cDjY1yXLMxI7cWBnKiIPjqWPHSO5AvWwZMmeL7U0C4MCO3FgZyoiD4\n6iH3GjdO317yN94AbrpJv+OFghm5tTCQEwUhkIx8yBCgoUHq6aHau1fOedlloR9LD8zIrYWBnCgI\ngQRym02/8sqyZUBhIdC1a+jH0gMzcmthICcKQiClFUC/QG6lsgrAjNxqGMiJghBIRg7oE8irqoBd\nu4Dc3NCOoydm5NbCQE4UBF/T81vTI5C/+SZw/fWyjZxVMCO3FgZyIo0aGoBjx2T2pj+pqXKx89ix\n4M9ntbIKwIzcahjIiTSqrgYSE4EuAfz1dO0KjBkDfPJJcOeqqZFp+ZMmBfd4ozAjtxYGciKNAi2r\neIXST/7WW0BeHtCzZ3CPNwozcmthICfSKJDp+a2FUie3YlkFAC68EKivlyUDyHwM5EQaBdqx4hVs\nID9xAli7Vi50Wo3NdnZdcjIfAzmRRoH2kHulp8uGEKdOaTvPypXAxIlSxrAi1smtg4GcSCOtGfl5\n5wHDh8vqhVpYtazixTq5dTCQE2mkNZAD2ssr33wDrFgB3HijtvOEEzNy62AgJ9JIa2kF0B7I16yR\nkkxSkrbzhBMzcuvwGchPnTqFCRMmIDMzE6NGjcKjjz4KAKipqYHD4UBqairy8/NRyyseFEOCycjH\njdMWyN94Q9YetzJm5NbhM5D36NEDa9euxdatW/Hpp59i7dq12LBhA5xOJxwOByoqKpCXlwen0xmu\n8RKZqrFRstDERG2Py8gAtm0Dmpr837epCSgttX4gZ0ZuHX5LKxdccAEAoKGhAU1NTYiPj0dpaSmK\niooAAEVFRSgpKTF2lEQW4fHI1Hyty8leeKFk8Z995v++GzYAgwcDQ4cGN8ZwYUZuHX4DeXNzMzIz\nM2G325Gbm4vRo0fD4/HAbrcDAOx2Ozwej+EDJbKCYMoqXoHWya3ereLFjNw6uvm7Q5cuXbB161Yc\nO3YMkyZNwtq1a9v83mazweZjE8Hi4uKW73NycpCTkxP0YInMpnV6fmveQH7rrZ3fRykJ5O+8E9w5\nwokZuX7Ky8tRXl4e9OP9BnKvPn364Prrr8emTZtgt9tRXV2NpKQkuN1uJPooGLYO5ESRTuv0/Nay\nsoC5c33f51//knVV0tKCO0c4MSPXT/skd/bs2Zoe77O0cvjw4ZaOlJMnT2L16tXIyspCQUEBXC4X\nAMDlcqGwsFDjsIkikx6lFaU6v8+yZXKR08eHXMtgRm4dPjNyt9uNoqIiNDc3o7m5GTNmzEBeXh6y\nsrIwbdo0LFy4EMnJyVi6dGm4xktkKrcbuOSS4B5rtwM9egBffAF861vn/l4p4O9/B159NbQxhgsz\ncuvwGcjHjBmDzR2sv5mQkICysjLDBkVkVVVVwOTJwT/e20/eUSDftUtWFMzODv744RQfLxm5UpHx\nCSKacWYnkQahXOwEpLzS2drk3m6VSAmK558vm2ucPGn2SChmA/mRI7JMKJEWoVzsBHy3IEZK22Fr\nrJNbQ8wG8kceAX7zG7NHQZGkqQk4fFhq3cHqLJBXVgIHDwKXXx78sc3AOrk1xGwg37QJePtts0dB\nkeTLL4F+/YBuATftnis5GairA776qu3tJSVAQYH2GaNmY0ZuDTEZyBsaZKq0xyOZEFEgQi2rAFL/\nzsw8NyuPxLIKwIzcKmIykO/cKetYTJ4M/OMfZo+GIkUoPeSttS+vVFfLphN5eaEfO9yYkVtDTAby\nLVvkj2nyZJZXKHChdqx4tV/S9s03gWuvlZ2EIg0zcmuI2UCemQk4HMD777N7hQKjR2kFODcjj9Sy\nCsCM3CpiMpBv3Sp/TBdeCFx6KcC5TRQIvUorI0ZIh8rx47IL/YcfAt/7XujHNQMzcmuIuUDe3Ax8\n8olk5ADr5BQ4vUor3brJNm6ffCKlvZwcoFev0I9rBmbk1hBzgXzfPqBPH2kjA84G8uZmc8dF1qdX\naQU4W16J5LIKwIzcKmIukHvLKl4pKVJi0bKfIsUmvTJyQF6D778vmyzfcIM+xzQDM3JriLlA7u1Y\naY3dK+RPU5NMCAplVmdrWVnA668D48dLMIxUzMitIeYC+datZ+vjXgzk5M/hw1KS695dn+ONGSP/\njeSyCsCM3CpiLpB3lJF/97vA55/LR2eijuhZVgFk5cB77gGmTtXvmGbo2xf4+mteYzJbTAVyjwc4\ndQq4+OK2t8fFAZMmAcuXmzMusj49L3R6zZ8P+NglMSJ07SodN8eOmT2S2BZTgdxbVulovWeWV8gX\nvXrIoxHr5OaLqUDeUVnF63vfA959VzJ2ovb0Lq1EE9bJzRdzgbz9hU6v/v3lAtS6deEdE0UGI0or\n0YIZufliKpC37yFv7/rrOcuTOsbSSueYkZsvZgL5iROyvsXIkZ3fx1snVyp846LIwNJK55iRmy9m\nAvknnwCjRvne3SU9XSZ+7NoVvnFRZGBppXPMyM0XM4HcX1kFkG4Wdq9Qe83N0rrKQN4xZuTm8xvI\nDxw4gNzcXIwePRrp6emYP38+AKCmpgYOhwOpqanIz89HbW2t4YMNha+OldYYyKm9I0ekVzoSN34I\nB2bk5vMbyOPi4vDss89ix44d+PDDD/H8889j165dcDqdcDgcqKioQF5eHpxOZzjGGzRfHSut5eZK\n9s4XJnnxQqdvzMjN5zeQJyUlIfNMBOzVqxfS0tJw6NAhlJaWoqioCABQVFSEkpISY0cagsZGqXuP\nHev/vj16SDBfudL4cVFk4IVO35iRm09TjXz//v3YsmULJkyYAI/HA/uZpeDsdjs8Ho8hA9TDrl3A\nt74F9OwZ2P1ZXqHWeKHTN2bk5vPRw9HWiRMnMHXqVMybNw+9e/du8zubzQZbR/PeARQXF7d8n5OT\ng5ycnKAGGopAyype110HPPIIcPq07y4Xig0srfjGjDx05eXlKC8vD/rxAYWpxsZGTJ06FTNmzEBh\nYSEAycKrq6uRlJQEt9uNxE5W/2kdyM0SSMdKa4MGAcnJwAcfAFdcYdiwKEK43cDw4WaPwrqYkYeu\nfZI7e/ZsTY/3W1pRSmHmzJkYNWoU7r///pbbCwoK4HK5AAAul6slwFtRoB0rrbG8Ql4srfjWqxfw\nzTdAQ4PZI4ldNqV8z2PcsGEDrrzySowdO7alfPLkk09i/PjxmDZtGr744gskJydj6dKl6Nu3b9uD\n22zwc3jDKSUZw549wIABgT9u40bg9tuBHTuMGxtFhssuA377W+Dyy80eiXUlJgLbtum3g1Ks0xo7\n/ZZWLr/8cjR3smp8WVlZ4CMzyf79kjFoCeIAkJ0tu8Ls2wd8+9uGDI0iBLtW/PPWyRnIzRH1Mzu1\nXuj06tKFi2iRfKLjxU7/WCc3V9QHcq0XOltjnZyOHpVt2c4/3+yRWBs7V8wV9YE8mAudXg4H8M9/\nAseP6zsmihzMxgPDjNxcMRHIgymtAEDv3sDEiUAEXAogg7BjJTDMyM0V1YH8q69kHfKhQ4M/xvXX\ns7wSy3ihMzDMyM0V1YHc12bLgZo8WS54dtK4Q1GOGXlgmJGbK6oDeShlFa+UFMk2Nm/WZ0wUWVgj\nD0w0ZuTHjwNr1gBPPAEUFgIvvWTd3cOiOpCH0rHSGrtXYhdLK4GJ9IxcKeDzz4G//AW4+24gI0Pe\nwIuLJaDffDPw4ovA1VfL5EKriepAHkrHSmsM5LGLpZXARFpGXl8PvPce4HQCN94oE5lyc6WMOmKE\nBO2aGmD9epnVe9tt0sF2443SAOF0yvLYVuF3in5IBzdxin5dnczmPHYMiIsL7ViNjfIPvX07s7NY\nk5ICvPMOMGyY2SOxtl27gClTgN27zTl/UxNQWyvB9+hR+a/3q/XPR48Chw7JONPTZfmFiRPla8iQ\nwM61fz/w058C1dVSbsnO1v//R/cp+pFq2zYgLS30IA7IMSZNApYvB+68M/TjUWTgrM7AhZKRNzbK\nm8D+/doepxRw8qQE6BMngAsvlBKP9ys+/uz3F18s5ZKEBFkXJiMj+EleycnAihXAX/8qXW0zZgCz\nZwe+34ERojaQ61VW8Zo8Gfjb3xjIY8mxY7IevZl/oJEiPl4CqlLau8RcLvkEvWSJ9vP26AH06wf0\n6SPLaoSLzSbllkmTgAceAMaMAV54QSYRmiFqSys//rFs7fazn+lzvCNHpB/9yy/lxUPRz+xyQaTp\n2RPweGSRukB98w2QmgosXixljki1YoVcJM3JAZ5+Wt5cQqE1dkbtxU69Ola8+vWTN4YQNvGgCMOy\nijbBdK4sXAiMGhXZQRwArr1WrqH17Su19yVLwtuqGJWB/PRpWUc8kM2WtWD3Smxhx4o2WuvkJ08C\nc+YAv/61cWMKp169gN//HigpAf7nf4AbbgC++CI8547KQL57t2zX1m5r0ZBNngy89ZZ1JwWQvthD\nro3WjPyFF6Tj4zvfMW5MZpgwAdi0Cbj0UmlTDIeovNipd1nFa/RooHt3uZA6bpz+xydrqaoCBg82\nexSRQ0tGXlcHPPWUtHZGo+7dgcceC1/SF5UZuR5T8ztis8nFrzfe0P/YZD2skWujJSN/7jnZ2Fzv\n8qfVhLLOkxZRGciNysgBCeTLlhlzbLIWlla0CTQj//pr6ewoLjZ8SDEj6gK5Uvr3kLc2YYK8WD/7\nzJjjk3XwYqc2gWbk8+YB+fnSrUL6iLpA/sUXwHnnGbcJbJcushIas/Lox4xcm0Ay8qNHJZA//nh4\nxhQroi6QG1lW8WJ5Jfp5t/fTu/MpmgWSkT/zDFBQAAwfHp4xxQrDA7nbbfQZ2jKyrOKVkyNLXh48\naOx5SLz6KvDDH8rcgHBhWUU7fxn54cPAH/4A/OpX4RtTrPAbyO+44w7Y7XaMGTOm5baamho4HA6k\npqYiPz8ftbW1nT5+4kSZ6hwuRnWstBYXJ4vllJQYex4CKipkLYshQ4C8PGDqVPk3NhrLKtr5y8jn\nzgWmTZNFp0hffgP57bffjpUrV7a5zel0wuFwoKKiAnl5eXD66HqfPVsy2PXrQx5rQMJRWgGAm25i\necVojY2yMFFxscyU27tXWtYmT5avjz4y7txsPdTOV0ZeXS1rfP/yl+EdU8xQAaisrFTp6ektP48Y\nMUJVV1crpZRyu91qxIgRHT7Oe/hVq5QaMECppUsDOVvwDh9WqndvpZqajD2PUkrV1Sl14YVyTjLG\nY48p9b3vKdXc3Pb2kyeV+sMflLr4YqWuuUapdev0P/fvfqfU/ffrf9xoVlOjVJ8+Hf/uvvuUuvfe\n8I4nkgUYmlsEVSP3eDywn2kLsdvt8Hg8Pu/vcACrVslH5GefDeaMgdm6VdYZDsdylhdcIB/133rL\n+HPFovfflwxu0aJzJ1X06CErze3ZA0yfDtxxB3DllcDq1frNpGNpRbs+fWRd8KamtrcfPChbqD36\nqDnjigUhT9G32Wyw+Zi+VNyq6//pp3Pw61/n4IsvZEKA3gE3XGUVr5tukjXKf/Sj8J0zFnz9tSzW\n/8ILQFJS5/fr3l2C+A9/CLz2GnDffbK5wGOPyTWMUGbVVVUZf60l2nTpIs9/bW3bZVznzAFmzvT9\nbxnrysvLUR7K0qqBpO0dlVbcbrdSSqmqqiq/pZXWamqUuvJKpW6+WT4i6+nWW5VauFDfY/pSUyOl\nnOPHw3fOWFBUpNRdd2l/XFOTUn/7m1IZGUplZipVUhL8GHJylCorC/7xserb31Zqz56zP+/fr1RC\nglJffmnemCJRgKG5RVA5cUFBAVwuFwDA5XKhsLAw4MfGx0uZpWtXKbnoufN2OFoPW4uPlxXO2l0L\nphD87W9SVnnmGe2P7dJFdjvfsgV44gnZVCTYZYdZWglO+86VJ56Q/S0HDDBvTDHBX6S/5ZZb1MCB\nA1VcXJwaPHiwevnll9WRI0dUXl6eGj58uHI4HOro0aOa31WampT6r/9SauRIpSorNb35dKi+Xqke\nPZT65pvQj6XFH/+o1A9+EN5z6u3o0fA/bx05eFCpxESlPvxQn+OtX69UUpJSVVXaH9u7tzwvpI3D\nodTKlfL9nj1K9esnn1xJmwBCcxumb/U2f74sZ/nWW6EtDbtxo2zvtnVr8McIhtsta0Z4PFKzjTTN\nzcD48bKGzPPPmzuO/HzgqquA//5v/Y47e7a0vq5aFfg1mbo6ySDr6sK3el20uOUW4MYb5SL0jBky\ng5MTgLTux03cAAAMY0lEQVSLuK3e7r0XWLBANjENpUQR7rKK18CBQFoa8O674T+3Hlwu6fR47TWZ\nrWqWefOA+nr9Oxt++UugoUEmowTK20POIK6dt5d81y5Za/z++80eUWwwPZAD0v1RUiLdH88+K394\nWoW7Y6W1SJ0cdPy4BLo//lE6PvTMhLXYtk06G159VXat11O3bnLcZ54JfAIRp+cHz1sjLy4Gfv5z\n6WIh41kikAPAd78LvPeevIsPHw78+c/aAno4puZ3ZsoU4M03z+2ftbonnwSuuUZKKw88AKxbB2ze\nHN4xnDoF3HqrZMzf/rYx57j4Ynmz+sEPpLXRH17oDF58vLyO1q2Ti80UHpYJ5ACQmirllSVLgNdf\nB0aMAF56SaZq+9LUJDtYmxXIU1KAxETggw/MOX8wKivlzfLJJ+XnXr2k/zrckzZ+8Qv5dy8qMvY8\nN90kXVJ33+1/0hCn5wcvIQEoKwMeflheUxQelgrkXhMnysWpV1+VoD5iBPDyy50H9IoKmWxg5sc4\nvcsrO3cC//iHfsdr7+GHpX45aNDZ2+66S9YzWbPGuPO2VlYGLF0qE3/CUY9+5hkpwb3yiu/7sbQS\nvH795Lm7+26zRxJjDOicaaHX4detUyo3V6mUFKUWLVKqsbHt7//6V6WmTtXlVEHbulWpoUPPXRck\nGN98o1R6urTAbdoU+vHaKy+XdUrq68/93eLFSmVn6/P/4cuRI0oNHizr8ITTp58q1b+/UhUVnd/n\nttuUcrnCN6ZocvKk7+eWAqM1dloyI2/vyiulK+Sll2TtjbQ0Wbvh9Gn5vZkXOr28m8h+8knox3I6\ngaFDZa2RadOAY8dCP6ZXU5Nk4r/9LXD++ef+fto0uc/rr+t3zvaUAn7yE5m843AYd56OjBkjF+Km\nT+/8GgxLK8Hr0YObRpghIgK5V04OUF4uH8VffBEYPVrKL5s2mR/IbTZ9yivbt0s75h/+AHz/+9KW\nOXOmfotB/e//Aj17SsDuSJcu8kbyy1/6vzYRrL/8RdrTvPX5cLvnHikpdbakalUVL3ZShDHok4FS\nSr/SSkeam5VavVqpyy5TClDq0CHDThWwDRuUGjMm+MefPq3U+PFKvfDC2dtOnVJq3Dil5s0LfXzH\njslMx48/9n2/5malrr5aqT/9KfRztrd3r5Q2PvlE/2NrcfiwlHa8sxBb69tXSj9EZtEaO02f2Rkq\npYD9+6UUYbbmZsnkNmwAhg3T/vhnnwVKS+ViY+tZiPv2yZoub78trYLBeuQR4MsvpTzlz8cfyybT\ne/bIkr16qK8Hrr5aPg38/Of6HDMUa9dK6+OWLWc36z55UlroTp7khCAyj9bYGfGB3Gp++lNpR3zo\nIW2P27dPgvSHH3b8JrBsmQS/TZukxUurvXvl+Nu3B17/nTZNSlZ6tCQ2Nkq/fd++UloJx5rxgXjs\nMXlO//EPGdO+fbLOfGWl2SOjWBZxU/SjzZQp2uvkSknr36xZnWfyU6ZIhvyjHwVXL3/oIeDBB7Vd\nxPvNb6RlL9QVKpubZd1wpeTTgFWCOAA8/rhcTP797+VnXuikSGShP6nokJsrF/KqqgJ/zMKFMl3e\n37oUTz0lpZGnn9Y2prVrpXygtZyRmiqbHYdyUVIpeQOprJQlauPigj+WEeLigP/7P7nAu2kTe8gp\nMjGQ66x7d9md5s03A7v/oUNSuli40P86I927y+JWc+fKmt2B8LYbzp0rrWFa/epXMhnrwAHtjwXk\nTWDNGlndUq9au96Sk6VTaPp0uSbAjhWKNAzkBgi0vKKUtMLdc4/0NwfiW9+SoD99OnD4sP/7L1wo\neylOnRrY8du76CLp+W61Y1/A/vxn6f1fuVIuIFrZ978PXHGFlJOYkVOk4cVOA9TVSTD49799B7Cl\nS2W97M2bgfPO03aORx4BPv307EW6jhw7JssbrFgRWp99ba2UWcrLZe31QLz+uixR/N57wXXwmKGu\nDrjkEvkU8oMfmD0aimXsWrGIwkLJgmfM6Pj3R44A6emSuV96qfbjNzZKK9+118rCUx156CFZG/ql\nl7Qfv72nn5a2ykA+aaxZI58Y3nnH/IlaWtXXy5tq165mj4RiGQO5RbhcUid/442Ofz9jBtC/v/SO\nB+vQISA7WxYWu+qqtr/bs0cWH9u+XZ/dy0+dkqx8yRLgsss6v9+//gVcd51c2Gw/JiIKDAO5RdTU\nyEW06upzL/ItXy5rNW/bJtPlQ7FqFXD77VKe8U5qAWS7rcsukxKMXhYtkq916zqeLLN7t3Tt/OlP\ncn4iCg77yC0iIUEm4LzzTtvbv/5aJg29+GLoQRyQfS7vuENqut6NLcrKJBPXe5utH/5QSkLLl5/7\nuwMHZF2YOXMYxInCjYHcQB11rzz6qATfvDz9zlNcLB0wTzwhK0I+8IC0G2q9gOpP164SqB99tO1u\nSEeOSBD/z/+UTwdEFF4srRjo0CFpK/R4ZOLJ+vWyy/iOHTJVXU/V1dJxcfXVwMGDsuyvEWuFKAVc\nfrl8qpgxAzhxQt6UcnJkwhIRhS6spZWVK1di5MiRGD58OJ7iX/E5Bg0627Z38qQsR/v88/oHcUAu\naL76qrQ0/v73xi34ZLPJLMhf/Upmo06dKt03Tqcx5yMi/4IO5E1NTfjZz36GlStXYufOnVi8eDF2\n7dql59iigre8MnNmOTIzpS3RKLm5UubIyDDuHIBMnElPlz1SL7hA+1Zt5eXlho0t0vC5OIvPRfCC\nDuQbN27EsGHDkJycjLi4ONxyyy14M9B56TFkyhRZy+PNN8uxYIHx5wvXhre//a20Fy5e7H9pgfb4\nB3sWn4uz+FwET+Of4FmHDh3CkCFDWn4ePHgwPvroI10GFU1SU+Vr8OC27YGRLi1N1mAhIvMFnZHb\nuOp+wD744OyenkREugt2K6IPPvhATZo0qeXnOXPmKKfT2eY+KSkpCgC/+MUvfvFLw1dKSoqmeBx0\n++Hp06cxYsQIrFmzBhdddBHGjx+PxYsXIy0tLZjDERFRkIKukXfr1g3PPfccJk2ahKamJsycOZNB\nnIjIBIZOCCIiIuMZMkWfE4XOSk5OxtixY5GVlYXx48ebPZywuuOOO2C32zGm1a4ZNTU1cDgcSE1N\nRX5+Pmpra00cYfh09FwUFxdj8ODByMrKQlZWFlauXGniCMPnwIEDyM3NxejRo5Geno758+cDiM3X\nRmfPhebXRrAXOztz+vRplZKSoiorK1VDQ4PKyMhQO3fu1Ps0ESM5OVkdOXLE7GGY4r333lObN29W\n6enpLbc99NBD6qmnnlJKKeV0OtUjjzxi1vDCqqPnori4WD399NMmjsocbrdbbdmyRSml1PHjx1Vq\naqrauXNnTL42OnsutL42dM/IOVHoXCpGq1dXXHEF4tttkVRaWoqioiIAQFFREUpKSswYWth19FwA\nsfnaSEpKQmZmJgCgV69eSEtLw6FDh2LytdHZcwFoe23oHsg7mijkHVgsstlsuOaaa5CdnY0XX3zR\n7OGYzuPxwH5mZpTdbofH4zF5ROZasGABMjIyMHPmzJgoJbS3f/9+bNmyBRMmTIj514b3ubj0zJZh\nWl4bugdyThRq6/3338eWLVuwYsUKPP/881i/fr3ZQ7IMm80W06+Xu+++G5WVldi6dSsGDhyIBx98\n0OwhhdWJEycwdepUzJs3D717927zu1h7bZw4cQI333wz5s2bh169eml+begeyAcNGoQDBw60/Hzg\nwAEMHjxY79NEjIFntmQfMGAApkyZgo0bN5o8InPZ7XZUV1cDANxuNxITE00ekXkSExNbAtadd94Z\nU6+NxsZGTJ06FTNmzEDhmZXkYvW14X0ubrvttpbnQutrQ/dAnp2djT179mD//v1oaGjAa6+9hoKC\nAr1PExHq6+tx/PhxAEBdXR1WrVrVpmshFhUUFMDlcgEAXC5Xyws3Frnd7pbvly1bFjOvDaUUZs6c\niVGjRuH+VttYxeJro7PnQvNrw4ALsWr58uUqNTVVpaSkqDlz5hhxioiwb98+lZGRoTIyMtTo0aNj\n7rm45ZZb1MCBA1VcXJwaPHiwevnll9WRI0dUXl6eGj58uHI4HOro0aNmDzMs2j8XCxcuVDNmzFBj\nxoxRY8eOVTfeeKOqrq42e5hhsX79emWz2VRGRobKzMxUmZmZasWKFTH52ujouVi+fLnm1wYnBBER\nRTju2UlEFOEYyImIIhwDORFRhGMgJyKKcAzkREQRjoGciCjCMZATEUU4BnIiogj3/2tLz5kVP6+q\nAAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x118dbf990>" | |
} | |
], | |
"prompt_number": 120 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "print \"percentage of transactions are outward and involve money for top 25 communities per volume\"\nplt.plot(out_y[:25])\nplt.show()", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "percentage of transactions are outward and involve money for top 25 communities per volume\n" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEACAYAAACuzv3DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztnX1cVGX6/z+jUD7gszKgWBgKKCqgqNVWoji4WxtpmmVq\nU/aw2+73t9XLTal2C7OH8dW2ZW19H8z2S7mbuVsRmfYV0lErDR/Ah0zxAZQEpgAxFRTR8/vj8iiM\n83DOmXPmnDNzvV+veSXDnPu+GoYP9/nc13XdFkEQBDAMwzCmpYPeATAMwzCBwULOMAxjcljIGYZh\nTA4LOcMwjMlhIWcYhjE5LOQMwzAmx6+QL1myBCNGjMDw4cOxZMkSAEBDQwNsNhsSExORnZ2NxsZG\nzQNlGIZhPONTyPfs2YN33nkHW7duxc6dO7Fq1SocOnQIDocDNpsN5eXlyMrKgsPhCFa8DMMwjBs+\nhXzfvn0YN24cOnXqhI4dO2L8+PH46KOPUFhYCLvdDgCw2+0oKCgISrAMwzDMlfgU8uHDh2PTpk1o\naGhAU1MTVq9ejR9++AEulwtWqxUAYLVa4XK5ghIswzAMcyURvr6ZnJyMBQsWIDs7G127dkVaWho6\nduzY7jUWiwUWi0XTIBmGYRgfCDJ4+umnhbfffltISkoSampqBEEQhOrqaiEpKcnj6xMSEgQA/OAH\nP/jBDxmPhIQEOdIs+M1a+fHHHwEAR48exccff4x7770XOTk5yM/PBwDk5+djypQpHq89dOgQBEHg\nhyDgueee0z0Gozz4veD3gt8L349Dhw75k+Z2+LRWAGD69Omor69HZGQk3n77bfTo0QO5ubmYMWMG\nli1bhvj4eKxcuVLWpAzDMIx6+BXyjRs3XvFc7969UVxcrElADMMwjDy4sjNIZGZm6h2CYeD34jL8\nXlyG3wvlWARBEDQb3GKBhsMzDMOEJHK1k1fkDMMwJoeFnGEYxuSwkDMMw5gcFnKGYRiTw0LOKEIQ\ngOpqvaNgGAZgIWcU8u9/AyNGAKdO6R0JwzAs5Iwi3nsPiIwE/uu/9I6EYRgW8hBCEIAVK+i/WvLT\nT8CmTcDHHwN//SvQ3KztfAzD+IaFPIQ4cgSYORPYsEHbeVasAH79a+DGG4GMDODdd7Wdj2EY37CQ\nhxCbNwNXXw28846287z/PjBnDv37mWeAxYuBlhZt52QYxjss5CHE5s3AE08Aq1YBx49rM8f+/UBV\nFZCVRV+PGwckJ5O4MwyjDyzkIcTmzWR5/OpXwD/+oc0cy5cD994LRLTpm/nMM4DDAbS2ajMnwzC+\nYSEPEZqagL17gdGjgYceApYuVX/T88IFEvLZs9s/f8stQEwMwG3pGUYfWMhDhG3bgOHDgU6dgAkT\ngJMn6Tk1+fproGtXIC2t/fMWC/CnPwEvvkhizzBMcGEhDxE2bwZuuIH+3aEDrcrV3vQUNzk9nbWd\nnQ107gx8+qm6czIM4x8W8hChrZADwP33k9WhVuXlmTPARx8Bs2Z5/r64Kn/hBe3z2BmGaQ8LeQgg\nCFcKef/+wM03A//6lzpzrFpFlkpcnPfX5ORQGuIXX6gzJ8Mw0vAr5C+//DJSUlIwYsQI3HvvvTh7\n9iwaGhpgs9mQmJiI7OxsNDY2BiNWxgsVFZRFMnBg++fFTU81WL78cu64Nzp0AJ5+mlflDBNsfAp5\nZWUlli5dih07dmD37t04f/48VqxYAYfDAZvNhvLycmRlZcHhcAQrXsYD4mrc3bu+9VagshL47rvA\nxq+vB5xO4M47/b92xgwq4de6upRhmMv4FPLu3bsjMjISTU1NaG1tRVNTE/r374/CwkLY7XYAgN1u\nR0FBQVCCZTzjbquIREQADzwALFsW2Pgffki56d27+39tx47AU0/RqpxhmODgU8h79+6NefPm4Zpr\nrkH//v3Rs2dP2Gw2uFwuWK1WAIDVaoXL5QpKsIxnvAk5AMydS9kmZ88qH79tSb4UZs8GDhwAtmxR\nPifDMNLxKeSHDh3C66+/jsrKSlRXV+PUqVNYvnx5u9dYLBZYPOWjMUHh9Glg3z5g1CjP309IAEaO\nVJ4WeOAAefDZ2dKviYwEFiygvHKGYbQnwtc3t23bhhtvvBF9+vQBANx5553YvHkzYmJiUFtbi5iY\nGNTU1CA6OtrrGHl5eZf+nZmZiczMTFUCZ4ht2+iAh06dvL/m4Ydp03PGDPnjL18O3HNP+5J8Kcyd\nS/ZKaSmQni5/XoYJJ5xOJ5xOp+LrLYLgPb9g586dmDVrFrZu3YpOnTrh/vvvx9ixY3HkyBH06dMH\nCxYsgMPhQGNjo8cNT4vFAh/DMyrgcAAuF/Daa95fc+YMZbSUlACDBkkfWxCAwYMpH330aPmxvfoq\n2StqpUAyTLggVzt9Wiupqam47777kJGRgZEjRwIAHnnkEeTm5qKoqAiJiYlYt24dcnNzA4uaUYwv\nf1ykUycq5JHbN3zzZuCqq7zbNv74zW8oe+X775VdzzCMNHyuyAMenFfkmiIIgNUKbN9+ZQ65O3v2\nAL/8JaUjSrVJHn2Uxn36aeUxvvgitb597z3lYzBMuKHqipwxNocP04rZn4gD1FBr4EDpVZdnz5Il\n4q0kXyr/8R/A6tUUK8Mw2sBCbmKk2CptkdNIa/VqEv9rr1UWm0iPHsBvf0unCDEMow0s5CZm82Y6\nN1Mqd99NnnVNjf/Xys0d98Xjj9Pq/ocf1BmPYZj2sJCbGLkr8qgoYPp0ID/f9+saGoAvv6TXqkHf\nvpSO+Mor6ozHMEx7eLPTpJw+TRud9fV04LJUSkroqLYDBzz3FQeA//5vEnI1T/ypqQFSUiiD5WJR\nMMMwXgi7zU5BAMrK9I7CNz/8oP7JOVu3UsWmHBEHgDFjgC5dqAmWN9S0VURiY4GZM33nu6tJayvw\n//4fkJdH55du3Qpwk04mVDG1kO/fD0ycSJWDx47pHY1nTpwAUlOBDz5Qd9xvvpFnq4hYLL43PQ8f\nBsrLKVVRbebPpwrT48fVH9udb78F1qwBzp8HCgsppz0uDoiOBm66iaweh4MOy9i9G2hu1j4mhtEK\nUwr52bPAwoXAL34BTJ1Kh/8G2qpVK15/HejWDfjf/1V3XLn+eFtmzwY+/5y8cHeWL6dN0cjIwOLz\nxLXX0s9szRr1x3anqIja7i5aRN0bd+ygc0zLyii3/YYbyJZ67z36/+3VC7jmGmDSJGDnTu3jYxg1\nMZ2Qb9hAK9yyMurj8Yc/UK8RIwp5QwPw5pskmtu3A1VV6owrCFT6rlTIe/cGbruNLAf3cbWwVdoy\neTKwdq1244sUFQE2W/vnLBY6OWn8eOo/88or1Exs7146Es/ppPcmgJYXDKMLphHy+nrgwQdpNelw\nAJ98crkQJiXFmEL+l7/QqjAlhRpWvf++OuMePEgHHQ8YoHwM8fSgtvspJSUkdmPGBB6jN0Qh13IP\n/MQJYNcuslCkEhEBXHcdtSMwqk3HBM7Ro8CwYXpHoT6GF3JBoNv9lBRKn9u7F5gypf1rjCjkP/5I\n2R9/+hN9ff/9ZK+oIWCB2Coi48cDTU20CSgirsa17Eo8eDD9EdqzR7s5nE7g+utpHrkMGMBCHsps\n20aZU4H05zcihhbygwepD/arrwKffQYsWUJ+szspKSTwRsp0dDiovP2aa+jrceNIINU4bEENIe/Q\nge5wxE3PlhbykmfPDjw+f2RnA//3f9qN78lWkcqAAVy4FAiVlcDf/653FN4R9z+OHtU3DrUxpJC3\ntNCG1PXXU/bE1q2+b/f79KHVl1F+AY8do6Kbp566/JzFcnlVHihqCDlA8fz73+QPf/EFkJwsr82t\nUiZPNq6Qx8XxijwQtmwBnnySsoWMSFkZLWIqKvSORF0MJ+RffUXphJs30wbhvHnSuvUZyV556SVK\nb4uNbf/8nDlUqh5IqtvJk1TMo8ZhDbGxlPGzcqX2m5xtmTiRfuGbmtQf++hRSm9MTVV2vWitGOnu\nzkzU1dF+1jff6B2JZ3bupL2Tykq9I1EXQwn5q69SKtjChWSlyGnYZBQhr6wEVqygnGl34uKAjAzl\nx64BdHeSlkZdD9XgoYfIslq7FrjrLnXG9Ef37vT/sHGj+mMXFQFZWbTqUkLXrlRk5Sk1k/FPfT0V\nnBUW6h3JlTQ2UnxZWSzkmrF0KfC3v1Ehx/Tp8jfcjCLkixYBv/sd0K+f5+8Haq+oZauI/PKXtIqa\nNIlyqYOFVvZKILaKCNsryqmro9/fTz813l3Nzp3U0fO661jINeHDD6mUuqiIfomUYAQhP3CAViLz\n5nl/zZQp9MdKqVCoLeQREVS0FMjhEUrIzlY/n/zCBeoRE6iQc+aKcurq6P1vbqbKayOxcyfdCcbH\ns5CrzurVVNSzZg2lpinFCJkrCxcCjz0G9Ozp/TVdutCKZfly+eMHWgjkjbvuUnYmZyCMHk1njapV\nJAXQRlafPtIO2vAFC7ly6uvpbjQnJzALUQt27qS9ExZyldm4kayGTz+lBlCB0KsXpSbqlVb03Xd0\nR/HYY/5fqzSn/MAB8nD791cSobHo2JHsnKIi9cZUw1YB6K7QKBlQZqOujv6Y5uQYzycvKyMhj42l\nPzhnzugdkXr4FfL9+/cjPT390qNHjx5444030NDQAJvNhsTERGRnZ6NRZmu57dtpZfrPf1KaoRro\naa/k5VHalac8d3duvJG685WUyJtDbVtFb9TOJ1dLyHlFrpy6Ouo/n5lJv4sul94REefOUSHQiBG0\niBg4MLRyyf0KeVJSEkpLS1FaWort27ejS5cumDp1KhwOB2w2G8rLy5GVlQWHwyF50n37gF//miof\nJ00KKP52DB+uj5CXlgJff02bnFKwWAC73f8BD+6EopAXF6uTc9zcTHsPmZmBj8VCrpz6ehLyq6+m\nn+/nn+sdEbF/P91pRUXR14MGhZa9IstaKS4uxuDBgzFw4EAUFhbCbrcDAOx2OwoKCiSNUVlJP2CH\ngzoXqoleK/Jnn6Xiny5dpF9z3320ySvn9i7UhDwujm5zt28PfKxNm+i2uXt3deJia0U+TU30R7lr\nV/r6jjuM45OLG50i8fGhVRQkS8hXrFiBmTNnAgBcLhesF496sVqtcEm4h6qtpVvfP/6RVqRqo4eQ\nb9lCH5JHHpF33TXX0Afrs8+kvf7kSeDQofYfxlBALXtFLVsF4BW5UurryR8XU4d/9Stg/XptCr/k\nIm50ioTahqeEmkmipaUFn332GRZ7OA7dYrHA4iXxOy8vDwDd+v7rX5m4//5M/OEPyoL1x7Bh5INd\nuKC8IEQuzz4L/PnP8k/qAS5vekopxCkpUbcQyChMngy88AK9h4FQVAS8/bY6MfXtS0fpNTcra7wV\nroi2ikjv3lQAV1xMm596UlaGdroTHw+sWqVbOFfgdDrhDKR/siCRgoICYfLkyZe+TkpKEmpqagRB\nEITq6mohKSnpimvE4U+eFIQbbhCEJ54QhAsXpM6ojLg4QTh8WNs5RJxOQbjuOkFoaVF2/alTgtCz\npyBUV/t/7aJFgvDHPyqbx8g0NQlCVJQgNDYqH6O2VhB69BCEc+fUi2vQIEE4cEC98cKBoiJBmDix\n/XOvvSYIDz6oTzxtiY4WhKqqy19/9ZUgXH+9fvH4Q4Y0C4IgCJLXrR988MElWwUAcnJykH9xty4/\nPx9T3HvLXuTsWfLCk5OpBF/LFqlA8OwVQaBV5HPPKT9Np2tXem/cD3jwRKj54yKdO9P/17p1ysf4\n8kva5JTSk0cqbK/IR0w9bEtODtmHejbRqq2lLLG2/ftDzVqRJOSnT59GcXEx7rzzzkvP5ebmoqio\nCImJiVi3bh1yc3M9XjtzJtCjB/A//6O9iAPBE/KiIuCnn6hVbSBIySm/cCF0hRwI/NSgoiLy2tWE\nhVw+7tYKQOXw0dHyU23VRMwfb6s/sbHUXC1UzmqVJORdu3ZFXV0durVJku7duzeKi4tRXl6OtWvX\noqeXcsbTp2nFqeZqyRfBEHJxNZ6XRzmpgXDTTfRh8pW5UV5O2Rju3RRDBXHDU0lVriCou9Epwn3J\n5SPmkLujd/aKe8YKQHtooZRLrvmW4McfK9sIVEpKiranzwC0SdLcrE63wA4dKBXRV0755s1URBSq\nDB9OFtzBg/Kv3bePFgmBtHfwBDfOko8nawUgIdezylNckbsTSvaK5kIu5pQGi2HD6JdbK0/uwgVa\njS9apF5mzH33AR984P34qVC2VQC65VXaRGvtWlqNq23bsbUiH0/WCkB9dRobqcWEHnhakQOhlUuu\ne9MstenWjZr2aPUD+vhj2txUM51q0CAqHfaWDhXqQg4ozyfXwlYBWMiV4M1a6dBBv94rzc2kBUOH\nXvm9UKruDDkhB7Tzyc+fp7zxRYvUXwF6K9k/cYI+iEpPvDELNhuwYQMd8yeVlhaq6MzKUj8eru6U\njzdrBdCvG+KePUBiouf6C7ZWDI5WQr5pE/n9kyerP/b06dQN0r1AtqQEGDVKeYqjWejbl37hNm+W\nfs2WLcCQId7FIxBiY+lnYdSzJ42IN2sFoOP9du4ksQ8m3mwVgIXc8Ggl5E4nibgWaZRRUbQp9M9/\ntn8+HGwVEbn2ila2CkAruF69gB9/1Gb8UMSbtQIAnTpRg7xgN9FyL81vCwu5wdFSyNXorueN++8H\n/v739ml44STkcvPJtRRygO0VOTQ1UdGNr+QGPdIQvWWsAEBMDG3ChkIueUgK+dChlHut5m3xmTPA\ntm3AL36h3pjujB8P/PwzffgAypD59tvwEfLrr6fMhp9+8v/a48fpj7WWPw/e8JSOaKv4ulu99Vaq\nwg3WgQ6CAOza5V3IO3Sg5nVHjgQnHi0JSSGPigKsVuoWqBbffksrfSkHRyjFPad8/346Nu5ik8mQ\n56qr6I5HyqlB69eTiGtZo8BCLh1f/rhI377kV3/5ZXBiqqyk31dfcYWKvRKSQg6ob69obauI2O3k\nk7e0hJetIiLVXtHaVgHYWpGDr4yVtgQzDbGszH/bZxZyg2NWIU9IoAZjq1eHp5CLhUH+yvWDIeS8\nIpeOr43OtohCfuGC9jH52ugUCZWiIBZyCZw5A2zdqq0f2xYxpzwchXzwYOqI6KvNQkUFcOoUFVFp\nCQu5dKRYKwCli/bqRftNWuNro1MkVIqCWMglIPrjahwjJoW77iIP+MgRYOTI4MxpJCZP9p2GWFRE\nqWxad9Nka0U6Uq0VIHjZK75yyEXYWjE4Q4dSBkRra+BjBctWEeneHbj99vAoBPKEv3zyYNgqwOUV\nuZKujOGGVGsFCI5P3thI2U8JCb5fx0JucLp0Afr3V9ZRz51gCzlArQAunpIXdkycSFWbns56PH+e\nDqGYNEn7OLp3p1X/zz9rP5fZkWqtAMC4cSSyhw9rF8+uXWS9+WszbbXSz9cI54oGQsgKOaCOvRJs\nf1xkyBBgwoTgzmkUunenW+KNG6/83o4dVMjR9rQXLWGfXBpyrJUOHeiOU8tVuZSNTjGWUMglZyH3\nQ7D9cYbw5pMHy1YRYZ9cGnKsFUD7JlpShRwIDXuFhdwPetgqjPd88mALOa/IpSHHWgHIGtuxA2ho\n0CYeKTnkIizkBoeF3LyMGkXdB6uqLj93+jSlrY0fH7w4WMilIcdaASjFdMIEqpdQm9ZWYO9e6emp\nYSPkjY2NmD59OoYOHYphw4bh22+/RUNDA2w2GxITE5GdnY3GxkatY5VNcjKV6Z87p+x6vfxxhjap\nJk1qX66/cSMJfFRU8OJga8U/zc0knnJ/LlodAbd/P/0BlhpPKBQFSRLyxx57DLfeeiu+//577Nq1\nC8nJyXA4HLDZbCgvL0dWVhYcDofWscqmc2f6RVR6xBT74/ri7pMH21YBeEUuBSkNszxx221kn3k7\n4lApUvLH2xIWK/ITJ05g06ZNmDt3LgAgIiICPXr0QGFhIex2OwDAbrejoKBA20gVEoi9smED2yp6\nYrMBxcWXu1iykBsTubaKSHQ0HbztdKobj5yNTiA0qjv9CnlFRQX69euHBx54AKNGjcLDDz+M06dP\nw+VywXqxLZ/VaoXL/WgbgxCIkLM/ri9xcXRSz/btQE0NCWpGRvBjYGvFN3IzVtqiRfaKnI1OgHLJ\nT56kPRizEuHvBa2trdixYwf+9re/YcyYMXj88cevsFEsFgssXu6r8tpUtWRmZiIzyMqYkgJ88on8\n69gfNwZilWd8PG2O+SvwUJvoaKoSPHtW25a5ZkZuxkpb7riDzlx96y31Wi7IXZFbLMC111Iu+bBh\n6sQgF6fTCWcAtyZ+hTwuLg5xcXEYM2YMAGD69Ol4+eWXERMTg9raWsTExKCmpgbR0dEer8/TuTwx\nJQV44QX515WU0A+V/XF9mTyZfn6DBgXfVgGoYCQmhu4I4uODP78ZUGqtAEBSEp0qtGMHMHp04LHU\n1lIL6Lg4edeJPrleQu6+yF24cKGs6/1aKzExMRg4cCDKy8sBAMXFxUhJScHtt9+O/IsnIOTn52PK\nlCmyJg4WSUlUCizndHaAbJVgprkxnrnlFrpVXrNGHyEHSBTYJ/dOINYKoG4TLXGjU+7q3uwbnpKy\nVt58803MmjULqamp2LVrF5555hnk5uaiqKgIiYmJWLduHXJzc7WOVRGdOtFt08W/Q5Jhf9wYdO5M\nrXy7dfPfAEkrBgxgn9wXgVgrgLpNtOTaKiJmF3K/1goApKamYuvWrVc8X1xcrHpAWiBueA4fLu31\nZ86QtXLTTdrGxUhj6lR1mp8phTNXfFNXB4wdq/z6G24gS2TPHum/o94oK6N9FbnEx9OmulkJ6cpO\nEbmZK+yPG4tHHwVefVW/+dla8U2g1krHjsC8ecDzzwcei9wcchGzr8hZyD3AtgrTFrZWfBOotQIA\nv/sdsGkTtZ9VSnMz7YcNHSr/WhZyE8BCzgQCWyu+CSRrRaRrV2D+/MB68H/3HZCYqCxN1GqlPPJT\np5TPrydhIeRJSZQjKqUUmP1xxh0Wct8Eaq2I/Pa31BZjxw5l1yvd6ATa55KbkbAQ8quuojzk/fv9\nv5b9ccadAQOA6urgnPxuNpQ2zPJE587AU08Bzz2n7PpAhBwwt70SFkIOSLdXuL8K406nTpT+WFen\ndyTGo76ebBW1qjIfeogyT0pK5F8rtzTfHRZyEyBVyNkfZzzB9opn1LJVRDp1Ap55Rv6qXBBoo5RX\n5CGOFCE/e5b9ccYz3DzLM2pkrLgzdy7w/ffAN99Iv6aykjZMA4mFhdwESBHykhJKXWJ/nHGHV+Se\nUSNjxZ2rrgL+/Gfg2WelX6M0f7wtZj5gImyEfMgQOjbszBnvr2FbhfGGFkK+ezdZAmZGbWtF5L77\nSFQ3bJD2+kA3OgFekZuCyEjq1bFvn/fXsJAz3lC7ulMQqCnbpk3qjakHWlgrAP2+PvssPaT8sQt0\noxOglsVNTdSb3GyEjZADvu0V9scZX6hd3VlRARw/rv7pOMFGC2tFZNYs6sGybp3/16qxIrdYaFVu\nxlxyFvKLsD/O+EJta2X7dqBnT2D9evXG1AOtrBUAiIig7BV/q/ITJ4AffwQGDw58TrPaK2En5Hv2\neP4e9x9nfKG2tbJ9O+VMb93qe9/G6GhlrYjcfTed0LR2rffX7NpFXRPVOD2KhdwE+FqRsz/O+KJn\nTzqcRK1eHNu309F1KSnA5s3qjKkHWlorAIlzXp7vVbkatooIC7kJGDyYSq2bmto/z/444w+LRT17\nRRBIyEePJjE3s72ipbUiMm0atQL4/HPP32chDzMhj4igNMTvv2//fEkJkJwM9OihT1yMOVDLXqmo\nALp0oY57Zhdyra0VgM5NXbjQ+6pcjYwVEbPmkoeVkAOe7RW2VRgpqJW5Iq7GAeAXvwBKS6+8SzQD\nzc1kN6nRMMsf4pHA7md7trYCe/cCI0aoMw+vyE2CJyHnRlmMFNSyVtoKeVQU2QJyytGNgrgaV6th\nli8sFjpB6Nln23ehLC8H+venpmZq0K8f/YH6+Wd1xgsWkoQ8Pj4eI0eORHp6OsZePJyvoaEBNpsN\niYmJyM7ORmNjo6aBqoW7kJ89Sz2Q2R9n/KGFkAPmtVeCYau05bbbqKnWRx9dfk5Nfxwwby65JCG3\nWCxwOp0oLS1FycX+kg6HAzabDeXl5cjKyoLD4dA0ULVwF/KtW9kfZ6ShRuOsthudIpmZ5hRyrTNW\n3BFX5Xl5wPnz9JzaQg6Y016RbK0IbrsMhYWFsNvtAAC73Y6CggJ1I9OIhATA5bqcRsb+OCMVNVbk\nlZV0gEJMzOXnbryRcqHNdsxYMDJW3Jk8mRZdK1fS12pudIoMGhSiQm6xWDBp0iRkZGRg6dKlAACX\nywWr1QoAsFqtcLlc2kWpIh070rl+YuYKCzkjFTWE3H01DlAGy6hRwFdfBTZ2sAm2tQLQqnzRIlqV\nt7byilwkQsqLvv76a8TGxuKnn36CzWZDcnJyu+9bLBZYvOx45LU5TTUzMxOZBlBN0V4ZOZL9cUY6\nMTG0Cj13jpo6KcGTkAPkkzudwC9/GVCIQUWPFTkATJxIP4vXXqOq2IED1R0/Ph7YskXdMf3hdDrh\nDKDxjiQhj42NBQD069cPU6dORUlJCaxWK2praxETE4OamhpER0d7vDYvkGOxNUIUcvbHGTlERFBW\nQ22tcvHYvh34wx+ufH7CBGDBgsDiCzZ1dcB11wV/XtErz84mW0rtrBk9VuTui9yFCxfKut6vtdLU\n1ISTF/s6nj59GmvXrsWIESOQk5OD/Px8AEB+fj6miImeJkAUcrZVGLkEYq942ugUuf56+kyaKe1N\nD2tFZPx44Oab1ffHAXMWBfldkbtcLkydOhUA0NrailmzZiE7OxsZGRmYMWMGli1bhvj4eKwUdx9M\ngCjkLS3AE0/oHQ1jJgKp7jxyBLj6auDiDW47OnUCxoyh/uS33RZYjMFCL2tF5IMPtMlh79uX0pJP\nnDDP3bpfIR80aBDKysqueL53794oLi7WJCitGTQI+OknWlGwP87IIZDqTm+rcRExn9xMQh7M9EN3\n+vXTZty2ueQjR2ozh9qEXWUnQJkrycnUf9wsf3EZYxCItSJVyM2CntaK1pgtcyUshRwge4X7jzNy\nCcRa8Sf1AZKoAAASbUlEQVTkY8dSyblJiqR1t1a0xGxCLilrJRTJy6P8XYaRg1JrxddGp8jVV9Om\n58aNQE6O8hiDwZkzwWuYpQdmKwoK2xV5QoLnTSeG8YVSa+XoUco979/f9+vMYq8Es2GWHphtRR62\nQs4wShCFXMrJ7m3xtxoXMUvflVC2VQAWcoYJabp2pVTBhgZ510kV8jFjgMOHacVrZPTOWNEaFnKG\nCXGU2CtShTwykqoVN2xQFluwCOWMFYD+SLW0UC65GWAhZxiZyBVyKRudbRH7rhiZULdWxFxys6zK\nWcgZRiZyUxCrqqh2wd9Gp4gZNjxD3VoBWMgZJqSRm4IorsalZniMGkXi/9NPyuILBqFurQAs5AwT\n0si1VuTYKgB1WbzpJmPbK6FurQAs5AwT0si1VuQKOWD8NES2VowFCznDyESOtSIIwLZt8oXc6D55\nOFgrZqruZCFnGJnIsVaqqoAOHegaOaSl0QEWtbXy4wsGbK0YCxZyhpFJ377A6dNAc7P/18rd6BTp\n2BG45Rbj+uThYK307k3ngpqhiRkLOcPIxGKhVEIpq3Il/riIUe0VsWFWt256R6ItZsolZyFnGAVI\ntVdCUchDvWFWW1jIGSaEkZK5IlZ0ZmQom2PECBJNpf3PtSIcbBURFnKGCWGkZK788AOtWuVudIp0\n6ECHnxhtVR4OGSsiISXk58+fR3p6Om6//XYAQENDA2w2GxITE5GdnY1GM+wGMIyKSLFWlG50tsWI\nfVfCIWNFJKSEfMmSJRg2bBgsFz+RDocDNpsN5eXlyMrKgsPh0DRIhjEaUqyVQPxxESP65GytGA+/\nQv7DDz9g9erVeOihhyBc7KZfWFgIu90OALDb7SgoKNA2SoYxGHJW5IGQkgKcPEknDBmFcLJWzFIU\n5FfIn3jiCbzyyivo0OHyS10uF6xWKwDAarXC5XJpFyHDGBB/Hrnc1rXesFiMV64fTtZKr17AhQvG\nzyX3efjyqlWrEB0djfT0dDi9GHUWi+WS5eKJvLy8S//OzMxEZmamkjgZxlDExgIuF3D+PBXvuCMe\nBxcXF/hcopBfvAnWnbo65Zk4ZkPMJa+oANLTtZvH6XR61Vgp+BTyb775BoWFhVi9ejXOnDmDn3/+\nGXPmzIHVakVtbS1iYmJQU1OD6Ohor2O0FXKGCRWuuooq/3780fMh3mpsdIpMmAAsXkx/GIyQux1O\n1gpw2SfXUsjdF7kLFy6Udb1Pa+Wll15CVVUVKioqsGLFCkycOBHvv/8+cnJykJ+fDwDIz8/HlClT\n5EfOMCbHl72ihq0ikpxMlZQVFeqMFyjhZK0A5tjwlJVHLlooubm5KCoqQmJiItatW4fc3FxNgmMY\nI+Nrw1NNIRd9cqOkIYZT1gpgDiH3aa20Zfz48Rg/fjwAoHfv3iguLtYsKIYxA95SEMWNzv/8T/Xm\nEtMQ585Vb0ylhKO1YvTDsLmyk2EU4s1aqa6mTdCBA9WbSxTyixnAunHmDHD2bOg3zGqLGVbkLOQM\noxBv1oqaG50igwfTfw8eVG9MJdTXk61ihE3XYCEKud5/RH3BQs4wCvFmrajpj4sYJZ883GwVgHLJ\nAWPnkrOQM4xCvFkrWgg5YIxy/XDLWAHM0ZechZxhFCJaK+633FoKudOp7y1+uGWsiGRkAKtW6R2F\nd1jIGUYh3btTq9mff778XHU1cO4ccM016s83aBAVIu3fr/7YUglHawUAFiwAliwxrr3CQs4wAeC+\n4anFRqeIxaK/vRKO1goAJCYCv/418PrrekfiGRZyhgkAd59cK1tF5KabgM2btRvfH+FqrQDAn/8M\nvPkm0NCgdyRXwkLOMAHgnrmybZu2Qp6RQXPoRbhaKwCQkABMnQr89a96R3IlLOQMEwDerBWtSEkB\njhwBTp3Sbg5fhKu1IvKnP1HFbl2d3pG0h4WcYQKgrbVSXU3Nra69Vrv5IiNJzMvKtJvDF+FsrQCU\nhnjXXcBf/qJ3JO1hIWeYAGi7Itdyo7Mto0frZ6+Es7Ui8vTTwNKl1MLYKLCQM0wAtPXItbZVRDIy\naC49CHdrBaDU0nvuAV55Re9ILsNCzjAB0NZaCZaQjx6tj5CfPRt+DbO88dRTwLJlQG2t3pEQLOQM\nEwDR0VQkcvZs8IRcrw3PcGyY5Y24OGDOHDq5yQiwkDNMAHToQEe97dhBYh4fr/2ckZHA8OFAaan2\nc7WFbZX25OYC+fm0ya03LOQMEyADBgCFhcCoUcFbrephr4R7xoo7sbHAAw8AL7+sdyQs5AwTMKKQ\nB8NWEdFDyDlj5Urmzwf+8Q+gqkrfOFjIGSZA4uKAvXuDK+R6VHiytXIlVivw8MPASy/pG4dPIT9z\n5gzGjRuHtLQ0DBs2DE899RQAoKGhATabDYmJicjOzkajUVuCMUwQGDCA/htMIR82DDh6FDh5Mnhz\nsrXimSefBFaupA1ovfAp5J06dcL69etRVlaGXbt2Yf369fjqq6/gcDhgs9lQXl6OrKwsOByOYMXL\nMIZjwAA6RWbQoODNKW54BrPCk60Vz/TtC/zmN8CLL+oXg19rpUuXLgCAlpYWnD9/Hr169UJhYSHs\ndjsAwG63o6CgQNsoGcbApKUBs2cHPy0v2PYKWyvemTcP+Ogj4PBhfeb3K+QXLlxAWloarFYrJkyY\ngJSUFLhcLlitVgCA1WqFy+XSPFCGMSpDhwJvvBH8eYO94clC7p0+fYDf/x544QV95o/w94IOHTqg\nrKwMJ06cwOTJk7Herau9xWKBxcdSJC8v79K/MzMzkZmZqThYhmEuM3p0cMvExYIgxjNPPAEMGQIc\nOED/lYPT6YTT6VQ8t0UQpJ8AuGjRInTu3BnvvPMOnE4nYmJiUFNTgwkTJmDfvn1XDm6xQMbwDMPI\n4Nw5oGdPKhMPRtn8oEHAl18C112n/Vxm5fnngYMHgffeC2wcudrp01qpq6u7lJHS3NyMoqIipKen\nIycnB/n5+QCA/Px8TJkyJYCQGYZRQmQkMGJE8Co82Vrxz2OPAWvWBP9cVZ8r8t27d8Nut+PChQu4\ncOEC5syZgyeffBINDQ2YMWMGjh49ivj4eKxcuRI9e/a8cnBekTOMpvz+98DgwXRbryVis6yzZ7nX\nij9eegn47jsqFFKKXO2UZa1oHQzDMPJ4911g3Tpg+XJt56muJk++pkbbeUKBkyfpWDink/L9laCq\ntcIwjLEJVgoi2yrS6daN0hEXLgzenCzkDGNihg2jPh9aV3hyxoo8fv97YMMGYPfu4MzHQs4wJiYi\nIjgbnrwil0dUFJXuB6tfud88coZhjI1or9xyi3ZzsJDL53e/A86cCc5cvCJnGJMTjApPtlbk07kz\n9eAJBizkDGNygiHkvCI3NizkDGNyxA3Pn3/Wbg4WcmPDQs4wJiciAhg5UtsNT7ZWjA0LOcOEAFrb\nK7wiNzYs5AwTAmhdGMRCbmxYyBkmBNB6Rc7WirHhXisMEwK0tgI9elAvlO7d1R2bG2YFH+61wjBh\niJYbnuJqnEXcuLCQM0yIoJVPzraK8WEhZ5gQQSufnDc6jQ8LOcOECCzk4QsLOcOECEOHAseOASdO\nqDsuWyvGh4WcYUIErTY8eUVufPwKeVVVFSZMmICUlBQMHz4cb7zxBgCgoaEBNpsNiYmJyM7OvnRI\nM8Mw+qGFvcJCbnz8CnlkZCRee+01fPfdd9iyZQveeustfP/993A4HLDZbCgvL0dWVhYcDkcw4mUY\nxgdaZK6wtWJ8/Ap5TEwM0tLSAABRUVEYOnQojh07hsLCQtjtdgCA3W5HQUGBtpEyDOMXXpGHJ7I8\n8srKSpSWlmLcuHFwuVywWq0AAKvVCpfLpUmADMNIJzmZTrxXc8OThdz4SBbyU6dOYdq0aViyZAm6\ndevW7nsWiwUWLvtiGN2JiABSU4EdO9Qbs66OrRWjI+nMznPnzmHatGmYM2cOpkyZAoBW4bW1tYiJ\niUFNTQ2io6M9XpuXl3fp35mZmcjMzAw4aIZhvCPaKxMmqDNefT2vyLXG6XTC6XQqvt5v0yxBEGC3\n29GnTx+89tprl56fP38++vTpgwULFsDhcKCxsfGKDU9umsUwwSc/H/jiC+CDDwIfixtm6YNc7fQr\n5F999RVuueUWjBw58pJ98vLLL2Ps2LGYMWMGjh49ivj4eKxcuRI9e/YMKBiGYQJnzx7gzjuB8vLA\nx6quBkaNAmprAx+LkY7qQh7MYBiGCZzWVqBnT6ry7NEjsLF27wZmzqQ/Dkzw4Da2DBPmqLnhyRkr\n5oCFnGFCELXyyTljxRywkDNMCKJWhSdnrJgDFnKGCUHUXJGzkBsfFnKGCUGSk+n8zkB72bG1Yg5Y\nyBkmBOnYEUhLC3zDk60Vc8BCzjAhihr2Clsr5oCFnGFCFLWEnK0V48NCzjAhihqZK2ytmAMWcoYJ\nUZKSAJcrsA1PtlbMAQs5w4QoHTsGVuHZ0gI0NwPdu6sbF6M+LOQME8JkZCj3ycUj3rjrofFhIWeY\nEGb0aOU+Odsq5oGFnGFCmEAyVzhjxTywkDNMCCNueB4/Lv9azlgxDyzkDBPCBFLhydaKeWAhZ5gQ\nR6m9wtaKeWAhZ5gQR6mQs7ViHiL0DoBhGG3JyAAefxx45BEgMvLKx1VXeX5u2zYgPV3v6Bkp+BXy\nuXPn4vPPP0d0dDR2794NAGhoaMDdd9+NI0eOeD14mWEYY5CcDLz9NnDiBHDuXPtHSwvQ1NT+a/Hf\n8fHADTfoHT0jBb+HL2/atAlRUVG47777Lgn5/Pnz0bdvX8yfPx+LFy/G8ePH4XA4rhycD1++hNPp\nRGZmpt5hGAJ+Ly7D78Vl+L24jOqHL998883o1atXu+cKCwtht9sBAHa7HQUFBTLDDD+cTqfeIRgG\nfi8uw+/FZfi9UI6izU6XywWr1QoAsFqtcLlcqgbFMAzDSCfgrBWLxQILN2NgGIbRD0ECFRUVwvDh\nwy99nZSUJNTU1AiCIAjV1dVCUlKSx+sSEhIEAPzgBz/4wQ8Zj4SEBCnSfAlF6Yc5OTnIz8/HggUL\nkJ+fjylTpnh83cGDB5UMzzAMw8jAb9bKzJkzsWHDBtTV1cFqteL555/HHXfcgRkzZuDo0aOcfsgw\nDKMzfoWcYRiGMTaalOh/8cUXSE5OxpAhQ7B48WItpjAN8fHxGDlyJNLT0zF27Fi9wwkqc+fOhdVq\nxYgRIy4919DQAJvNhsTERGRnZ6MxkHPITISn9yIvLw9xcXFIT09Heno6vvjiCx0jDB5VVVWYMGEC\nUlJSMHz4cLzxxhsAwvOz4e29kP3ZkOWoS6C1tVVISEgQKioqhJaWFiE1NVXYu3ev2tOYhvj4eKG+\nvl7vMHRh48aNwo4dO9ptlD/55JPC4sWLBUEQBIfDISxYsECv8IKKp/ciLy9PePXVV3WMSh9qamqE\n0tJSQRAE4eTJk0JiYqKwd+/esPxseHsv5H42VF+Rl5SUYPDgwYiPj0dkZCTuuecefPrpp2pPYyqE\nMHWvuJjsMp7eCyA8PxsxMTFIS0sDAERFRWHo0KE4duxYWH42vL0XgLzPhupCfuzYMQwcOPDS13Fx\ncZcCC0csFgsmTZqEjIwMLF26VO9wdIeLydrz5ptvIjU1FQ8++GBYWAnuVFZWorS0FOPGjQv7z4b4\nXlx//fUA5H02VBdyLg5qz9dff43S0lKsWbMGb731FjZt2qR3SIYh3IvJHn30UVRUVKCsrAyxsbGY\nN2+e3iEFlVOnTmHatGlYsmQJunXr1u574fbZOHXqFKZPn44lS5YgKipK9mdDdSEfMGAAqqqqLn1d\nVVWFuLg4tacxDbGxsQCAfv36YerUqSgpKdE5In2xWq2ora0FANTU1CA6OlrniPQjOjr6kmA99NBD\nYfXZOHfuHKZNm4Y5c+ZcqkMJ18+G+F7Mnj370nsh97OhupBnZGTgwIEDqKysREtLCz788EPk5OSo\nPY0paGpqwsmTJwEAp0+fxtq1a9tlLYQjYjEZAJ/FZOFATU3NpX9/8sknYfPZEAQBDz74IIYNG4bH\nH3/80vPh+Nnw9l7I/mxosBErrF69WkhMTBQSEhKEl156SYspTMHhw4eF1NRUITU1VUhJSQm79+Ke\ne+4RYmNjhcjISCEuLk549913hfr6eiErK0sYMmSIYLPZhOPHj+sdZlBwfy+WLVsmzJkzRxgxYoQw\ncuRI4Y477hBqa2v1DjMobNq0SbBYLEJqaqqQlpYmpKWlCWvWrAnLz4an92L16tWyPxtcEMQwDGNy\n+MxOhmEYk8NCzjAMY3JYyBmGYUwOCznDMIzJYSFnGIYxOSzkDMMwJoeFnGEYxuSwkDMMw5ic/w8Z\nIb9bKP8zagAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x1165e97d0>" | |
} | |
], | |
"prompt_number": 121 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "usr=[]\nfor i in da", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 122 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "temp_usr=data_310.author_id\nusr=[]\nfor i in temp_usr:\n if i not in usr:\n usr.append(i)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 126 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(usr)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 127, | |
"text": "5086" | |
} | |
], | |
"prompt_number": 127 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "user_money_no_money=[]\nuser_in_out=[]\nuser_in_out_mon_no_mon=[]\nfor x in usr:\n temp=data_310[data_310.author_id==x][['mon_dir']].values\n temp_dir=data_310[data_310.author_id==x][['direction']].values\n temp_mon=data_310[data_310.author_id==x][['money']].values\n ln=len(data_310[data_310.author_id==x][['mon_dir']])\n money=0\n no_money=0\n inward=0\n outward=0\n in_mon=0\n in_no_mon=0\n out_mon=0\n out_no_mon=0\n for j in temp_dir:\n if j==\"in\":\n inward+=1\n if j==\"out\":\n outward+=1\n for j in temp_mon:\n if j==\"y\":\n money+=1\n elif j==\"n\":\n no_money+=1\n for j in temp:\n if j==\"in_y\":\n in_mon+=1\n elif j==\"in_n\":\n in_no_mon+=1\n elif j==\"out_y\":\n out_mon+=1\n elif j==\"out_n\":\n out_no_mon+=1\n user_money_no_money.append(( x,( float(money)/float(ln))*100, float(no_money)/float(ln)*100, money, no_money,ln))\n user_in_out.append((x,(float(inward)/float(ln))*100, float(outward)/float(ln)*100, inward, outward, ln))\n user_in_out_mon_no_mon.append((x, float(in_mon)/float(ln)*100, float(in_no_mon)/float(ln)*100, float(out_mon)/float(ln)*100, float(out_no_mon)/float(ln)*100, in_mon, in_no_mon, out_mon, out_no_mon, ln)) \n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 183 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "temp_in=[]\ntemp_out=[]\ntemp_in_number=[]\ntemp_out_number=[]\nfor i in user_in_out:\n temp_in.append(i[1])\n temp_out.append(i[2])\n temp_in_number.append(i[3])\n temp_out_number.append(i[4])", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 184 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "plt.hist(temp_in)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 180, | |
"text": "(array([ 3152., 96., 149., 145., 54., 294., 83., 31.,\n 18., 1064.]),\n array([ 0., 10., 20., 30., 40., 50., 60., 70., 80.,\n 90., 100.]),\n <a list of 10 Patch objects>)" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGhBJREFUeJzt3W1MW+f9//H3iUCqsoYunYqd2pmIggkxcYJp5kxTK5FR\nJxltGF0qVLoFktI9AE2jS560ldolkxaoNqlLb5CqlkmM6lfIk0I0LRa9wd2WtnQlQa3qSPHyJ5Jt\nDFqash9p6UjC+T+gccsvDaTc2dn1eUlHsi+fm+91hfjjc3wusGzbthERESMtS3cBIiKSPgoBERGD\nKQRERAymEBARMZhCQETEYAoBERGDzRgCn3/+OVu2bKG4uBiv18tjjz0GwIEDB3C73fj9fvx+P8eO\nHUtt09TUhMfjobCwkJ6enlR7f38/Pp8Pj8dDY2PjInVHRES+CWu2eQKfffYZy5cv59KlS9x55538\n/ve/54033mDFihXs27dv2rqRSIQHH3yQf/zjHyQSCe6++26i0SiWZREIBHjuuecIBAKUl5fzy1/+\nkh07dixq50REZGazXg5avnw5ABMTE1y+fJmVK1cC8HXZ0d3dTXV1NdnZ2eTl5ZGfn09fXx/JZJKx\nsTECgQAANTU1dHV1LWQ/RERkDmYNgcnJSYqLi3E4HGzdupWioiIAnn32WTZt2kRdXR2jo6MADA0N\n4Xa7U9u63W4SicRV7S6Xi0QisdB9ERGRb2jWEFi2bBkDAwPE43H++te/Eg6Hqa+vZ3BwkIGBAVat\nWsX+/fuXolYREVlgWde74i233MI999zD+++/T2lpaar94YcfZufOncDUJ/xYLJZ6LR6P43a7cblc\nxOPxae0ul+uqY+Tn53PmzJm59ENExFhr167ln//855y2nfFM4Ny5c6lLPePj47z22mv4/X6Gh4dT\n67z66qv4fD4AKioq6OjoYGJigsHBQaLRKIFAAKfTSU5ODn19fdi2TXt7O5WVlVcd78yZM9i2rcW2\n+fWvf532GjJl0VhoLDQWMy/z+fA845lAMpmktraWyclJJicn2b17N2VlZdTU1DAwMIBlWaxZs4YX\nXngBAK/XS1VVFV6vl6ysLFpaWrAsC4CWlhb27NnD+Pg45eXlujNIRCQDzBgCPp+PEydOXNX+pz/9\n6ZrbPP744zz++ONXtd9xxx18+OGHcyhRREQWi2YMZ6ivfu9iOo3FlzQWX9JYLIxZJ4stJcuyyKBy\nRERuCPN579SZgIiIwRQCIiIGUwiIiBhMISAiYjCFgIiIwRQCIiIGUwiIiBhMISAiYjCFgIiIwRQC\nIiIGUwiIiBhMISAiYjCFgIiIwRQCIiIGUwiIiBjsuv/Q/FK588570nr8m27K4n/+50Vyc3PTWoeI\nyFLIuBA4frwhrcdfvvyXxONxhYCIGCHjQgDSeyaQlfVEWo8vIrKU9J2AiIjBFAIiIgZTCIiIGGzG\nEPj888/ZsmULxcXFeL1eHnvsMQDOnz9PMBikoKCAbdu2MTo6mtqmqakJj8dDYWEhPT09qfb+/n58\nPh8ej4fGxsZF6o6IiHwTM4bATTfdRG9vLwMDA3zwwQf09vby97//nebmZoLBIKdPn6asrIzm5mYA\nIpEInZ2dRCIRQqEQDQ0N2LYNQH19Pa2trUSjUaLRKKFQaPF7JyIiM5r1ctDy5csBmJiY4PLly6xc\nuZKjR49SW1sLQG1tLV1dXQB0d3dTXV1NdnY2eXl55Ofn09fXRzKZZGxsjEAgAEBNTU1qGxERSZ9Z\nQ2BycpLi4mIcDgdbt26lqKiIkZERHA4HAA6Hg5GREQCGhoZwu92pbd1uN4lE4qp2l8tFIpFY6L6I\niMg3NOs8gWXLljEwMMC///1vtm/fTm9v77TXLcvCsqwFLOnAVx6XfrGIiMgV4XCYcDi8IPu67sli\nt9xyC/fccw/9/f04HA6Gh4dxOp0kk8nU7FqXy0UsFkttE4/HcbvduFwu4vH4tHaXy3WNIx2YU0dE\nRExRWlpKaWlp6vnBgwfnvK8ZLwedO3cudefP+Pg4r732Gn6/n4qKCtra2gBoa2ujsrISgIqKCjo6\nOpiYmGBwcJBoNEogEMDpdJKTk0NfXx+2bdPe3p7aRkRE0mfGM4FkMkltbS2Tk5NMTk6ye/duysrK\n8Pv9VFVV0draSl5eHkeOHAHA6/VSVVWF1+slKyuLlpaW1KWilpYW9uzZw/j4OOXl5ezYsWPxeyci\nIjOy7Cv3cGaAqcBIbzk5OSX09r5ESUlJWusQEblelmUx17dyzRgWETGYQkBExGAKARERgykEREQM\nphAQETGYQkBExGAKARERgykEREQMphAQETGYQkBExGAKARERgykEREQMphAQETGYQkBExGAKARER\ngykEREQMphAQETGYQkBExGAKARERgykEREQMphAQETGYQkBExGAKARERg80YArFYjK1bt1JUVMSG\nDRt45plnADhw4AButxu/34/f7+fYsWOpbZqamvB4PBQWFtLT05Nq7+/vx+fz4fF4aGxsXKTuiIjI\nN5E104vZ2dk8/fTTFBcXc+HCBe644w6CwSCWZbFv3z727ds3bf1IJEJnZyeRSIREIsHdd99NNBrF\nsizq6+tpbW0lEAhQXl5OKBRix44di9o5ERGZ2YxnAk6nk+LiYgBuvvlm1q9fTyKRAMC27avW7+7u\nprq6muzsbPLy8sjPz6evr49kMsnY2BiBQACAmpoaurq6FrovIiLyDV33dwJnz57l5MmTfP/73wfg\n2WefZdOmTdTV1TE6OgrA0NAQbrc7tY3b7SaRSFzV7nK5UmEiIiLpM+PloCsuXLjA/fffz+HDh7n5\n5pupr6/nySefBOCJJ55g//79tLa2LlBJB77yuPSLRURErgiHw4TD4QXZ16whcPHiRXbt2sXPfvYz\nKisrAcjNzU29/vDDD7Nz505g6hN+LBZLvRaPx3G73bhcLuLx+LR2l8t1jSMemEM3RETMUVpaSmlp\naer5wYMH57yvGS8H2bZNXV0dXq+XRx55JNWeTCZTj1999VV8Ph8AFRUVdHR0MDExweDgINFolEAg\ngNPpJCcnh76+Pmzbpr29PRUoIiKSPjOeCRw/fpyXX36ZjRs34vf7ATh06BCvvPIKAwMDWJbFmjVr\neOGFFwDwer1UVVXh9XrJysqipaUFy7IAaGlpYc+ePYyPj1NeXq47g0REMoBlf91tPmkyFRjpLScn\np4Te3pcoKSlJax0iItfLsqyvvWPzemjGsIiIwRQCIiIGUwiIiBhMISAiYjCFgIiIwRQCIiIGUwiI\niBhMISAiYjCFgIiIwRQCIiIGUwiIiBhMISAiYjCFgIiIwRQCIiIGUwiIiBhMISAiYjCFgIiIwRQC\nIiIGUwiIiBhMISAiYjCFgIiIwRQCIiIGUwiIiBhsxhCIxWJs3bqVoqIiNmzYwDPPPAPA+fPnCQaD\nFBQUsG3bNkZHR1PbNDU14fF4KCwspKenJ9Xe39+Pz+fD4/HQ2Ni4SN0REZFvYsYQyM7O5umnn+aj\njz7i3Xff5fnnn+fUqVM0NzcTDAY5ffo0ZWVlNDc3AxCJROjs7CQSiRAKhWhoaMC2bQDq6+tpbW0l\nGo0SjUYJhUKL3zsREZnRjCHgdDopLi4G4Oabb2b9+vUkEgmOHj1KbW0tALW1tXR1dQHQ3d1NdXU1\n2dnZ5OXlkZ+fT19fH8lkkrGxMQKBAAA1NTWpbUREJH2u+zuBs2fPcvLkSbZs2cLIyAgOhwMAh8PB\nyMgIAENDQ7jd7tQ2brebRCJxVbvL5SKRSCxUH0REZI6yrmelCxcusGvXLg4fPsyKFSumvWZZFpZl\nLWBJB77yuPSLRURErgiHw4TD4QXZ16whcPHiRXbt2sXu3buprKwEpj79Dw8P43Q6SSaT5ObmAlOf\n8GOxWGrbeDyO2+3G5XIRj8entbtcrmsc8cDceyMiYoDS0lJKS0tTzw8ePDjnfc14Oci2berq6vB6\nvTzyyCOp9oqKCtra2gBoa2tLhUNFRQUdHR1MTEwwODhINBolEAjgdDrJycmhr68P27Zpb29PbSMi\nIukz45nA8ePHefnll9m4cSN+vx+YugX00UcfpaqqitbWVvLy8jhy5AgAXq+XqqoqvF4vWVlZtLS0\npC4VtbS0sGfPHsbHxykvL2fHjh2L3DUREZmNZV+5hzMDTAVGesvJySmht/clSkpK0lqHiMj1siyL\nub6Va8awiIjBFAIiIgZTCIiIGEwhICJiMIWAiIjBFAIiIgZTCIiIGEwhICJiMIWAiIjBFAIiIgZT\nCIiIGEwhICJiMIWAiIjBFAIiIgZTCIiIGEwhICJiMIWAiIjBFAIiIgZTCIiIGEwhICJiMIWAiIjB\nFAIiIgZTCIiIGGzWEHjooYdwOBz4fL5U24EDB3C73fj9fvx+P8eOHUu91tTUhMfjobCwkJ6enlR7\nf38/Pp8Pj8dDY2PjAndDRETmYtYQ2Lt3L6FQaFqbZVns27ePkydPcvLkSX70ox8BEIlE6OzsJBKJ\nEAqFaGhowLZtAOrr62ltbSUajRKNRq/ap4iILL1ZQ+Cuu+5i5cqVV7VfeXP/qu7ubqqrq8nOziYv\nL4/8/Hz6+vpIJpOMjY0RCAQAqKmpoaurawHKFxGR+ZjzdwLPPvssmzZtoq6ujtHRUQCGhoZwu92p\nddxuN4lE4qp2l8tFIpGYR9kiIrIQsuayUX19PU8++SQATzzxBPv376e1tXWBSjrwlcelXywiInJF\nOBwmHA4vyL7mFAK5ubmpxw8//DA7d+4Epj7hx2Kx1GvxeBy3243L5SIej09rd7lc19j7gbmUJCJi\njNLSUkpLS1PPDx48OOd9zelyUDKZTD1+9dVXU3cOVVRU0NHRwcTEBIODg0SjUQKBAE6nk5ycHPr6\n+rBtm/b2diorK+dctIiILIxZzwSqq6t56623OHfuHKtXr+bgwYOEw2EGBgawLIs1a9bwwgsvAOD1\neqmqqsLr9ZKVlUVLSwuWZQHQ0tLCnj17GB8fp7y8nB07dixuz0REZFaW/XW3+aTJVGCkt5ycnBJ6\ne1+ipKQkrXWIiFwvy7K+9o7N66EZwyIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIw\nhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgY\nTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImKwWUPgoYcewuFw4PP5Um3nz58nGAxSUFDAtm3bGB0d\nTb3W1NSEx+OhsLCQnp6eVHt/fz8+nw+Px0NjY+MCd0NEJD1ycm7Fsqy0LvMxawjs3buXUCg0ra25\nuZlgMMjp06cpKyujubkZgEgkQmdnJ5FIhFAoRENDA7ZtA1BfX09rayvRaJRoNHrVPkVEbkRjY58A\ndpqXuZs1BO666y5Wrlw5re3o0aPU1tYCUFtbS1dXFwDd3d1UV1eTnZ1NXl4e+fn59PX1kUwmGRsb\nIxAIAFBTU5PaRkRE0mdO3wmMjIzgcDgAcDgcjIyMADA0NITb7U6t53a7SSQSV7W7XC4SicR86hYR\nkQWQNd8dLMQ1qekOfOVx6ReLiIh8KfzFMn9zCgGHw8Hw8DBOp5NkMklubi4w9Qk/Foul1ovH47jd\nblwuF/F4fFq7y+W6xt4PzKUkERGDlDL9A/LBOe9pTpeDKioqaGtrA6CtrY3KyspUe0dHBxMTEwwO\nDhKNRgkEAjidTnJycujr68O2bdrb21PbiIhI+sx6JlBdXc1bb73FuXPnWL16Nb/5zW949NFHqaqq\norW1lby8PI4cOQKA1+ulqqoKr9dLVlYWLS0tqUtFLS0t7Nmzh/HxccrLy9mxY8fi9kxERGZl2Vfu\n4cwAU4GR3nJyckro7X2JkpKStNYhIjeGTHjfAou5vpVrxrCIiMEUAiIiBlMIiIgYTCEgImIwhYCI\niMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEg\nImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYbF4hkJeXx8aNG/H7/QQCAQDO\nnz9PMBikoKCAbdu2MTo6mlq/qakJj8dDYWEhPT0986tcRETmbV4hYFkW4XCYkydP8t577wHQ3NxM\nMBjk9OnTlJWV0dzcDEAkEqGzs5NIJEIoFKKhoYHJycn590BEROZs3peDbNue9vzo0aPU1tYCUFtb\nS1dXFwDd3d1UV1eTnZ1NXl4e+fn5qeAQEZH0mPeZwN13383mzZt58cUXARgZGcHhcADgcDgYGRkB\nYGhoCLfbndrW7XaTSCTmc3gREZmnrPlsfPz4cVatWsW//vUvgsEghYWF0163LAvLsq65/de/duAr\nj0u/WERE5EvhL5b5m1cIrFq1CoDbbruN++67j/feew+Hw8Hw8DBOp5NkMklubi4ALpeLWCyW2jYe\nj+Nyub5mrwfmU5KIiAFKmf4B+eCc9zTny0GfffYZY2NjAHz66af09PTg8/moqKigra0NgLa2Nior\nKwGoqKigo6ODiYkJBgcHiUajqTuKREQkPeZ8JjAyMsJ9990HwKVLl/jpT3/Ktm3b2Lx5M1VVVbS2\ntpKXl8eRI0cA8Hq9VFVV4fV6ycrKoqWlZcZLRSIisvgs+//e3pNGU6GQ3nJyckro7X2JkpKStNYh\nIjeGTHjfAuuqOzWvl2YMi4gYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBpvX\n7w4SMUlOzq2MjX2S1hpWrFjJ//7v+bTWIP9dFAIi12kqANI7M3RsTL9qRRaWLgeJiBhMISAiYjCF\ngIiIwRQCIiIGUwiIiBhMISAiYjCFgIiIwTRPIENlwsQk0OQkkf92CoEMlQkTk6bqyE7734JWEIks\nHoWAzOIS6Q4jzZIVWTz6TkBExGCWPdc/Ub8Ipi47pLecnJwSLl36f3z22b/TWseUTPinSf+/CVhk\nwo9pJvx8ZspYyJdu9J+LJT0TCIVCFBYW4vF4eOqpp5by0N/IVADYaV5Evk4WlmWlfcnJuTXdAyEL\nZMlC4PLly/ziF78gFAoRiUR45ZVXOHXq1FIdXm5oy9L+ppfuL8e/dOU7mvQumXDnWjgcTncJ/xWW\nLATee+898vPzycvLIzs7mwceeIDu7u6lOrzc0CZJ95uezs4yj0JgYSxZCCQSCVavXp167na7SSQS\nS3V4EVlQ6b8s1dSUuZeUbyRLdovo9Z5O5+TsXORKZvb552fSenyRG0P6bx2emFiWQZfpblxLFgIu\nl4tYLJZ6HovFcLvd09ZZu3YtZ878ealKmkUm/HBlQg2QGXVkQg2QGXVkQg2QOXVkgvSOxdq1a+e8\n7ZLdInrp0iXWrVvHG2+8we23304gEOCVV15h/fr1S3F4ERH5Gkt2JpCVlcVzzz3H9u3buXz5MnV1\ndQoAEZE0y6jJYiIisrQy5tdG3CgTyRZDLBZj69atFBUVsWHDBp555hkAzp8/TzAYpKCggG3btjE6\nOprmSpfG5cuX8fv97Nw5dZOAqeMwOjrK/fffz/r16/F6vfT19Rk7Fk1NTRQVFeHz+XjwwQf5z3/+\nY8xYPPTQQzgcDnw+X6ptpr43NTXh8XgoLCykp6dn1v1nRAiYPpEsOzubp59+mo8++oh3332X559/\nnlOnTtHc3EwwGOT06dOUlZXR3Nyc7lKXxOHDh/F6vak7P0wdh8bGRsrLyzl16hQffPABhYWFRo7F\n2bNnefHFFzlx4gQffvghly9fpqOjw5ix2Lt3L6FQaFrbtfoeiUTo7OwkEokQCoVoaGhgcnJy5gPY\nGeDtt9+2t2/fnnre1NRkNzU1pbGi9Prxj39sv/baa/a6devs4eFh27ZtO5lM2uvWrUtzZYsvFovZ\nZWVl9ptvvmnfe++9tm3bRo7D6OiovWbNmqvaTRyLjz/+2C4oKLDPnz9vX7x40b733nvtnp4eo8Zi\ncHDQ3rBhQ+r5tfp+6NAhu7m5ObXe9u3b7XfeeWfGfWfEmYAmkn3p7NmznDx5ki1btjAyMoLD4QDA\n4XAwMjKS5uoW369+9St+97vfsWzZlz+aJo7D4OAgt912G3v37qWkpISf//znfPrpp0aOxa233sr+\n/fv57ne/y+233863v/1tgsGgkWNxxbX6PjQ0NO3W++t5L82IENCEjykXLlxg165dHD58mBUrVkx7\nLbN+f83i+POf/0xubi5+v/+avxHRhHGAqVuqT5w4QUNDAydOnOBb3/rWVZc7TBmLM2fO8Ic//IGz\nZ88yNDTEhQsXePnll6etY8pYfJ3Z+j7buGRECFzPRLL/dhcvXmTXrl3s3r2byspKYCrhh4eHAUgm\nk+Tm5qazxEX39ttvc/ToUdasWUN1dTVvvvkmu3fvNm4cYOoTnNvt5nvf+x4A999/PydOnMDpdBo3\nFu+//z4/+MEP+M53vkNWVhY/+clPeOedd4wciyuu9X/i/76XxuNxXC7XjPvKiBDYvHkz0WiUs2fP\nMjExQWdnJxUVFekua8nYtk1dXR1er5dHHnkk1V5RUUFbWxsAbW1tqXD4b3Xo0CFisRiDg4N0dHTw\nwx/+kPb2duPGAcDpdLJ69WpOnz4NwOuvv05RURE7d+40biwKCwt59913GR8fx7ZtXn/9dbxer5Fj\nccW1/k9UVFTQ0dHBxMQEg4ODRKNRAoHAzDtb6C8w5uovf/mLXVBQYK9du9Y+dOhQustZUn/7299s\ny7LsTZs22cXFxXZxcbF97Ngx++OPP7bLyspsj8djB4NB+5NPPkl3qUsmHA7bO3futG3bNnYcBgYG\n7M2bN9sbN26077vvPnt0dNTYsXjqqadsr9drb9iwwa6pqbEnJiaMGYsHHnjAXrVqlZ2dnW273W77\nj3/844x9/+1vf2uvXbvWXrdunR0KhWbdvyaLiYgYLCMuB4mISHooBEREDKYQEBExmEJARMRgCgER\nEYMpBEREDKYQEBExmEJARMRg/x+uOqP0IQzNagAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11a858e90>" | |
} | |
], | |
"prompt_number": 180 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "plt.hist(temp_out)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 181, | |
"text": "(array([ 1073., 5., 47., 70., 28., 302., 171., 107.,\n 138., 3145.]),\n array([ 0., 10., 20., 30., 40., 50., 60., 70., 80.,\n 90., 100.]),\n <a list of 10 Patch objects>)" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYEAAAEACAYAAABVtcpZAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGeZJREFUeJzt3W9Mlff9//Hn1UGytJXWLuUcey73w8hRPIiCdcdlWRcc\nRR2tZ3Q2rHQTsHQ3IEvt6p21STu6ZEKzJZ22JWn6pQmjScE7BbPNE/pHuvXfaYvybdNj4pmB7ZzD\ngcxa9sUWe1Su3w31VKaCBeSgn9cjuZLD51x/3tcner2uP58LLMdxHERExEjXpbsAERFJH4WAiIjB\nFAIiIgZTCIiIGEwhICJiMIWAiIjBJg2BEydOsG7dOgoLC/H5fDz66KMANDQ0YNs2RUVFFBUVsW/f\nvtQyjY2NeL1e8vLy6O7uTrX39vZSUFCA1+tl+/btV2h3RETk67Cmek/giy++4Prrr+fUqVN8//vf\n5w9/+AOvv/46CxYs4JFHHpkwbzgc5v777+eDDz4gHo9z5513EolEsCwLv9/Ps88+i9/vp6ysjIce\neohNmzZd0Z0TEZHJTXk76PrrrwcgmUxy+vRpFi5cCMDFsqOrq4vKykoyMzPJyckhNzeXUChEIpFg\ndHQUv98PQFVVFZ2dnbO5HyIiMg1ThsD4+DiFhYW4XC7Wr19Pfn4+AM888wyrV6+mtraWkZERAAYH\nB7FtO7WsbdvE4/EL2j0eD/F4fLb3RUREvqYpQ+C6666jr6+PWCzG3/72N3p6eqirq6O/v5++vj4W\nLVrEjh075qJWERGZZRmXO+NNN93EXXfdxYcffkhxcXGq/cEHH2Tz5s3AmTP8aDSa+i4Wi2HbNh6P\nh1gsNqHd4/FcsI3c3FyOHDkynf0QETHW0qVL+cc//jGtZSe9Ejh69GjqVs/Y2BivvvoqRUVFDA0N\npeZ55ZVXKCgoACAQCNDe3k4ymaS/v59IJILf78ftdpOVlUUoFMJxHNra2igvL79ge0eOHMFxHE2O\nw29+85u01zBfJvWF+kJ9Mfk0k5PnSa8EEokE1dXVjI+PMz4+ztatWykpKaGqqoq+vj4sy2LJkiU8\n//zzAPh8PioqKvD5fGRkZNDc3IxlWQA0NzdTU1PD2NgYZWVlGhkkIjIPTBoCBQUFHDhw4IL2P/3p\nT5dc5rHHHuOxxx67oP3222/n448/nkaJIiJypeiN4Xnq/OcuplNffEV98RX1xeyY8mWxuWRZFvOo\nHBGRq8JMjp26EhARMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRERAymEBARMZhC\nQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRERAw26Z+XFBGRyWVl3cLo6GfpLmPa9JfF\nRERmwLIsIN3HLf1lMRERmQaFgIiIwRQCIiIGmzQETpw4wbp16ygsLMTn8/Hoo48CcOzYMUpLS1m2\nbBkbNmxgZGQktUxjYyNer5e8vDy6u7tT7b29vRQUFOD1etm+ffsV2h0REfk6Jg2Bb37zm+zfv5++\nvj4++ugj9u/fz1tvvUVTUxOlpaUcPnyYkpISmpqaAAiHw3R0dBAOhwkGg9TX16ceVtTV1dHS0kIk\nEiESiRAMBq/83omIyKSmvB10/fXXA5BMJjl9+jQLFy5k7969VFdXA1BdXU1nZycAXV1dVFZWkpmZ\nSU5ODrm5uYRCIRKJBKOjo/j9fgCqqqpSy4iISPpMGQLj4+MUFhbicrlYv349+fn5DA8P43K5AHC5\nXAwPDwMwODiIbdupZW3bJh6PX9Du8XiIx+OzvS8iIvI1Tfmy2HXXXUdfXx//+c9/2LhxI/v375/w\nvWVZZ8fJzo6GhobU5+LiYoqLi2dt3SIi14aes9PMXfYbwzfddBN33XUXvb29uFwuhoaGcLvdJBIJ\nsrOzgTNn+NFoNLVMLBbDtm08Hg+xWGxCu8fjueh2zg8BERG5mOKz0zlPTntNk94OOnr0aGrkz9jY\nGK+++ipFRUUEAgFaW1sBaG1tpby8HIBAIEB7ezvJZJL+/n4ikQh+vx+3201WVhahUAjHcWhra0st\nIyIi6TPplUAikaC6uprx8XHGx8fZunUrJSUlFBUVUVFRQUtLCzk5OezZswcAn89HRUUFPp+PjIwM\nmpubU7eKmpubqampYWxsjLKyMjZt2nTl905ERCal3x0kIjID+t1BIiJy1VIIiIgYTCEgImIwhYCI\niMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEg\nImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImKwSUMgGo2yfv168vPz\nWblyJbt37wagoaEB27YpKiqiqKiIffv2pZZpbGzE6/WSl5dHd3d3qr23t5eCggK8Xi/bt2+/Qrsj\nIiJfh+U4jnOpL4eGhhgaGqKwsJDjx49z++2309nZyZ49e1iwYAGPPPLIhPnD4TD3338/H3zwAfF4\nnDvvvJNIJIJlWfj9fp599ln8fj9lZWU89NBDbNq0aWIxlsUk5YiIzDuWZQHpPm5N/9g56ZWA2+2m\nsLAQgBtvvJEVK1YQj8cBLrrBrq4uKisryczMJCcnh9zcXEKhEIlEgtHRUfx+PwBVVVV0dnZOq2AR\nEZk9l/1MYGBggIMHD/Ld734XgGeeeYbVq1dTW1vLyMgIAIODg9i2nVrGtm3i8fgF7R6PJxUmIiKS\nPhmXM9Px48e599572bVrFzfeeCN1dXU88cQTADz++OPs2LGDlpaWWSmooaEh9bm4uJji4uJZWa+I\nyLWj5+w0c1OGwMmTJ9myZQs///nPKS8vByA7Ozv1/YMPPsjmzZuBM2f40Wg09V0sFsO2bTweD7FY\nbEK7x+O56PbODwEREbmY4rPTOU9Oe02T3g5yHIfa2lp8Ph8PP/xwqj2RSKQ+v/LKKxQUFAAQCARo\nb28nmUzS399PJBLB7/fjdrvJysoiFArhOA5tbW2pQBERkfSZ9Erg7bff5qWXXmLVqlUUFRUBsHPn\nTl5++WX6+vqwLIslS5bw/PPPA+Dz+aioqMDn85GRkUFzc/PZJ+fQ3NxMTU0NY2NjlJWVXTAySERE\n5t6kQ0TnmoaIisjV5poeIioiItc2hYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgY\nTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIi\nBlMIiIgYTCEgImIwhYCIiMEUAiIiBps0BKLRKOvXryc/P5+VK1eye/duAI4dO0ZpaSnLli1jw4YN\njIyMpJZpbGzE6/WSl5dHd3d3qr23t5eCggK8Xi/bt2+/QrsjIiJfx6QhkJmZydNPP80nn3zCe++9\nx3PPPcehQ4doamqitLSUw4cPU1JSQlNTEwDhcJiOjg7C4TDBYJD6+nocxwGgrq6OlpYWIpEIkUiE\nYDB45fdOREQmNWkIuN1uCgsLAbjxxhtZsWIF8XicvXv3Ul1dDUB1dTWdnZ0AdHV1UVlZSWZmJjk5\nOeTm5hIKhUgkEoyOjuL3+wGoqqpKLSMiIulz2c8EBgYGOHjwIOvWrWN4eBiXywWAy+VieHgYgMHB\nQWzbTi1j2zbxePyCdo/HQzwen619EBGRacq4nJmOHz/Oli1b2LVrFwsWLJjwnWVZWJY1awU1NDSk\nPhcXF1NcXDxr6xYRuTb0nJ1mbsoQOHnyJFu2bGHr1q2Ul5cDZ87+h4aGcLvdJBIJsrOzgTNn+NFo\nNLVsLBbDtm08Hg+xWGxCu8fjuej2zg8BERG5mOKz0zlPTntNk94OchyH2tpafD4fDz/8cKo9EAjQ\n2toKQGtrayocAoEA7e3tJJNJ+vv7iUQi+P1+3G43WVlZhEIhHMehra0ttYyIiKSP5ZwbvnMRb731\nFj/4wQ9YtWpV6pZPY2Mjfr+fiooK/vWvf5GTk8OePXu4+eabAdi5cycvvvgiGRkZ7Nq1i40bNwJn\nhojW1NQwNjZGWVlZarjphGIsi0nKERGZd84cG9N93Jr+sXPSEJhrCgERudpc7SGgN4ZFRAymEBAR\nMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRE\nRAymEBARMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYFOG\nwAMPPIDL5aKgoCDV1tDQgG3bFBUVUVRUxL59+1LfNTY24vV6ycvLo7u7O9Xe29tLQUEBXq+X7du3\nz/JuiIjIdEwZAtu2bSMYDE5osyyLRx55hIMHD3Lw4EF+9KMfARAOh+no6CAcDhMMBqmvr8dxHADq\n6upoaWkhEokQiUQuWKeIiMy9KUPgjjvuYOHChRe0nzu4n6+rq4vKykoyMzPJyckhNzeXUChEIpFg\ndHQUv98PQFVVFZ2dnbNQvoiIzMS0nwk888wzrF69mtraWkZGRgAYHBzEtu3UPLZtE4/HL2j3eDzE\n4/EZlC0iIrMhYzoL1dXV8cQTTwDw+OOPs2PHDlpaWmaloIaGhtTn4uJiiouLZ2W9IiLXjp6z08xN\nKwSys7NTnx988EE2b94MnDnDj0ajqe9isRi2bePxeIjFYhPaPR7PRdd9fgiIiMjFFJ+dznly2mua\n1u2gRCKR+vzKK6+kRg4FAgHa29tJJpP09/cTiUTw+/243W6ysrIIhUI4jkNbWxvl5eXTLlpERGbH\nlFcClZWVvPnmmxw9epTFixfz5JNP0tPTQ19fH5ZlsWTJEp5//nkAfD4fFRUV+Hw+MjIyaG5uxrIs\nAJqbm6mpqWFsbIyysjI2bdp0ZfdMRESmZDkXG+aTJpZlXXTUkYjIfHXmRDfdx63pHzv1xrCIiMEU\nAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIw\nhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEUAiIiBlMIiIgYTCEgImIwhYCIiMEy0l3AfxsYGEjr\n9jMyMrBtO601iIjMFctxHCfdRZxjWRY33PD/0lrDiROD/O//HiQ/Pz+tdYjI1cGyLCDdh1GL6R7K\np7wSeOCBB/jLX/5CdnY2H3/8MQDHjh3jpz/9Kf/85z/Jyclhz5493HzzzQA0Njby4osv8o1vfIPd\nu3ezYcMGAHp7e6mpqeHEiROUlZWxa9eui27v888HprUjsyUraw1ffvllWmsQEZkrUz4T2LZtG8Fg\ncEJbU1MTpaWlHD58mJKSEpqamgAIh8N0dHQQDocJBoPU19en0qmuro6WlhYikQiRSOSCdYqIyNyb\nMgTuuOMOFi5cOKFt7969VFdXA1BdXU1nZycAXV1dVFZWkpmZSU5ODrm5uYRCIRKJBKOjo/j9fgCq\nqqpSy4iISPpMa3TQ8PAwLpcLAJfLxfDwMACDg4MTHqratk08Hr+g3ePxEI/HZ1K3iIjMghmPDrIs\n6+yDkdnScN7n4rOTiIh8pefsNHPTCgGXy8XQ0BBut5tEIkF2djZw5gw/Go2m5ovFYti2jcfjIRaL\nTWj3eDyXWHvDdEoSETFIMRNPkJ+c9pqmdTsoEAjQ2toKQGtrK+Xl5an29vZ2kskk/f39RCIR/H4/\nbrebrKwsQqEQjuPQ1taWWkZERNJnyiuByspK3nzzTY4ePcrixYv57W9/y69//WsqKipoaWlJDREF\n8Pl8VFRU4PP5yMjIoLm5OXWrqLm5mZqaGsbGxigrK2PTpk1Xds9ERGRK8+5lsXS/dJGVtYb9+/+H\nNWvWpLUOEbk6zIfj1kxeFtPvDhIRMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRE\nRAymEBARMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoB\nERGDKQRERAymEBARMZhCQETEYAoBERGDzSgEcnJyWLVqFUVFRfj9fgCOHTtGaWkpy5YtY8OGDYyM\njKTmb2xsxOv1kpeXR3d398wqFxGRGZtRCFiWRU9PDwcPHuT9998HoKmpidLSUg4fPkxJSQlNTU0A\nhMNhOjo6CIfDBINB6uvrGR8fn/keiIjItM34dpDjOBN+3rt3L9XV1QBUV1fT2dkJQFdXF5WVlWRm\nZpKTk0Nubm4qOEREJD1mfCVw5513snbtWl544QUAhoeHcblcALhcLoaHhwEYHBzEtu3UsrZtE4/H\nZ7J5ERGZoYyZLPz222+zaNEi/v3vf1NaWkpeXt6E7y3LwrKsSy5/8e8azvtcfHYSEZGv9JydZm5G\nIbBo0SIAbr31Vu655x7ef/99XC4XQ0NDuN1uEokE2dnZAHg8HqLRaGrZWCyGx+O5yFobZlKSiIgB\nipl4gvzktNc07dtBX3zxBaOjowB8/vnndHd3U1BQQCAQoLW1FYDW1lbKy8sBCAQCtLe3k0wm6e/v\nJxKJpEYUiYhIekz7SmB4eJh77rkHgFOnTvGzn/2MDRs2sHbtWioqKmhpaSEnJ4c9e/YA4PP5qKio\nwOfzkZGRQXNz86S3ikRE5MqznP8e3pNGZ0IhveVkZa1h//7/Yc2aNWmtQ0SuDvPhuAXWBSM1L5fe\nGBYRMZhCQETEYAoBERGDKQRERAymEBARMZhCQETEYAoBERGDKQRERAw2o98dJGKSrKxbGB39LK01\nLFiwkP/7v2NprUGuLQoBkct0JgDS+2bo6Kh+1YrMLt0OEhExmEJARMRgCgEREYMpBEREDKYQEBEx\nmEJARMRgGiIqclXJmBd/kU/vK1w7FAIiV5VTpPtdBdD7CtcShYCIXJXmwxvc1wKFgIhclebDG9xn\nXN1XRQoBEZmG+fFsQmZOISAi0zAfnk0ohGbDnA4RDQaD5OXl4fV6eeqpp+Zy0zJNWVm3YFlWWqes\nrFvS3Q0i16w5C4HTp0/zy1/+kmAwSDgc5uWXX+bQoUNztfmrTk9PT7pLAM6/75q+SQ//RK6cOQuB\n999/n9zcXHJycsjMzOS+++6jq6trrjZ/1dm48UdpPwPXPV+Ra9+cPROIx+MsXrw49bNt24RCobna\n/FUnmTxB+u+5wvy476pAErlS5iwELvc/cVbW5itcyeROnDjCHXf8kC+++E9a65Dznbs1lG4KIrn2\nzFkIeDweotFo6udoNIpt2xPmWbp0KUeO/HmuSrqkZDLdFZwzXw4686GO+VADzI865kMNMD/qmA81\nQLrrWLp06bSXtRzHmZNTrFOnTrF8+XJef/11brvtNvx+Py+//DIrVqyYi82LiMhFzNmVQEZGBs8+\n+ywbN27k9OnT1NbWKgBERNJszq4ERERk/pk3f0/A5BfJotEo69evJz8/n5UrV7J7924Ajh07Rmlp\nKcuWLWPDhg2MjIykudK5cfr0aYqKiti8+cwgAVP7YWRkhHvvvZcVK1bg8/kIhULG9kVjYyP5+fkU\nFBRw//338+WXXxrTFw888AAul4uCgoJU22T73tjYiNfrJS8vj+7u7inXPy9CwPQXyTIzM3n66af5\n5JNPeO+993juuec4dOgQTU1NlJaWcvjwYUpKSmhqakp3qXNi165d+Hy+1IgyU/th+/btlJWVcejQ\nIT766CPy8vKM7IuBgQFeeOEFDhw4wMcff8zp06dpb283pi+2bdtGMBic0HapfQ+Hw3R0dBAOhwkG\ng9TX1zM+Pj75Bpx54J133nE2btyY+rmxsdFpbGxMY0Xp9eMf/9h59dVXneXLlztDQ0OO4zhOIpFw\nli9fnubKrrxoNOqUlJQ4b7zxhnP33Xc7juMY2Q8jIyPOkiVLLmg3sS8+/fRTZ9myZc6xY8eckydP\nOnfffbfT3d1tVF/09/c7K1euTP18qX3fuXOn09TUlJpv48aNzrvvvjvpuufFlcDFXiSLx+NprCh9\nBgYGOHjwIOvWrWN4eBiXywWAy+VieHg4zdVdeb/61a/4/e9/z3XXffVP08R+6O/v59Zbb2Xbtm2s\nWbOGX/ziF3z++edG9sUtt9zCjh07+Pa3v81tt93GzTffTGlpqZF9cc6l9n1wcHDC0PvLOZbOixDQ\n26BnHD9+nC1btrBr1y4WLFgw4TsTfo3Dn//8Z7KzsykqKsK5xHgFE/oBzgypPnDgAPX19Rw4cIAb\nbrjhgtsdpvTFkSNH+OMf/8jAwACDg4McP36cl156acI8pvTFxUy171P1y7wIgct5kexad/LkSbZs\n2cLWrVspLy8HziT80NAQAIlEguzs7HSWeMW988477N27lyVLllBZWckbb7zB1q1bjesHOHMGZ9s2\n3/nOdwC49957OXDgAG6327i++PDDD/ne977Ht771LTIyMvjJT37Cu+++a2RfnHOp/xP/fSyNxWJ4\nPJ5J1zUvQmDt2rVEIhEGBgZIJpN0dHQQCATSXdaccRyH2tpafD4fDz/8cKo9EAjQ2toKQGtrayoc\nrlU7d+4kGo3S399Pe3s7P/zhD2lrazOuHwDcbjeLFy/m8OHDALz22mvk5+ezefNm4/oiLy+P9957\nj7GxMRzH4bXXXsPn8xnZF+dc6v9EIBCgvb2dZDJJf38/kUgEv98/+cpm+wHGdP31r391li1b5ixd\nutTZuXNnusuZU3//+98dy7Kc1atXO4WFhU5hYaGzb98+59NPP3VKSkocr9frlJaWOp999lm6S50z\nPT09zubNmx3HcYzth76+Pmft2rXOqlWrnHvuuccZGRkxti+eeuopx+fzOStXrnSqqqqcZDJpTF/c\nd999zqJFi5zMzEzHtm3nxRdfnHTff/e73zlLly51li9f7gSDwSnXr5fFREQMNi9uB4mISHooBERE\nDKYQEBExmEJARMRgCgEREYMpBEREDKYQEBExmEJARMRg/x9VK2AbrInnbQAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11a9b0090>" | |
} | |
], | |
"prompt_number": 181 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "plt.scatter(temp_in_number,temp_out_number)\nplt.xlabel(\"inward\")\nplt.ylabel(\"outward\")\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 186, | |
"text": "<matplotlib.text.Text at 0x11a753850>" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEPCAYAAAC3NDh4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xlc1HX+wPHXwHANh3kkHqgo4IFypSGptJhHuRVaHpuu\nRmXWuh360y3LLq3Wo2w3O9xMbXNLO6xVbFOX2kLFWjGVdKPUFAwBURMP5Ib3748ZkXEYFQSG0ffz\n8eAhfOc9n3nPF/y+5/v5fL6fr0FEBKWUUqoGLo5OQCmlVNOlRUIppZRdWiSUUkrZpUVCKaWUXVok\nlFJK2aVFQimllF0NXiSKi4vp27cvkZGRhIaG8uSTTwJw/PhxhgwZQteuXRk6dCgnTpyoes7cuXMJ\nCQmhe/fuJCUlNXSKSiml7DA0xnUShYWFmEwmysvLGTBgAAsWLGDt2rW0atWKxx9/nPnz55Ofn8+8\nefNIT09n3LhxbNu2jezsbAYPHszevXtxcdGTHqWUamyNcuQ1mUwAlJaWUlFRQfPmzVm7di0JCQkA\nJCQksGbNGgASExMZO3Ysbm5uBAYGEhwcTGpqamOkqZRS6jyNUiQqKyuJjIzE39+fgQMH0rNnT/Ly\n8vD39wfA39+fvLw8AHJycggICKh6bkBAANnZ2Y2RplJKqfMYG+NFXFxcSEtL4+TJk9x88818/fXX\nVo8bDAYMBoPd51/oMaWUUg2nUYrEWc2aNePWW29l+/bt+Pv7c/jwYdq0aUNubi6tW7cGoH379mRl\nZVU959ChQ7Rv396qneDgYPbv39+YqSullNMLCgri559/rtVzGry76dixY1Uzl4qKivjiiy+Iiooi\nPj6e5cuXA7B8+XJGjBgBQHx8PB9++CGlpaVkZGSwb98+oqOjrdrcv38/IuK0X88995zDc9D8HZ+H\n5u98X86cu4jU6cN1g59J5ObmkpCQQGVlJZWVlUyYMIFBgwYRFRXFmDFjWLZsGYGBgXz88ccAhIaG\nMmbMGEJDQzEajSxatEi7m5RSykEavEiEhYWxY8cOm+0tWrTgyy+/rPE5M2fOZObMmQ2dmlJKqYvQ\niw8cIC4uztEpXBbN37E0f8dx5tzrqlEupqtvBoMBJ0xbKaUcqi7HTj2TUEopZZcWCaWUUnZpkVBK\nKWWXFgmllFJ2aZFQSilllxYJpZRSdmmRUEopZZcWCaWUUnZpkVBKKWWXFgmllFJ2aZFQSilllxYJ\npZRSdmmRUEopZZcWiUZ2/Phx9u7dS2lpqaNTUUqpi9Ii0Yj+/OeXaNeuM71730KHDt1IT093dEpK\nKXVBej+JRpKSksLNN4+nsPAboB2wlC5dXmf//u8dnZpS6iqh95Nownbt2oXIzZgLBMA9ZGT8j4qK\nCkempZRSF6RFopEEBQXh4rIZOG3Zsh5//0BcXV0dmZZSSl2QFolGMnToUMaOHYzJ1INmzeLw9b2f\nTz75h6PTUkqpC9IxiUa2e/dujhw5QkREBK1atXJ0Okqpq0hdjp1aJJRS6irRJAeus7KyGDhwID17\n9qRXr1689tprAMyaNYuAgACioqKIiopi/fr1Vc+ZO3cuISEhdO/enaSkpIZOUSmllB0NfiZx+PBh\nDh8+TGRkJAUFBfTu3Zs1a9bw8ccf4+vry7Rp06zi09PTGTduHNu2bSM7O5vBgwezd+9eXFzO1TM9\nk1BKqdprkmcSbdq0ITIyEgAfHx969OhBdnY2QI3JJiYmMnbsWNzc3AgMDCQ4OJjU1NSGTlMppVQN\nGnV2U2ZmJjt37iQmJgaA119/nYiICCZOnMiJEycAyMnJISAgoOo5AQEBVUVFKaVU4zI21gsVFBQw\natQoFi5ciI+PD5MnT+bZZ58F4JlnnmH69OksW7asxucaDAabbbNmzar6Pi4ujri4uIZIWymlnFZy\ncjLJycmX1UajzG4qKyvjtttuY9iwYUydOtXm8czMTG6//XZ2797NvHnzAHjiiScAuOWWW5g9ezZ9\n+/Y9l7SOSSilVK01yTEJEWHixImEhoZaFYjc3Nyq71evXk1YWBgA8fHxfPjhh5SWlpKRkcG+ffuI\njo5u6DSVUkrVoMG7m7Zs2cL7779PeHg4UVFRAMyZM4cPPviAtLQ0DAYDnTt3ZvHixQCEhoYyZswY\nQkNDMRqNLFq0qMbuJqWUUg1PL6ZTSqmrRJPsblJKKeW8tEgopZSyS4uEUkopu7RIKKWUskuLhFJK\nKbu0SCillLJLi4RSSim7tEgopZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RSSim7tEgo\npZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RSSim7tEgopZSyS4uEUkopu7RIKKWUskuL\nhFJKKbsavEhkZWUxcOBAevbsSa9evXjttdcAOH78OEOGDKFr164MHTqUEydOVD1n7ty5hISE0L17\nd5KSkho6RaWUUnYYREQa8gUOHz7M4cOHiYyMpKCggN69e7NmzRr+/ve/06pVKx5//HHmz59Pfn4+\n8+bNIz09nXHjxrFt2zays7MZPHgwe/fuxcXlXD0zGAw0cNpKKXXFqcuxs8HPJNq0aUNkZCQAPj4+\n9OjRg+zsbNauXUtCQgIACQkJrFmzBoDExETGjh2Lm5sbgYGBBAcHk5qa2tBpKqWUqkGjjklkZmay\nc+dO+vbtS15eHv7+/gD4+/uTl5cHQE5ODgEBAVXPCQgIIDs7uzHTVEopZWFsrBcqKChg5MiRLFy4\nEF9fX6vHDAYDBoPB7nNremzWrFlV38fFxREXF1dfqSql1BUhOTmZ5OTky2qjUYpEWVkZI0eOZMKE\nCYwYMQIwnz0cPnyYNm3akJubS+vWrQFo3749WVlZVc89dOgQ7du3t2mzepFQSill6/wP0LNnz651\nGw3e3SQiTJw4kdDQUKZOnVq1PT4+nuXLlwOwfPnyquIRHx/Phx9+SGlpKRkZGezbt4/o6OiGTlMp\npVQNGnx2U0pKCjfeeCPh4eFV3UZz584lOjqaMWPG8MsvvxAYGMjHH3/MNddcA8CcOXN45513MBqN\nLFy4kJtvvtk6aZ3dpJRStVaXY2eDF4mGoEVCKaVqr0lOgVVKKeW8tEgopZSyS4uEUkopu7RIKKWU\nskuLhFJKKbu0SCillLJLi4RSSim7tEgopZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RS\nSim7tEgopZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RSSim7jI5OQCnl3H7++WfeeWc5\nZWXl3H33OMLCwhydkqpHBqntXbGbgLrczFspVf9+/PFHoqN/Q2HhPVRWemAyvcV//vMZMTExjk5N\n1aAux04tEkqpOhs/fhIrV3ZB5EnLlmXcdNNn/Oc/axyal6pZXY6dOiahlKqzkyfPINKu2pZ2nDpV\n4LB8VP1r8CJx33334e/vb9VPOWvWLAICAoiKiiIqKor169dXPTZ37lxCQkLo3r07SUlJDZ2eUuoy\n3H33nZhMzwNbgO2YTDO4++47HZ2WqkcN3t20efNmfHx8uPvuu9m9ezcAs2fPxtfXl2nTplnFpqen\nM27cOLZt20Z2djaDBw9m7969uLhY1zLtblKq6Xj77aX8+c8Lqays4KGH7mPGjOkYDAZHp6VqUJdj\nZ4PPboqNjSUzM9Nme02JJiYmMnbsWNzc3AgMDCQ4OJjU1FQdBFOqCXvggft54IH7HZ2GaiB2u5t8\nfHzw9fWt8cvPz++yX/j1118nIiKCiRMncuLECQBycnIICAioigkICCA7O/uyX0sppVTd2D2TKCgw\nDz49/fTTtGvXjvHjxwOwYsUKcnJyLutFJ0+ezLPPPgvAM888w/Tp01m2bFmNsfZOW2fNmlX1fVxc\nHHFxcZeVk1JKXWmSk5NJTk6+rDYuOiYRHh7Orl27LrrtQjIzM7n99turxiTsPTZv3jwAnnjiCQBu\nueUWZs+eTd++fa2T1jEJpZSqtQaZAuvt7c37779PRUUFFRUVrFixAh8fnzonCZCbm1v1/erVq6tm\nPsXHx/Phhx9SWlpKRkYG+/btIzo6+rJeSymlVN1ddOB65cqVTJkyhalTpwLQv39/Vq5ceckvMHbs\nWDZu3MixY8fo0KEDs2fPJjk5mbS0NAwGA507d2bx4sUAhIaGMmbMGEJDQzEajSxatEhnSSillANd\nsLupoqKCGTNmsGDBgsbM6aK0u0kppWqv3rubXF1dSUlJ0QOyUkpdpS7a3RQZGcnw4cMZPXo0JpMJ\nMFejO+/UqyqVUupKd9EiUVxcTIsWLfjqq6+stmuRUEqpK5+uAquUUleJBlmWo6ioiGXLlpGenk5R\nUVHVbKN33nmnblkqpZRyGhe9TmLChAnk5eWxYcMG4uLiyMrKuuzrJJRSSjmHi3Y3RUZGkpaWVnWV\ndVlZGQMGDGDr1q2NlaMN7W5SSqnaa5Arrt3d3QFo1qwZu3fv5sSJExw9erRuGapGt2LFB0RFxREV\nFcdHH33s6HSUUk7momMSkyZN4vjx47z44ovEx8dTUFDACy+80Bi5qcv08cereOCBJyksfBMQ7rvv\nj7i7u3HHHXc4OjWllJPQ2U1XsLi4eDZuHA+MsWxZweDB/+SLLz51ZFpKKQdpkNlNQUFBxMTEEBsb\nS2xsLD179qxzgqpxeXi4A6erbTmNp6e7o9JRSjmhi55JFBcXs3XrVlJSUkhJSWHPnj2Eh4ezZs2a\nxsrRhp5JXJrNmzdz8813UlQ0E6jEZJrHF18k0q9fP0enppRygAY5kzAajbi5ueHq6oqLiwutW7fG\n39+/zkmqxhMbG8tXX33Gm2++g8Fg4OGHP9el15VStXLRMwmTyURYWBjTpk1j0KBBtGrVqrFys0vP\nJJRSqvbqcuy8aJFITExk8+bNbNu2DTc3N/r168eNN97I4MGDLyvZy6FFQimlaq9BisRZP/30E+vW\nrePVV1/lyJEjFBcX1ynJ+qBFQimlaq9BLqYbOXIkQUFBPProoxQWFvLee++Rn59f5ySVUko5j4ue\nSaSkpBATE4PReG6Mu6SkBA8PjwZPzh49k1BKqdprkDOJRx55xKpAANxwww21y0wppZRTsjsFNjc3\nl5ycHIqKitixYwcigsFg4NSpUxQWFjZmjkoppRzEbpFISkri3XffJTs7m+nTp1dt9/X1Zc6cOY2S\nnFJKKce66JjEp59+ysiRIxsrn0uiYxJmxcXFHDlyhLZt2+Lm5ubodJRSTVyDXHH9v//9jx9++KGq\nu+msZ599tvYZqnqzatWnJCTcj8Fgwt1dWLfuUx0rUkrVu4sOXHt7e+Pt7Y2Pjw8uLi6sW7eOzMzM\nS36B++67D39/f8LCwqq2HT9+nCFDhtC1a1eGDh3KiRMnqh6bO3cuISEhdO/enaSkpNq9m6tEVlYW\nCQkPUlT0FYWF2Zw4sZjf/nYkJSUljk5NKXWFqfVS4SUlJQwdOpSNGzdeUvzmzZvx8fHh7rvvZvfu\n3QA8/vjjtGrViscff5z58+eTn5/PvHnzSE9PZ9y4cWzbto3s7GwGDx7M3r17cXGxrmVXe3fThg0b\nuOuuVzh58ouqbd7eHdm1K5kuXbo4MDOlVFPWIFNgz3fmzBmys7MvOT42NpbmzZtbbVu7di0JCQkA\nJCQkVK0om5iYyNixY3FzcyMwMJDg4GBSU1Nrm+IVr1OnTpSW7gbyLFt+oKLilC68qJSqdxcdk6je\nTVRZWcmRI0cuezwiLy+v6oDm7+9PXp75YJeTk0NMTExVXEBAQK0K0tWiR48ePPbYIyxYEIXRGEFZ\n2Xe8/fYivL29HZ2aUuoKc9Ei8dlnn3HixAk2bdrEyZMnGTZsGH369Km3BAwGg9WAeE2P12TWrFlV\n38fFxREXF1dvOTmD2bOfYvTo4WRkZNCzZ0/tZlJK2UhOTiY5Ofmy2rhokUhMTGTJkiXceeediAj3\n3nsvkyZN4tFHH63zi/r7+3P48GHatGlDbm4urVu3BqB9+/ZkZWVVxR06dIj27dvX2Eb1InElEREW\nL17Ku+9+go+PiRdfnGF1dlVdr1696NWrVyNnqJRyFud/gJ49e3btG5GL6NWrlxQUFFT9XFBQIL16\n9brY06xkZGRYPeexxx6TefPmiYjI3LlzZcaMGSIi8sMPP0hERISUlJTIgQMHpEuXLlJZWWnT3iWk\n7bReeWWhmEyhAmsFlojJ1ErS0tIcnZZS6gpQl2PnRc8kAKvZRefPNLqYsWPHsnHjRo4dO0aHDh14\n/vnneeKJJxgzZgzLli0jMDCQjz/+GIDQ0FDGjBlDaGgoRqORRYsWXbAr6kr02mtLKSxcBpjPHgoL\nD7F8+Qr+8pcIxyamlLoqXbRI3HvvvfTt27equ2nNmjXcd999l/wCH3zwQY3bv/zyyxq3z5w5k5kz\nZ15y+1caV1dXoKzqZ4Oh1LJNKaUa3yVdJ7F9+3ZSUlIwGAzExsYSFRXVGLnZdSVfJ7F06TtMmfIi\nhYWzMRjyMJnms317Ct26dXN0akopJ9egd6ZrSpy9SFRWVl6w2+7jj1exfPmn+PqaeOqp/7OahqyU\nUnWlRaKJW7XqE+6//yEKCn7luuti+eyzD2jTpo2j01JKXSW0SDRhu3bt4oYbhlBY+DkQgdH4DFFR\nqaSmfuXo1JRSV4kGWQVW1Y8tW7YgMhwwX4hYXv4C27d7UVFRoQPTSqkmq9ZrN6m6ad26Na6uu4EK\ny5bv8fFpqQVCKdWkaZFoJMOHD+e665rj4zMAL68HMJluZcmSNxydllJKXZCOSTSi8vJyEhMTycvL\nY8CAAYSHhzs6JaXUVUQHrpVSStnVKPeTUEopdfXQItHIysrKyM/P1zMhpZRT0CLRiN5+exk+Ps1p\n06YTISGRtbpXuFJKOYKOSTSS7777jt/8Jp7Cwo1AMC4uLxEauobdu791dGpKqauEjkk0YampqYjc\nDoQABiorp5Gevo2KioqLPVUppRxGi0Qj6dChA66uqUCJZcs3XHNNW72YTinVpGmRaCS33norgweH\n4uMThZ/fKEymUaxYscTRaSml1AXpmEQjEhGSk5M5cuQI0dHRdO7c2dEpKaWuInoxnVJKKbt04Fop\npVS90iLRiH744QcGDRpOaOgNTJv2JKWlpY5OSTUBqampxMb+lp49+zFr1p91xptqUrS7qZFkZ2cT\nGtqb06efRiQSL685jBjRlpUrlzk6NeVAe/bsoXfvAZw5Mx8IwmR6igceGMBf/zrP0ampK5COSTRh\nS5cuZcqUZAoL37dsOYnR2IaSkjMXvN+1apoqKyvZvXs3paWlhIeH4+HhUad25s2bxzPPHKa8/FXL\nlgM0azaAEydy6i9ZpSz0znRNmJubGwZDQbUtBbi4uGIwGByWk6qb4uJihgwZwc6d+3Bx8ebaa2HL\nlqQ63a/czc0NF5fqfxencXNzr79klbpMDv0IGxgYSHh4OFFRUURHRwNw/PhxhgwZQteuXRk6dCgn\nTpxwZIr1Zvjw4Xh4pAKtAW9cXHrzhz9MvmqLhIiQkpJCYmIiOTnO9al5wYK/sn27J2fO7OH06e/J\nyhrGH//4WJ3aGjduHD4+G3B1fQJYisk0iqeeml6/CSt1GRxaJAwGA8nJyezcuZPU1FTAfPo9ZMgQ\n9u7dy6BBg5g378rom83JyaGwsBjoDwxCpCvffbfL0Wk5RGVlJcOHj+WWW+7n7ruX0K1bJCkpKY5O\n65J9//0eiopux3wibqCsbAQ//LCnTm21bduWnTu/YdKkYkaNSuHvf5/D1KmP1Gu+Sl0Oh3c3nd8/\ntnbtWjZu3AhAQkICcXFxV0ShWLduHcXFBqAHEInIX/jmm1QqKirqtDSHiPDll19y4MABIiMj6du3\nb73n3FA+/fRTvvoqgzNnvgc8gLWMGzeJX3750dGpXZLevXvy+eefUFQ0HnDH3f0DIiN71rm9jh07\n8re/vXrxQKUcwOFnEoMHD6ZPnz4sWWJeoiIvLw9/f38A/P39ycvLc2SK9Wb//v1ADDAHGAOsBSrr\nPGh9//2PcMcdjzJ16lZuumkUCxYsrL9kG9jBgwcpLe2HuUAAxHH48C+OTKlWpk2bwo03euHl1Rlv\n72CCg//Lm2++7Oi0lGoQDj2T2LJlC23btuXo0aMMGTKE7t27Wz1uMBjs9tnPmjWr6vu4uDji4uIa\nMNP6YgAWA0eAKEAQkVqPS6SlpfH++6spLd0D+ABZzJzZgwceuBc/P796z7q+XX/99bi5vUFZ2XSg\nPS4ubxAW1sfRaV0yd3d31q//lAMHDlBaWkpISAhGo8NPypWykZycTHJy8uU1Ik3ErFmzZMGCBdKt\nWzfJzc0VEZGcnBzp1q2bTWwTSvuSvfjiiwK+Av0FJgi0EHCX8vJyq7jy8nKZMeMZad++h4SE9JbV\nq1fbtPWPf/xDIEzgZoEQgTECzeXHH39srLdz2ebNe0Xc3Ezi6dlSgoLCJTMz09EpKXXFq8ux02Hd\nTYWFhZw+fRqAM2fOkJSURFhYGPHx8SxfvhyA5cuXM2LECEelWK/MnzSbA3uAHwA3wGDT3fTUU7N5\n/fWvyM5eyb59f+b3v5/M5s2brWLMV2rvB24BEoF2QHnDv4l6NGPGNE6ePEZm5g/s25dGp06dHJ2S\nUqoGDjtHzsvL44477gCgvLyc3//+9wwdOpQ+ffowZswYli1bRmBgIB9//LGjUqxX27ZtAwRzkWgB\nfARMpLKy0mrgesWKTy0X3EUCUFj4KKtWrSE2NrYqxtw9FQJMtWz5C/D3Gl+3sLCQLVu2YDAY6N+/\nP15eXvX91urMy8urSeWjlLLlsCLRuXNn0tLSbLa3aNGCL7/80gEZNazCwkIgDnOBABgJjLWZ3WQy\nmYDDQClgxNX1ML6+zaza6t69O+7uBZSWlmP+FZ7CaKygVatWVnFHjhyhb9+B/PprM0C49tozpKZ+\nTcuWLRvmTSqlrji6HkQjGTp0KPAFcMyyZRUuLn64u1tfXfv883/CYBgLmABPjMb3mDz5AauYvn37\n0rdvCB4etwKv4OU1mHvuucemSDz++HNkZw/l9OlvOH36G7KyfsMTT8yq83soLCzko48+4t133yU7\nO7vO7SilnIcWiUZinn11BugMBAN/ICCgrU3cu+9+hMhgS2wGpaV+NrMTXF1d+fLLRObPv5XJk7N4\n661HePvt12za2rMng7KywZafDJSV3cTevZk2cadPn+bBB6cQGRnH2LETOXLkiE3MyZMniYzsx/33\nL+Hhh/9Njx7X1XgmqJS6sui8vUayYcMGzDX5YaA9sIpffvmvTXfTf/6zCdiI+RqC9og8whtvvM34\n8eOt2nN3d2fKlEcv+JoDBvTh+++XUlQ0GBC8vN5hwADrqaYiwpAhI0hLC6Ck5BnS09ezdesg0tO3\n4enpWRX317++xsGD4ZSWLsc8lXcpDz74J7ZuvfK6BpVS5+iZRCPJysoCBgIvApOBT4Eym2skRAzA\ntrM/Af8FKmtsMy8vj+3bt9td3+r5558iMPAg0AZoS3DwYZ577kmrmIMHD7JrVzolJe8Agygre5lj\nxzwsA+3V8z9MaWkfzAUCoA+5uYcv6b2rC/v6668JDx9Ax469mDJlht5npB4dOnSIHTt2UFBQcPFg\nVSMtEo2kd+/ewEngZuB64DmMRqNNkRgwoDfwEDAc6AskMXnyJJv23nprCYGBPbjppokEBITw73//\n2ybmo49WcfBgAearuxPZvz+fVas+tYpxdXVFpJxzU2gFkRKbpUKGDInF2/ttIAcoxtNzHoMG3Vjr\n/XClyMjI4Mknn2batMf57rvv6tzO7t27ue22Meze/X9kZb3PkiU7efjhP9VjplevmTNnExISwcCB\n99KhQ1e2b9/u6JScU/1frtHwnDHtHTt2CPgIjBZ4WaCdNG/exiZu4MDbBB4VeFfgfTEa+8pbb71l\nFbN//37x8mol8LOACGwWb++WUlRUZBUXG3ubwCeWGBH4QAYNusMqprKyUm655U7x8rpVYKV4eEyQ\n8PAbpLS01CbumWeeFzc3L3F1dZdhw0ZKQUFBPe0d57Jv3z7x9Gwu8H8Cs8VovEaSkpLq1NaLL/5Z\nXF2nVfsdZYqfn+3fhaqdTZs2icnUWeCIZb9+JO3bd3V0Wg5Xl2Onnkk0kunTp2NeiuMj4E/AZvLz\nj9vcqvKnn/YCDwIJwO8pLx/Dzp3pVjF79+7F3T0SCLJsGQB42yy57etrwrwEyFlH8PGxvi7BYDCQ\nmPgBM2bcwC23rObhhwNISfk3bm5uNnHPP/8MxcUFFBUVsG7dJ3h7e9dhTzi/yZOnUlw8GfP1Kc9S\nXv437rlnSp3a8vY2YTQerbblCJ6eeu3IpSgvL7d7A5309HTgJuBay5ZR5OT8TFlZWWOlZ1dZWRlz\n5rzE7bePY8aMp5t+V1j916qG54xpt2/f3nIWsc5ylrBDwFUKCwut4m66KV5cXWdbPv0UickUJ4sW\nLbKK2bdvn3h5XStwwBL3jXh7t7Bpa+vWrWIytRJ4TuAZMZlayfbt2xv8vV7pOnbsJfBmtU//X4u7\ne90+/R89elT8/QPFaJwssEBMpo6ydOk79ZzxlSUvL0+io28SFxejmEzN5d13/2ETk5ycLN7eXQSO\nWX5Hq6Rdu2AHZGsrPv4u8fIaKvAP8fD4fY1n7g2lLsdO5zvainMWibCwMMvaTb0Exgr4CbhLSUmJ\nVVxGRoa4ufkJtBZoLkFBPaWsrMymvdjYIQKeAoECnvKHPzxkE/PLL7+Ij08LyzpRLcTXt6VkZ2c3\n2Hts6iorK+XXX3+VEydOXFY7t902QsBf4CuBbQLh0qlTaJ3by8vLk6eeelYefPBRWb9+/WXldqkq\nKyvl6NGjcvLkyUZ5vfrUv//NYjROFygV2CVeXm0kNTXVJu7xx58RT89W0qzZddKsWc0xjS0nJ0c8\nPJoLFFmKV4X4+ITJ5s2bG+X1tUg0YTExMQLdBJYKvCSwWMDLZoG/nj0jBToJrBV4W8Ak8+fPt4r5\n/vvvxcXFW8DDUnhM4uLiIadOnbKKi40dbCk2Hwp8INBKbrrplgZ/r03RmTNnZPDgeHF39xU3N2/5\n3e/uqbHC9sLoAAAdWUlEQVT4XoqsrCzx9m4h0F6gnbi5+ck333xTzxk3nFOnTsmAATeLu3szcXMz\nyT33/EEqKiocndYlMxo9BU5Xncm5uz8ir7zySo2xmZmZsnXr1iZTDA8ePCienq0Fyqvy9/WNlq+/\n/rpRXl+LRBPWq1cvgQ4CN1kGPNsKGGxOM+EagW+rdWU8K61atbeKmT17toDJ8ilWBFYLeNl0Jfn5\nBQq8J/CT5esdad68S4O/1zNnzkhaWprk5OTYjfn222+ld++BEhgYLg89NF2Ki4vr/Hp79uyRG2/8\nrXTs2Evuuuu+Gs8UHnpounh6jhEoESgQk+kmmTdvQZ1f8/Dhw/LKK6/I3Llz5aeffqpzO46QkPAH\n8fC4W6BM4KSYTP3kjTcWXfyJTcS113YS2Fj1Sdzb+0ZZsWKFo9O6JJWVlRITM0g8PBIEksVofEI6\nduwuZ86caZTX1yLRhHl5eQlECVRY/ri/F/C0+TRrLhKbqhWJJ8TT088qZsSIEQIx1WJEoKX84x/W\nfbOdOoUJdLGcTVwrECRBQVEN+j63b98uLVq0F1/fUPHwuEaee+7PNjH79u0Tb+9WlgL2nXh5/VbG\nj59Up9f79ddfpWXLADEY/iqwUzw8JsoNNwyWyspKq7jw8FhL99DZ/fW+/Pa3v6vTazq74ODeAv+t\nti/eljFj7nV0Wpfss88+Ey+vVmIy3Ss+PjHSr9+QRuvTrw+nTp2SiRMfll69+suoUXdf8MNUfavL\nsVOvuG4k5lkVPTh3aUp3oJSCggKuueaaapElwN3AC5gX+vsbRqP1NQvt27cHvgaOYp698SNQQGBg\noFVc8+YmDh50wXwNhAEw0bKlT435/fLLL/z000907tyZkJCQGmMqKipITU2lqKiI66+/Hl9fX5uY\n+Pi7OH58AXAXkMfLL/dl6NA4+vXrVxXz+eefU14+CjBfRV5U9Hc++SSE9957u8bXvZCUlBTKykIR\nMa+IW1KymO3bW3D8+HGrhQyDgjrxww9fU1ExEBDc3ZMJCelY69e7EnTp0okDB76msrIvIHh4JNO1\na1dHp3XJbrvtNnbs2MzmzZtp2fI24uPjneqmT76+vixd+rqj07h0DVCsGpwzpm0+k/AW+FogX2Cy\ngJ/NwLV5jKGTQFeB7gLNxN3dyyrmrbfeEmhmGZC+SczXX7jZdHuYB8d7Cfwg8D+BHgK+NrmtWPGB\neHm1lGbNbhIvr2tl/vy/2MQUFxdLv35DxMenu/j53SD+/p3lwIEDVjElJSViMLgKVFZ9SjWZ7pXF\nixfb5G8yja72STZd/Pz8a7U/z0pKShJf3z7VXjNf3NxMcvr0aau4rKwsads2SPz84sTXN0ZCQiIl\nPz+/Tq9ZW02tv//AgQNy7bWdxM9vkPj69pFevfra7C91ZarLsdP5jrbinEXCzc1N4EZL94+PwG8F\nDDb/OcHL0jX0lsCzAt5iMll3N/3rX/+yFIlogWGWg7+fHDx48Ly2WgisqXYwXiXQ3Crm5MmT4uHh\nJ7DLEpMlHh4tZd++fVZx8+e/LF5et1UNuLm4zJOBA2+3eZ/+/p2rveav4u3dRTZu3GgVc/z4cWnX\nLliMxkkCC8XLK0j+8peFtd6nIubCFBHRTzw9Rwu8LibT9fLgg1NqjD116pR8/vnnsmHDBpsLD6v7\n7rvv5L333rvs2TCZmZkSHt5PXFxcpUWL9rJu3brLaq8+5efny7/+9S9JSkqy+aCirlxaJJowQOB6\ngWIxXwWaLuBhM8hq/vQ/TMxTW4MEbpE2bTpaxaxbt85ytvGgwFCBaQJeVbd9PdeWr8CCakVirs2Z\nxK5duyxjFo9Z2posECaffPKJVdy9904WeK1aW2kSEGA77fPbb78VPz9/adYsWjw9r5Xp02faxJSV\nlcmAAUPFza2tGI3dxd3dV7788kubuMrKSnnzzbekX79h8tvfjpGdO3fWuG8LCgrkxRfnyN13PyhL\nly6zGY+ojSeffMbyO2gt0EwefXR6ndvq1u06cXF5UcxTNTeKydRK9u/fX+f21Dlnp/BezoQHZ3Dm\nzBk5fvx4vbWnRaIJMxcJLzk3bdVXwK2GIuEp0FHgnwKLBEzi4eFtFZOYmCjmAe5HBT4XGFXjmUSn\nTl0tr/kHgQcEvCQ4uKdVzMaNG+XcciGfC/xRwEfmzp1rFffWW4vFZOon5qmHFeLm9qiMGPH7Gt9r\nfn6+bNmyRX7++ecaH1+5cqV4e/cT8+waEfi3tGsXYhM3Z85LYjKFWc5MXhNv71ayZ88em7iKigpZ\ntWqVvPLKK7Jp06YaX/NSZGZmWn4vYy37IkHAt073Dj958qQYjSarrjdf39FOMwunKTt48KCEhESK\nh8c14uZmkr/85TVHp1TvKisrZcqUx8Vo9BJ3d1+JiRlUL92jdTl26rIcjcoD8zLg3wAzAE8yMjLO\ni/EElmJeTqMNMI2SEuulBMxLDrTEfCvURzAPhldw9OhRq7gRI4YD4UAR5gHxntxxh/U9w82r07oC\ni4GOmAfM2/Ljjz9axU2adD933BGKh0cHvLwC6N49lSVLXrV5h0VFRTzxxCwmTHiYhISH2b17t01M\nTk4OZWXXc26l+hiOHrW9idHChYspLLzRktM/KSy8iRUrPrCKERGGDx/LPffM58knD3LLLeN55ZWF\nNm1disTERMz7/33gt8A7QDM+/PDDWrfl7e2Nq6sLsNeypRSRH2ndunWdclPn3HHHBPbvH0FJSQpl\nZck8/fTLNveBd3YrVqxgyZIkysuzKC3NZ8eOLkyaNPXiT2wAzjMl4IoQhHkVWH/MB+7T+PicP9uo\nBLgT853pCjH/iqyLxL59+zCvxnoYaAesByo4ffq0VdzGjVsxF5Jdli1elm3nmG8wVIb5ntnXWtp0\n59ixY1ZxLi4u/OlPD3Hw4B4KCor4v/+bbHMnPICxYyfy73+XUFy8mIyM7QwYMIQff9xBu3btqmJi\nYmIwGl+ltPQRoAuuri9x3XU32LR16tQpzEX1OqAMkX+Rl9fcKiYlJYWvv97FmTNpgAelpdN58ske\nPPTQg1b3w7gU5lljlpO+KpUEBATYxGZlZfH3v79LSUkpv/vdaMLDw60ed3V15fXXFzJ16kBEbsfV\n9Tvi4kK56aabapWTsvX9999SWXkQWAEcobg4lG3btlndB97Zbdq0lcLCBMwfBqG09FG+/Xa0Q3LR\nM4lGdQBoi3nJ8PaAt+Xe19W5Yj5glwI+gC/WBy2q3RGuB+Y72IUB8P3331vFff/9Nks78cDtQDHb\ntn1jFWM+kFYC/8Q8lXYLUGCzcNp3331HVFQMKSl7SUvLJCHhj7z44otWMeXl5Xz22ScUFxuBOxBZ\nQnFxD5KSkqzi+vfvz/z5MzEae+Hi4km3bv/mn//8h83eKi4+g3mabxfAC/Dkxx/3WMUcO3YMV9dg\nzGdpAB1wcfG0FBhrJ06c4G9/+xtLly6luLjY5vHhw4fj5eUCjLHsj3F4eJTa3PApIyODsLBonn/+\nCHPnVnLDDYPYtGmTTXuTJt3Hxo1rWbAggvfff5bExA9wcdH/cpfPB/OZ+F7gZyors8jPz3dwTvUr\nKKgDnp6bOXsvGYNhEx07OmjK9mV3cjmAM6YNiPkq6ZGWrxsEvGTt2rXnxZ0dt2hjGXfwEXC1imnR\nooVl+1sCmQIzBXzl0UcfPa8tH4HOAuECZy+s87GKefjhh8W8DlH1C/Ouk27dulnFde0aKuYZVd3E\nPD23k7i4WM+UqqioEPM03xsFxljep7c8++yzVnGVlZUyfvwkMZk6iJ9ff2nWrI189913NeyzZgL/\nqZbXeAkM7GwVc+jQIcsihv8SOCXwgnTpEmYzeP2///1PjMZrqnL38mptM9AvYl5H6brr+omfX6CE\nh99Q41pXkydPEReXmdXyel/69h1iE+dIlzN439S5uroLFFTtf4Nhsrz88suOTqtenTlzRiIj+4uv\nbx/x8xsmzZu3kx9++OGy263LsVM/1jSqUsw3APoUcxdQiZ37RHsDoZjPECosX+eYPzW1xdxXH4T5\nUy/s3LnzvHZcgCFAGvA98BvOP3k0f7I9AZx97kFgr83NkLKycjF3hWUDmUA+lZXWSxybP52XYR5P\n8bO8Xw9++uknq7jExERWr06lsPBHTp1K4eTJvzJ69L02e8HFRYAO1bYEEhQUbBXj6+tLcXEh5ov3\nrgEWUFxcaJP/sGG/o7z8buAn4ABFRXHcfrvt6Xvr1q15551FLF48l7///Q2rbrKz8vNPU1lZPa8O\nnD7dNJZ73rBhA61bB2I0utO79284dOiQo1Oqdx06dMX8/wjgNCbTZrp16+bIlOqdyWRi69av+OST\nP7N8+QPs3fs9oaGhjknmskuTAzhj2oDlDIFqX0YZNGjQeXFeAq6WWDfLv641tGW0TNVsWTVTqn37\n9ufFNbd8wi4QOCPmNZ6usYqZPn265XW8BNpZzj48pUePHue1ZRTztNt9Yr4Y8DYB6+s3ysrKBAyW\nfLpYzlDayrBhw6ziXn75ZTEap1T7JH5K3NysLxgUEfnd7xIEfiOwR+ALcXG5RlJSUqxiHnvsMcvZ\nywYxr6w5T8BbDh06ZBXn4dFWzl+Wo0UL26WjX3rpr2IytRVf31FiMrWX55+fZxOzcuVKMRhaC2wR\n2C0QJlOnPmYT19h+/vlny1nVVwJF4ur6nPTsGW03/tSpUzbLyzuD7du3yzXXtJVmzWLEy6ut3Hvv\nH6/oM6f6VJdjZ5M82q5fv166desmwcHBMm+e7X9S5y0Stl8mk+mS4mxjPC0H4eaWf31riHO3HNiN\n1Q7yblYxw4YNsxxk7xRIFJgk4Ct+fn7nteUt8Gq1g+xOgWZWMSUlJWLuUhsg5mmrTwv4yNChQ63i\nVq5cKeYVVM/eNexVadky0Gaf7dq1S1xdz3a5+UqPHuE2MaNGjRLzVedn86oU8JatW7daxXl4tBL4\nvZgvBiwWGCytWgVYxeTm5oqHxzUCWZa2csXTs6VkZmZaxU2YcK+lqHa0vI/m0rNnH5vcGtt7770n\nPj6/s9oXRqOnzQWbBQUFMnjwcDEavcTV1UMmT57qdAfZ/Px82bRpU710wVxNrogiUV5eLkFBQZKR\nkSGlpaUSEREh6enpVjHOWyR8xbzI30TLWYC9AuAh5qulm18gxl3MffbNLW0Za4jzknPz/u+yfO9p\nFRMQEGB5fmm1g2xwDW25CAwSGCjmxQXHy/lnEidOnBDzWdDxageqW6RLF+uVZ9944w1xcekh5jGX\nVgLXioeHdVsiIs2adRTzxX0VAjkCHeRPf/qTVcyqVasEAiwHfhHzGI2bzaqabm5nz7iaW/71k5Yt\nrcc3duzYIe7uXavlLuLuHmazDHinTr3EfAvas3Gfi4dHW5v8G9uGDRvExye82u9yj7i7e9ssRz9x\n4sPi6TlWzCviHheTKVreeuttB2WtGlNdjp1NbkwiNTWV4OBgAgMDcXNz46677rLMX78SdAG2Yb4O\n4mvMc/LP52WJ+yfwFuaZHDVxAx4F1gF3WJ53Pg/Ms0BWAh8A/8e5WUBmNfdZi51tqcAfgbnAVsxj\nFDWpPh5QYTOD6+jRo1RWHgJeAhKBcMrLbVs5efJX4HHM4yhtgUm8++57VjGDBg3CaCwE+gCTgWg6\ndgzCy+v827S6AE9j3q//Bu5FxHpqsZeXF6WlhzDvU4AvKS3db3Mr1zZtbKf+enubbN9AIxsyZAj9\n+gXh7T0AD4+HMJkG8vrrC3F1tV4gcuPGbykungK4A80pLLyfr7761iE5q6avyV0nkZ2dTYcO5wYF\nAwIC2Lp16wWe4UwiME9xBeiFeWD3fO7APzAf9MA8ze/FGuKCgOct318PrK4hxoD5Yrrqr2/vc8E4\nYALmay6O1/C4J/AUMMry83LMF5ydY75ftxswHJgGbAdSKS62HkQ2D5bfCUyybFmBwRCELSPmKbmB\nmKcCJlNQYD21NSUlBU/PKAoKHgJ+AVZx+PDt5Ofn06JFi6q4Nm3a8ssvvYE4y5b9dO1qfe/w4uJi\nvLz8KSqaBBQAnnh7B1B+XgV79dW5xMbeQnm5H+CHi8v/8fLLc2rIv3G5uLiwbt0qVq9eTU5ODjEx\nq4mOjraJ69QpgAMHUqqtAruFoKCrc0VcdXFNrkicPyvFnlmzZlV9HxcXR1xcXMMkVK/+ifnTbgQw\nE/ChpOToeTEGoPqBMB/zUt/nK8B84HQBzs4qOl8x8CwQbYmdhfkivnPCw8PZtetnzAfixZiLjzcu\nLifPa6vCkstZ5z9unpFhzuNGYAnmiwa7ExBwxiqudevWeHr+wLlLFU7i5VXTJ/ES4AHMBekQcJiQ\nEOvZTe7u7hgMp4ERnN13IuU2n/4nTBjJyy8/T2lpBFCMp+dL3HPPI1YxXbt2xWQqp6joBWAY8BXu\n7o/bzCqJiYkhOflzXnjhVYqKSnj44dcZPXoUTYGrqyujRl04l7/97WViYgZSVvYVcJK2bQt54onX\nGidB1aiSk5NJTk6+vEYaoNvrsnz77bdy8803V/08Z84cm8HrJpj2Ra1evdoyluBl6d/3q/F9mGNa\nCrwh8JQlvqYxCV+BEQJLLGMEPnbaMlnGLzxqbMsc5yvQ39LW7QK+NovpjRkzxvL8pwReF2gu3t62\ny46bTNeK+VqKty1jL942d8w7duyYtG4daJnhtFhMpu4yd67tPPexY8dbxhBusuTnabMya3FxsYSG\nXi8eHuMF3haTqZ/ce+9km7bKyspk4sSHxN3dJJ6efjJjxjM1Dtbu2rVLunQJFxcXowQG9rTJ/Upx\n7Ngx+eSTT2Tt2rVOOcNJ1U1djp1N7mhbVlYmXbp0kYyMDMsy0FfGwLWIyNtvv111oPbzu8buEs3n\nioDJ7nvFavDaVYxG4wXiTBdsa+fOnZYB52YCbrJ8+fIa48x3xDMJ+Eq7du1qjCkrK5Pg4G7i6tpS\nTKYWkpSUVGNcbm6uTJ36mPzud/fJypUf1BgjIjJz5kzp1KmX9OrVx2b661mnTp2SmTOfldGj75E3\n3lh0wfs3VFZWXtJMHmeb7aPUpajLsdNgeWKTsn79eqZOnUpFRQUTJ07kySeftHrcYDDYLBuhlFLq\nwupy7GySReJitEgopVTt1eXY2eSmwCqllGo6tEgopZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCil\nlLJLi4RSSim7tEgopZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RSSim7tEgopZSyS4uE\nUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RSSim7tEgopZSyS4uEUkopu7RIKKWUssshRWLWrFkE\nBAQQFRVFVFQU69evr3ps7ty5hISE0L17d5KSkhyRnlJKKQuHFAmDwcC0adPYuXMnO3fuZNiwYQCk\np6fz0UcfkZ6ezoYNG/jjH/9IZWWlI1JsUMnJyY5O4bJo/o6l+TuOM+deVw7rbhIRm22JiYmMHTsW\nNzc3AgMDCQ4OJjU11QHZNSxn/0PT/B1L83ccZ869rhxWJF5//XUiIiKYOHEiJ06cACAnJ4eAgICq\nmICAALKzsx2VolJKXfUarEgMGTKEsLAwm6+1a9cyefJkMjIySEtLo23btkyfPt1uOwaDoaFSVEop\ndTHiYBkZGdKrVy8REZk7d67MnTu36rGbb75Z/vvf/9o8JygoSAD90i/90i/9qsVXUFBQrY/RRhwg\nNzeXtm3bArB69WrCwsIAiI+PZ9y4cUybNo3s7Gz27dtHdHS0zfN//vnnRs1XKaWuVg4pEjNmzCAt\nLQ2DwUDnzp1ZvHgxAKGhoYwZM4bQ0FCMRiOLFi3S7iallHIgg0gN04yUUkopnPiK6/MvyNuwYYOj\nU7okGzZsoHv37oSEhDB//nxHp1NrgYGBhIeHExUVVWNXYFNz33334e/vX9WlCXD8+HGGDBlC165d\nGTp0aNXsuqamptyd6e8+KyuLgQMH0rNnT3r16sVrr70GOM/+t5e/s/wOiouL6du3L5GRkYSGhvLk\nk08Cddj/dR1wdrRZs2bJK6+84ug0aqW8vFyCgoIkIyNDSktLJSIiQtLT0x2dVq0EBgbKr7/+6ug0\nLtmmTZtkx44dVZMjREQee+wxmT9/voiIzJs3T2bMmOGo9C6optyd6e8+NzdXdu7cKSIip0+flq5d\nu0p6errT7H97+TvT7+DMmTMiIlJWViZ9+/aVzZs313r/O+2ZBFDjBXlNWWpqKsHBwQQGBuLm5sZd\nd91FYmKio9OqNWfa77GxsTRv3txq29q1a0lISAAgISGBNWvWOCK1i6opd3Ce/d+mTRsiIyMB8PHx\noUePHmRnZzvN/reXPzjP78BkMgFQWlpKRUUFzZs3r/X+d+oiUdMFeU1ZdnY2HTp0qPrZGS8WNBgM\nDB48mD59+rBkyRJHp1MneXl5+Pv7A+Dv709eXp6DM6odZ/u7B8jMzGTnzp307dvXKff/2fxjYmIA\n5/kdVFZWEhkZib+/f1XXWW33f5MuEvV1QV5TcSXM1NqyZQs7d+5k/fr1vPnmm2zevNnRKV0Wg8Hg\nVL8XZ/y7LygoYOTIkSxcuBBfX1+rx5xh/xcUFDBq1CgWLlyIj4+PU/0OXFxcSEtL49ChQ2zatImv\nv/7a6vFL2f8OmQJ7qb744otLirv//vu5/fbbGziby9e+fXuysrKqfs7KyrJahsQZnL2+5dprr+WO\nO+4gNTWV2NhYB2dVO/7+/hw+fJg2bdqQm5tL69atHZ3SJaueqzP83ZeVlTFy5EgmTJjAiBEjAOfa\n/2fzHz9+fFX+zvY7AGjWrBm33nor27dvr/X+b9JnEheSm5tb9X31C/Kasj59+rBv3z4yMzMpLS3l\no48+Ij4+3tFpXbLCwkJOnz4NwJkzZ0hKSnKK/X6++Ph4li9fDsDy5cur/vM7A2f6uxcRJk6cSGho\nKFOnTq3a7iz7317+zvI7OHbsWFVXWFFREV988QVRUVG13/8NOLDeoCZMmCBhYWESHh4uw4cPl8OH\nDzs6pUuybt066dq1qwQFBcmcOXMcnU6tHDhwQCIiIiQiIkJ69uzpFPnfdddd0rZtW3Fzc5OAgAB5\n55135Ndff5VBgwZJSEiIDBkyRPLz8x2dZo3Oz33ZsmVO9Xe/efNmMRgMEhERIZGRkRIZGSnr1693\nmv1fU/7r1q1zmt/Brl27JCoqSiIiIiQsLExeeuklEZFa73+9mE4ppZRdTtvdpJRSquFpkVBKKWWX\nFgmllFJ2aZFQSilllxYJpZRSdmmRUEopZZcWCaXO079/f4e9to+Pj8NeW6ma6HUSSjlIRUUFrq6u\nVtt8fX2rrmpXqinQMwmlznP203xycjJxcXGMHj2aHj16MH78eAC2bdvGyJEjAUhMTMRkMlFeXk5x\ncTFBQUEALFmyhOjoaCIjIxk1ahRFRUUA3HPPPfzhD38gJiaGGTNmkJGRwQ033EB4eDhPP/20A96t\nUhemRUKp81RfFTMtLY2FCxeSnp7OgQMH+Oabb7juuutIS0sDYPPmzYSFhZGamsrWrVurlpIeOXIk\nqamppKWl0aNHD5YtW1bVZk5ODt9++y0LFixgypQpPPTQQ+zatYt27do17htV6hJokVDqAqKjo2nX\nrh0Gg4HIyEgyMzNxdXUlKCiIn376iW3btjFt2jQ2bdpESkpK1Yq4u3fvJjY2lvDwcFasWEF6ejpg\nLkCjR4+uKkTffPMNY8eOBag6U1GqKdEiodQFeHh4VH3v6upKeXk5ADfeeCPr1q3Dzc2NQYMGsXnz\nZqsicc8997Bo0SJ27drFc889V9XdBOfuFqaUM9AioVQtnJ3nERsby6uvvkq/fv1o1aoVv/76K3v2\n7KFnz56A+UY1bdq0oaysjPfff9/ujV369+/Phx9+CMCKFSsa500oVQtaJJQ6T/UD+vkH97M/R0dH\nc+TIEW688UYAIiIiCA8Pr4p74YUX6Nu3LwMGDKBHjx5221+4cCFvvvkm4eHh5OTkNPm7tKmrj06B\nVUopZZeeSSillLJLi4RSSim7tEgopZSyS4uEUkopu7RIKKWUskuLhFJKKbu0SCillLJLi4RSSim7\n/h/IKIQ+Bonk6QAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11a745a90>" | |
} | |
], | |
"prompt_number": 186 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "temp_m=[]\ntemp_nm=[]\ntemp_m_number=[]\ntemp_nm_number=[]\nfor i in user_money_no_money:\n temp_m.append(i[1])\n temp_nm.append(i[2])\n temp_m_number.append(i[3])\n temp_nm_number.append(i[4])\nplt.scatter(temp_m_number,temp_nm_number)\nplt.xlabel(\"money\")\nplt.ylabel(\"no money\")\n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 187, | |
"text": "<matplotlib.text.Text at 0x11a727450>" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAEPCAYAAABRHfM8AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVPX6wPHPYZUBBTcGd7yobCKQu2liimamaQumlVyX\nm2Wbt8WyumW3ErQ9y24/r3axRU1vKZaaWqKWleae5tUUFBVwAVzYZ+b7++OMk6TGKMth9Hm/XvNy\n5sxZnjMznofvdr6aUkohhBBCVMDN6ACEEEK4BkkYQgghnCIJQwghhFMkYQghhHCKJAwhhBBOkYQh\nhBDCKYYmjKSkJCIjI4mKimLkyJGUlJSQm5tLfHw87dq1o3///uTn5xsZohBCCDvDEkZGRgazZs1i\ny5Yt7Ny5E6vVyvz580lOTiY+Pp69e/fSt29fkpOTjQpRCCHEeQxLGPXq1cPT05PCwkIsFguFhYU0\nbdqU1NRUEhMTAUhMTGTx4sVGhSiEEOI8hiWMBg0a8Pjjj9OyZUuaNm1KQEAA8fHx5OTkYDabATCb\nzeTk5BgVohBCiPMYljD279/PW2+9RUZGBkePHuXs2bN8/PHH5dbRNA1N0wyKUAghxPk8jDrwzz//\nTI8ePWjYsCEAt912Gz/88ANBQUFkZ2cTFBREVlYWgYGBF2zbpk0b9u/fX9MhCyGESwsJCeG33367\n4u0NK2GEhYXx448/UlRUhFKK1atXExERweDBg0lJSQEgJSWFoUOHXrDt/v37UUq57OOFF14wPAaJ\n3/g4JH7Xe7hy7EqpSv+hbVgJIzo6mlGjRtGpUyfc3Ny47rrruO+++zhz5gwJCQnMnj2b4OBgPvvs\nM6NCFEIIcR7DEgbApEmTmDRpUrllDRo0YPXq1QZFJIQQ4lJkpLcB4uLijA6hUiR+Y0n8xnHl2KuC\nppRyuQmUNE3DBcMWQghDVfbaaWiVlKh+NpuNvXv3omkabdu2xc1NCpVCiCsjCeMqdvbsWW68cTC7\ndh0AFB06tGP16iX4+voaHZoQwgXJn5tXscmTp7BjR3MKCw9QWJjOtm2Nee65l4wOSwjhoiRhXMV+\n/vkXSkruAtwBd4qLh7N58y6jwxJCuChJGFex6OgwvL2/ABRgw9t7MdHRoUaHJYRwUdJL6ip26tQp\nevW6ifT0PEDRpk1j1q1bTt26dY0OTQhhgMpeOyVhXOUsFgs7duxA0zSioqLw8JB+DkJcqyRhCCGE\ncEplr53ShiGEEMIpkjCEEEI4RRKGEEIIp0jCEEII4RRJGEIIIZwiCUMIIYRTDEsY//vf/4iNjXU8\n/P39eeedd8jNzSU+Pp527drRv39/8vPzjQpRCCHEeWrFOAybzUazZs3YuHEjM2bMoFGjRkyaNIlp\n06aRl5dHcnJyufVlHIYQQly+q2IcxurVq2nTpg0tWrQgNTWVxMREABITE1m8eLHB0QkhhIBakjDm\nz5/PiBEjAMjJycFsNgNgNpvJyckxMjQhhBB2ht9YqLS0lKVLlzJt2rQL3tM0DU3TLrrdlClTHM/j\n4uKu+bl2hRDij9LS0khLS6uy/RnehrFkyRLef/99VqxYAUBYWBhpaWkEBQWRlZVFnz592LNnT7lt\npA1DCCEun8u3YcybN89RHQUwZMgQUlJSAEhJSWHo0KFGhSaEEOI8hpYwCgoKaNWqFenp6Y45GnJz\nc0lISODQoUMEBwfz2WefERAQUG47KWEIIcTlk9ubCyGEcIrLV0kJIYRwDZIwhBBCOEUShhBCCKdI\nwhBCCOEUSRhCCCGcIglDCCGEUyRhCCGEcIokDCGEEE6RhCGEEMIpkjCEEEI4RRKGEEIIp0jCEEII\n4RRJGEIIIZwiCUMIIYRTJGEIIYRwiiQMIYQQTjE0YeTn53PHHXcQHh5OREQEP/30E7m5ucTHx9Ou\nXTv69+9Pfn6+kSEKIYSwMzRhPProo9x88838+uuv7Nixg7CwMJKTk4mPj2fv3r307duX5ORkI0MU\nQghhZ9gUradOnSI2NpYDBw6UWx4WFsbatWsxm81kZ2cTFxfHnj17yq0jU7QKIcTlc9kpWtPT02nc\nuDGjR4/muuuu429/+xsFBQXk5ORgNpsBMJvN5OTkGBWiEEKI83gYdWCLxcKWLVt499136dy5MxMn\nTryg+knTNDRNu+j2U6ZMcTyPi4sjLi6uGqMVQgjXk5aWRlpaWpXtz7AqqezsbLp37056ejoA3333\nHUlJSRw4cIA1a9YQFBREVlYWffr0kSopIYSoAi5bJRUUFESLFi3Yu3cvAKtXryYyMpLBgweTkpIC\nQEpKCkOHDjUqRCGEEOcxrIQBsH37dsaNG0dpaSkhISF8+OGHWK1WEhISOHToEMHBwXz22WcEBASU\n205KGEIIcfkqe+00NGFcKUkYQghx+Vy2SkoIIYRrkYQhhBDCKZIwhBBCOEUShhBCCKdIwhBCCOEU\nSRhCCCGcIglDCCGEUyRhCCGEcIokDCGEEE6RhCGEEMIpkjCEEEI4RRKGEEIIp0jCEEII4RRJGEII\nIZwiCUMIIYRTJGEIIYRwioeRBw8ODqZevXq4u7vj6enJxo0byc3NZfjw4Rw8ePCSM+4JIYSoeYaW\nMDRNIy0tja1bt7Jx40YAkpOTiY+PZ+/evfTt25fk5GQjQxRCCGFneJXUH6cLTE1NJTExEYDExEQW\nL15sRFhCCCH+wPASRr9+/ejUqROzZs0CICcnB7PZDIDZbCYnJ8fIEIUQQtgZ2obx/fff06RJE44f\nP058fDxhYWHl3tc0DU3TLrrtlClTHM/j4uKIi4urxkiFEML1pKWlkZaWVmX709Qf64QM8uKLL+Ln\n58esWbNIS0sjKCiIrKws+vTpw549e8qtq2naBVVZQggh/lxlr52GVUkVFhZy5swZAAoKCli5ciVR\nUVEMGTKElJQUAFJSUhg6dKhRIQohhDiPYSWM9PR0hg0bBoDFYuHuu+9m8uTJ5ObmkpCQwKFDhy7Z\nrVZKGEIIcfkqe+2sNVVSl0MShhBCXD6XrZISQgjhWiRhCCGEcIokDCGEEE6RhCGEEMIpkjCEEEI4\nRRKGEEIIp0jCEEII4RRJGEIIIZxSYcI4efJkTcQhhBCilqswYXTr1o0777yTZcuWyejqGpaZmcmC\nBQtYuXIlVqvV6HCEENe4Cm8NYrPZWL16NXPmzGHTpk0kJCQwevRo2rVrV1MxXuBauDXId999x003\nDcPN7QaUOkDHjk1ZvXoJHh6G3pFeCOHCavReUt9++y333HMPBQUFxMTEkJSURI8ePa744FfqWkgY\nrVtHkZHxMnArYMHXtx8zZ45h1KhRRocmhHBRlb12Vvjn6okTJ/jkk0+YO3cuZrOZd999l8GDB7N9\n+3buuOMOMjIyrvjg4tJycg4D19tfeVBc3JXDhw8bGZIQ4hpXYRtGjx49OHXqFEuWLGHZsmXcdttt\neHp60qlTJ+6///6aiPGa1KlTdzw8XgMUcAhv78/o1q2b0WEJIa5hTrVhuLm5UVhYiMlkqqm4/tS1\nUCWVnZ3NgAG38euvOwAbU6dO5YknJhodlhDChVX77c1//PFHIiIiCA0NBWDbtm1MmDDhig/4R1ar\nldjYWAYPHgxAbm4u8fHxtGvXjv79+5Ofn19lx3IlQUFBbN++gePHj1BQcEqShRDCcBUmjIkTJ7Ji\nxQoaNWoEQExMDGvXrq2yAN5++20iIiLQNA2A5ORk4uPj2bt3L3379iU5ObnKjuWK/P398fT0NDoM\nIYRwbqR3y5Yty72uqq6dhw8fZtmyZYwbN85RTEpNTSUxMRGAxMREFi9eXCXHEkIIUTkVJoyWLVvy\n/fffA1BaWsprr71GeHh4lRz873//O6+++ipubr+HkZOTg9lsBsBsNpOTk1MlxxJCCFE5FSaM999/\nn/fee48jR47QrFkztm7dynvvvVfpA3/55ZcEBgYSGxt7yUYYTdMcVVVCCCGMVWHdUuPGjfn000+r\n/MAbNmwgNTWVZcuWUVxczOnTp7n33nsxm81kZ2cTFBREVlYWgYGBF91+ypQpjudxcXHExcVVeYxC\nCOHK0tLSSEtLq7L9Vdit9tixY8yaNYuMjAwsFou+kaYxZ86cKgti7dq1vPbaayxdupRJkybRsGFD\nnnrqKZKTk8nPz7+g4fta6FYrhBBVrdpHet96663ccMMNxMfHO9oaqqOa6Nw+n376aRISEpg9ezbB\nwcF89tlnVX4sIYQQl6/CEkZMTAzbtm2rqXicIiUMIYS4fNU+cO+WW27hq6++uuIDCCGEuDpUWMLw\n8/OjsLAQLy8vxwAyTdM4ffp0jQR4MVLCEEKIy1ejtzevLSRhCCHE5av2Rm+AJUuWsG7dOjRNo3fv\n3o77PgkhhLh2VFjCePrpp9m0aRN33303Sinmz59Pp06dSEpKqqkYLyAlDCGEuHzVXiUVFRXFtm3b\ncHd3B/S7y8bExLBz584rPmhlScIQQojLV+29pDRNK3eL8fz8fLldhxBCXIMqbMOYPHky1113nePW\nG2vXrr3mbzkuhBDXIqd6SR09epRNmzahaRpdunQhKCioJmK7JKmSEkKIy1ftVVIAx48fB6CsrIwN\nGzbw+eefX/EBhRBCuKYKq6RGjx7Nzp07iYyMLDdvxW233VatgQnXppRiwYIF/PDDz7Rp04r77rsP\nb29vo8MSQlRChVVSERER7Nq1q1Y1dEuVVO03ceJTzJq1gsLCkfj4rCU21sK6dcsdve2EEDWv2quk\nOnfuzO7du6/4AOLac/r0aWbOfJfCwjXAUxQVLWXHjmy+++47o0MTQlSCU1VS3bt3JygoyFGloGka\nO3bsqPbghGsqKirCza0OEGBf4o6bWxBnz541MiwhRCVVmDDGjh3Lxx9/TPv27cu1YQhxKYGBgYSF\nhbF792OUlU1A09bg7r6Lbt26GR2aEKISKmzD6N69Oz/88ENNxeMUacOo/Y4fP87o0Q+xadPPtGzZ\niv/8ZwaRkZFGhyXENa3abw0yYcIE8vPzGTx4MF5eXo6DVraXVHFxMb1796akpITS0lJuvfVWkpKS\nyM3NZfjw4Rw8eNAx415AQEC5bSVhCCHE5av2hPHXv/71oj2kPvzwwys+6DmFhYWYTCYsFgs9e/bk\ntddeIzU1lUaNGjFp0iSmTZtGXl6ezOkthBBV4KqYD6OwsJDevXvzn//8h9tvv521a9diNpvJzs4m\nLi6OPXv2lFtfEoYQQly+GhnpXV1sNhsxMTGYzWb69OlDZGQkOTk5mM1mAMxmMzk5OUaGKIQQws6p\nCZSqi5ubG9u2bePUqVMMGDCANWvWlHtf07RaNWBQCCGuZYYmjHP8/f0ZNGgQmzdvdlRFBQUFkZWV\nRWBg4EW3mTJliuN5XFyc4266QgghdGlpaaSlpVXZ/ipsw8jPz+fFF19k3bp1gH5xfv755/H396/U\ngU+cOIGHhwcBAQEUFRUxYMAAXnjhBb7++msaNmzIU089RXJyMvn5+dLoLYQQVaDaG71vu+02oqKi\nSExMRCnFRx99xI4dOyp9x9qdO3eSmJiIzWbDZrNx77338uSTT5Kbm0tCQgKHDh2SbrVCCFGFqj1h\nREdHs3379gqX1SRJGEIIcfmqvZeUj48P69evd7z+7rvvMJlMV3xAIYQQrqnCEsa2bdsYNWoUp06d\nAqB+/fqkpKQQHR1dIwFejJQwhBDi8tXYwL3Tp08DUK9evSs+WFWRhCGEEJevstfOCrvVFhcX89//\n/peMjAysVitKKTRN4/nnn7/igwohhHA9FSaMW2+9lYCAADp27EidOnVqIiYhhBC1UIVVUu3bt+eX\nX36pqXic4spVUvv27eOZZ14mJyeXoUPjmTjxoQvmGUlJ+Yj//GcRfn4mpkx5go4dOxoUrRDialLt\nVVI9evRgx44ddOjQ4YoPInRHjx6lc+cbOHPmEWy2cDZvnkp29jGmT3/Zsc577/2LSZPeoLDwFSCH\nNWtu4qef0mQuCSGE4SosYYSHh/Pbb7/RunXrWjNFq6uWMGbMmMGkSVsoLj53a/iD+Ppex9mzJwEo\nLS0lODiSrKxngXsBd+AfPPZYKa+/Ps2gqIUQV4tqL2EsX778incunHfixAmuv74/2dllwIvAR8BS\ng6MSQojf1Yr5MC6Xq5Ywjh49SkRER86ceRibLRyTKYkHH+zP9OkvM3LkOBYt8qWs7C3ABiQAxfj6\nbpQqKSFElXDp+TCuNQUFBcTGdqJevX/TosVzvPjiSJKT/wnAL7/8j7KyYYCGXhU1jMDA31i7doUk\nCyFErSAJo4ZkZ2fTpUtv1q27gfz8Dzh5sgm7dv3P0UMqNjYSL6/56KWLMnx8FvLAA/dKDykhRK0h\nVVI1ZPbs2TzyyGoKC+fZl+Th4dGUkpIC3NzcyMvLIy5uEPv3Z6NUKV27xrB8+X8dHQ2EEKKyqr3R\nW1QNd3d3NK30vCUluLm5OWYUrF+/Plu2rGfv3r14eHjQpk0bmW1QCFGrSAmjhuTm5hIe3pHc3AQs\nlhhMpjcYP74vb7yRXPHGQghRBWrs5oO1iSsmDNB7ST3//FSOHDnGoEF9ePDB+6UUIYSoMS6bMDIz\nMxk1ahTHjh1D0zTuu+8+HnnkEXJzcxk+fDgHDx6UGfeEEKIKuWzCyM7OJjs7m5iYGM6ePUvHjh1Z\nvHgxH374IY0aNWLSpElMmzaNvLw8mdNbCCGqgMuOwwgKCiImJgYAPz8/wsPDOXLkCKmpqSQmJgKQ\nmJjI4sWLjQpRCCHEeWpFG0ZGRga9e/fml19+oWXLluTl5QGglKJBgwaO1+dICUMIIS6fy3erPXv2\nLLfffjtvv/02devWLfeepmmXbBSeMmWK43lcXBxxcXHVGGXNKy0t5ckn/8GSJcupX78+M2a8Qs+e\nPY0OSwjhQtLS0khLS6uy/RlawigrK+OWW25h4MCBTJw4EYCwsDDS0tIICgoiKyuLPn36sGfPnnLb\nXQsljHHjHuLTT/dRVJQE7MNkeoiff15HeHi40aEJIVyUy7ZhKKUYO3YsERERjmQBMGTIEFJSUgBI\nSUlh6NChRoVYrcrKyli0aBF33HEH48eP59dffy33/oIFCygqmg1cBwyntPRuli517u61JSUlfPnl\nlyxcuJDjx49XffCi1tqwYQPz5s274PckRJVQBlm/fr3SNE1FR0ermJgYFRMTo5YvX65Onjyp+vbt\nq9q2bavi4+NVXl7eBdsaGHaVKCoqUh06dFfQQEG0gjgFJrVkyRLHOg0btlCwVYFSoFSdOiPVO++8\nU+G+z5w5oyIjuyg/v+6qbt3BKiCgidq1a1d1no6oJcaPf1T5+v5F1a17pzKZAtXcuR8bHZKoZSp7\n7XTJK6+rJ4y33npLaVo7BcMV2OxJ4R1Vt24LxzrvvfcvZTIFK3hTeXhMUGZza3XixIkK9/3SS68o\nb+/f96tp76nrr7+pOk9H1AIbN25UJlMrBafsv6ddytu7riouLjY6NFGLVPbaKXerNUBGxmGUagxc\nj347c4BeFBYWOtaZMGE8CxbMYOzY33jiiQbs2PEjDRs2rHDfBw4cpqTk9/0q1YPMzMNVfg6idsnM\nzMTDowNQz74kAk3zvqCHoRCVIQnDAL16dcfd/TdgDnASsADTad68abn1brnlFv7973dJSnqJwMBA\np/bdp093TKY5wAnAgrf3W/Ts2a1qT0DUOrGxsVgsPwCb7UtSCAio5/TvRghnSMIwwLBhw5g0aTyw\nBzADJurVW8d33y2r9L7vuece7rtvAB4ezfHwqEfXrsd4//3Xnd5+/fr1zJ49mx9//LHSsYia07p1\naz7+eBYmUz88PevStOnLrFq1xDHfihBVoVYM3LtcV0u32tLSUo4fP467uztBQUFVuu+SkhLKysrw\n8/NzepsnnniWf/1rPkr1Ar5l8uSHeO65SVUal6heNpuN06dP4+/vLze2FBdw2XtJVcbVkjBqk337\n9hEd3ZOiol+BBkAW3t7hHDz4P8xms9HhCSGqgMuOwxCXVlxczOjREwgIaIqPjxkfn/q0bh3FqlWr\nqu2YOTk5eHn9BT1ZADTBy6sJx44dq7ZjCiFciySMWmjChMdZsOAwp05toLh4IcXF3mRk/JWhQ0dW\n24CsiIgIbLYDwFeAAubj6XmGkJCQajmeEML1GH4vqWtJcXExkyZN4qeffiIiIoLx48ezZ88eioqK\nGDhwIMHBwQCkpn5JUdG3QLD9MR7Ix2a7g9WrV1fL7UEaNGjA8uWfM2zYSE6ePEpQUDBLl6ZiMpmq\n/FhCCNckbRg1pLi4mMDAEM6cCQRigS+AIry9b8TNLQh39y/59tuv6Ny5M8HBURw8+CbQz771KCAK\nX99vmDlzJKNGjarWWEtKSvD29q7WYwghap40eruIxx9/nDfeWA1sAdzt/8YBp+1rpNC581w2bvyG\n1NRU7rrrbxQXj0apfcD31KnTkeDgHLZsWY+Pj48xJyGEcGnS6O0ijh49CnRATxYA7YFCwGp/3YFj\nx/QbBQ4ZMoS1a7/k+ed9ePDBJjz5ZCKvvjqQn39e63SymD79Dfz9g/D1bcgDD/wdi8VStSckhLjm\nSBtGDUlISGD+/FHAT0A08CzgD2QAjalT50VuuulGx/qdO3emc+fOV3SsefPm8+KL/0dhYRpQl7lz\n76F+/ZeZOnVK5U5CCHFNkyqpGjRp0lO8+uq7QDFgolkzMydPHqe0tJD27WOYNy+FiIiISh8nIWE0\nCxf2AP5mX7Ke8PBJ7N79Q7n1vv/+e7777juCgoIYMWIEXl5elT72lcjNzWX+/PkUFhZyyy23EBYW\nZkgcQlztpErKhUyfPg2lCrBay7DZTvPTT2vx8/PHy+su9uzpTJcuvdm8eXPFO6pAYGB9PDz+d96S\n/9GoUYNy6/zf/82mf//hPPfcMR58MIXevW+mrKys0se+XMePH6d9+y488cQ6nnnmIJ069eL777+v\n8TiEEBWTEoZBlFI8/PDjfPCBOxbLq/al/6ZXry9Yu/ZLgCu+tcORI0eIje3BmTO9sNnq4em5kLVr\nV9CxY0fHsX18/Ckp2QiEATb8/Hoyd+6TDBs2rFyMzsRw7ru4knifffZ5Xn31OGVl79uXzCc29n22\nbFl72fsSQvw5KWG4mI8//hR/fzOent4sWLAEi6XZee+Gsn37Lry8TJhMAfzzn0lX9OU2a9aMXbt+\n5tVXu5GU1Ibt2390JIu8vDxuvHEwJSUFwA3AXMANpdqSm5sLwLfffovZ3BoPD0+iorqTnp5+0eOU\nlJQwcuTYSsWbk5NLWVlouc/g5Mncyz5nIUQNqNRsGpU0evRoFRgYqNq3b+9YdvLkSdWvX7+rcsY9\nfZKbIAVbFBQqd/f7lZtbYwW7FRxWHh49lLt7uII8BenKZApXn346r0pjuOmm25WX130KChVsV9BU\nwZvKZGqk9u7dqw4dOqR8fRspWKmgRLm5TVetW7dXNpvtgn09/PCTysdnkD3eDGUyRahPPvn0suJJ\nTU1VJlNreyxZysfnJvXgg49X1ekKIc5T2WunoSWM0aNHs2LFinLLkpOTiY+PZ+/evfTt25fk5GSD\noqt6y5cvp6joNvSBez5YrUnAGerUuR4Pj1A0bSdW6w1AHhBMYeEjfPnlN1V2/G3btvHNN19TWvoS\n4IPezXc4deu+zBdffELbtm3ZtGkT7u7dgXjAC5vtCY4ePcKJEycucj7fUlT0HBAAtKKw8GG++urb\ny4pp8ODBTJv2JAEBAzGZIkhICOb111+p9LkKIaqeoQmjV69e1K9fv9yy1NRUEhMTAUhMTGTx4sVG\nhFbl8vPzeemlV1FqO2CzL92JzeZBSUkoFos7ZWX3oPd07gb8iqfnDpo2bVwlx1+1ahXXX9+fsjI/\nYKd9qcJk+pU33kimf//+ADRu3BirdS96Ty6Ag9hsJdSrV++CfZrNjc/bF1cc70MPPUBe3hEKCnL5\nz3/el1HmQtRStW4cRk5OjuN22mazmZycHIMjqhr/+Mc/sFgi0QfuxQF/ARYBk1HqHeAF4DH72s1x\ncxtCYKDGU09tuGBfp0+fvugFHPT5ECwWywVdZB999B8UFs4CvIC7gFvw9PyNNm2s3HPPPY71evbs\nSf/+nVi1qgcWSzfc3JYyder0i17E3303iV69+mO1bkDT8qhff/dF4xVCXB1qXcI4n6Zpl+x5M2XK\nFMfzuLg44uLiaiaoK6Q3KLdBTxjzgA2ACfgcKEVPIOeE4OFxhu3bd5Wbx3vRokXcddc4rNYzaJoP\nb775Co8++qjj/XfeeY9Jk56mrKyE7t37kJo6jwYN9O60p0+fBlqjV0OtBZ6hd28/vvxycblkoGka\nixbNZenSpRw6dIjOnUfRrdvFp3iNiYlh166fWbZsGd7e3tx2Wwr+/v6V/7CEEFUiLS2NtLS0qtth\nFbWlXLH09PRyjd6hoaEqKytLKaXU0aNHVWho6AXb1IKwL9vMmTMVeCqor+BXBRYFf1fQSEFDBe0U\n/KJgh4JIBS3VHXfc5dj+1KlTStP8FKQosCn4WoFJ7d69Wyml1OrVq5XJ1ErBfgVlytNzghow4HbH\n9noDdbz9/Q3KZGquVq1aVeOfgxDCOJW9dta6brVDhgwhJSUFgJSUFIYOHWpwRFXJBIQDs4EV6NVQ\np4AS4DDQB7gZfZ7v61iz5ifHlhs2bEApX/Q712pAfyCML7/Ux2ysX/8dRUX3oJdUPCgre5bvv1/n\n2P61114mMTGS+vV707TpX5k5cyr9+vWjutlsNubMmcOjjz7BrFmzsFqtFW8khKiVDK2SGjFiBGvX\nruXEiRO0aNGCf/7znzz99NMkJCQwe/ZsgoOD+eyzz4wMscrojfs2IBBoCDwC3ATUAeoCo4EZ6NVT\nvYAT5OWtJiMjg+DgYObN+xw9uWQCLezPDxAaqo9haNIkCB+fxRQW2tD7MvxM48ZNHMf38vLi/fff\n5P3336yR8wV9QN+IEWP56qu9FBQMwWT6iC+//JbFiz+V+aaFcEVVU9CpWa4Y9ty5c5Wm9VRQah+3\nsE+Bl/2RpkAp+FhBR/tzpdzcnlJ/+9uD6vjx48rd3UfBZAXNFSQqaKpat9ar8iwWi8rOzlYdO96g\n/Px6KF8Lm+rhAAAWUklEQVTfu5WvbyOVlpZm6Dnv379f+fiYFRTYz6lImUzNHdVoQoiaVdlrZ62r\nkrpaFRUVoVQJUB+9hHA7YAEeBnrb12rG77c7B5utGf/+91waN26K1WoDXgNygP8CJ8jJyeLZZ5/D\nz68+LVq04fjx4yQnj+Tdd/uxY8dP9O7dGyOdPXsWD4/66FVxAHXw8GjI2bNnjQxLCHGF5F5SNeSu\nu+5iwYIVwEagLZAMvI4+f/Zi9GqpkcAZ4EsgHxgOfAhEoieVScATwEL0to5VwFD7vz3QtHcJDv6A\nAwd2UhuUlpbStm0MR46MwGq9Cze3z2nSZDb79m2XSaCEMIDMuOciWrZsSWZmd/Q5utcC9YBv0Nsb\nTPZ/SwAbvr4NKCgoRE8q99v38AR6ElkH7D1vzxHoSaUroHB39+HUqZP4+vpeMpavvvqK//73K3bs\n2ExubiEtWgTy0Ucf0rJlyyo8Y11mZiajRk1g165dhIWFMXfuTMfc5UKImlXZa2etHodxNfH09ETv\nGTUYvSTxDnrSKEXv9fQwegP4dAoK4tFLEaX2rS1AGpCOPgL7MNAcyEZvBD83Wn4L3t4mTKZzVUAX\nmjnzA558MpnCwkggF3iY9PQfCQmJ5siR/xEYGFh1Jw20aNGCNWuWVuk+hRDGkBJGDXF3d8dm6wV8\nhV5SKEEfRGcFXkIvQQDMAVKBLsB0oC9wAL1XlDuQhbu7DyZTH6zWDYSEtODAgVzc3DpgsaTxzjvJ\njBkzGje3C5unlFI0bNicvLxPgYHAPvR2EwX04pFHOvL2229X34cgxFUuNzcXq9VKo0aNamVPQLm9\nuYvQv6QznBtjoV+wi9GTwL+A4/Y1GwM7gAboF/Ji9KqpAUAGcXHd2LRpJR98MIz161PZvn0Dy5bN\n4uab62CxFPHww5Np0yaagwcPljv+yZMn6dSpN3l5p9DbP8rsxwC9hBNIQUFB9X0AQlzFLBYLd945\niiZNgmnevC19+w6hsLDQ6LCqnCSMGqInjHRgF3pPpwfQx2Q8iP41JADrgScBP+A54APgKHqJYxHw\nFT/9tBubzcaIESO47rrr0DQNi8XC0qXfUVb2P4qLczh4cCTDht1b7vhjxz7Czp0dgNPoVVqN0KvG\ntgGzgBWMHz++mj8FIa5Or776JsuWZVFamk1p6XF++MHEk0/+w+iwqpxUSdUQvXg6HGgJHEMfnPc3\n4CD66G83IAj4O3op5DFgGbAcSAL6Aa+jaUMIDDzFyJHDUAqWLPmaQ4f2Y7WGoLeDjAPO4OnZhNLS\n30sMTZuGkpX1BXojOfzeS6s+YGXUqJ6OEfZCiMtz883DWb78VvQ/wgC+ISbmJbZuTTMwqgtJlZRL\nWQYUAD2BN9GrhNahlzReQZ8HowWwGr1Ruzf6mIu+9nWiUcqHnJxJvPnmJ7z11j7S0yditcagz0nx\nf+hdb7+lSZNW5Y7cqlUrNO3cXBVW9NLMZGAHvr7+5aZmFUJcnnbtWuHltQa9Ghk8PNbQpk2rP9/I\nBUkJo4boJYy+wDPAGqAjcCd6zt5gf/058BD6xX8tek+q2ehjNzT00kEO8DMwAb06yQ0oRG+8/gGI\nwtc3gJUrl9CqVSvKyspo2bIle/fu5frr+2GxhFNWlk1JySF8fK4DDjNgQDcWLky5aEO5EKJi+fn5\ndO16I1lZnmhaHerWzWLjxjSaNm1qdGjlSLdal7IJvcHZHzg32lkDMtATRl303lPHgL+iJwSFPnDv\nXvS5LLzQu9v68XsB0du+XP86f/opjWeffYWvv16JpnkRHt6Gb75JZd++HSxevJjJk6cA/pSU/Myd\nd97BJ5/MqZU9OoRwFQEBAWzfvoH169djtVrp2bMnfn5+RodV5eRPyhrlhd5FNgd4A32aVF/0dofV\n9n9fRm+ULkDvdpsF7Ecfw3EWuA89iewHnkUvnSSilzAeITCwJcuWfc2qVccoLs6kqOgwv/wSxsMP\nT6JBgwbMnDmXEyceoqjoEBZLBqmpP/LVV1/V3EcgxFWqTp06xMfHc9NNN12VyQIkYdSwMiAU/W61\nD6F3s821/3srcBJ4G7200QY9oYDeo2koejvGEvSGte7oPa4moieTXwkNzWHx4o+ZMWMOhYUj7du7\nUVr6V9au/QGA3bu3Y7ONse+3IUVFt7J9+3aKiop45pkXGDDgTiZNeq5cl8D9+/czatR4evYcSNeu\nvRk06C6++OLqmDq3OiileP/9/2PgwATGjJlAZmam0SEJUTUqdetCg7hi2IACk4LHFXyqoL39tY+C\npgq87a9nKXjH/jzGfpfXQgXR9jvb3qmgnoJ0+3u7FdRV0Fk1adJG1a0bqCBewW0KrPZ1Jis3t/pq\n+fLlKjS0o4K5jrvH+vp2UZ988onq2XOAqlPndgXzVJ06w1WXLn2UxWJRmZmZyt8/SLm5TVHwkYI2\nCkYok6mVSkn5yOiPtVaaPPkFZTLFKvhEubs/oxo2bK6OHTtmdFhCVPra6XpXXuXKCeNm+78o8Ffg\nbn++2v46TEGZfea9ZxT4KbheQbCCweclgnftSaKj0mfw+4c9CbgpN7fH7LcTv0FBqIIIpc/mN0P1\n6jVIbd26VQUENFH+/r2Ur2+wGjJkuFq0aJHy8Wmq4JiCrQqOKV/fv6ht27ap6dOnK0/P8Y5brusz\nArZUsFq1a9fJ6I+1VvLxCVBw0PGZ+fiMUP/617+MDkuISl87pdG7Rq1Fv9FgY/SR3eduZT4Q8ERv\nr+iE3lZxGr3GsMD+ej9wCL1aqxf6eI4d6OMoXkOvrvLGZjthP8Y3wMfoVV/6nN0Wi5WYmBgOHNjF\n1q1bOXToEI8++jTffLOToqI89GqwlsARLBYfrFYrVqsVpbzOOwdv9O6/+TJ73iXYbFb09iqdUt7y\nWYmrQxUlriqlV52EqjZt2qjk5OQL3q+lYf8pQEGQ/a94ZS8R+Nmrl/ztJYUABQ8pfc7uYgW9FDRQ\nMM6+TbaCxgrq2B8fK31CpSP29z+3V2V9oGCZgg4KkhXcryBALVjwmSMem82mGjRopmCpfdtMe3xb\nFWxTmuarMjMz1b59+5S3d317qWaFgs4K+ig3t8bq7bffNfATrb3Gj39UmUw3KPhaadobql49s8rM\nzDQ6LCEqfe2sdeMwrFYroaGhrF69mmbNmtG5c2fmzZtHeHi4Yx3XHYfxV/QG73+jd4E9jV5iAL2B\nugy911Nn+7IP0AfiWdHvOeVuXy/f/rwOegmjO3AC6AH8A73Lrad9uzD0EsoRoqLCycs7SUFBKUoV\nk5+fi36vqnMS0Bvg3fDw2Erv3p04daqAXbu2U1TkhX533b8Bg/H1vYEzZ7Ic3XGVUrz77vssXLic\nxo3r88orzxAWFvann8mvv/7Ks89O5cSJfIYPH8SECeOviu69VquVl1+eTmrqKszmRrz++ovlfr9C\nGKXS187K56yqtWHDBjVgwADH66SkJJWUlFRunVoYdoUAe2nCR8HLCr5Qvzd8e9sf9RQ0spcwShUM\nOO/9Uec9b6rgHgVLFAxT0NZeurhBga+CNxUsVNDK/l4Te2nk3/YSS2f7sRsoWHVe6aWRglsVfGIv\n8TypYLG9pDPAvt0zCpJUjx79y53fc8+9aG/o/Vxp2jRVr16gOnjw4CU/j/T0dFW3bqDStFcV/FeZ\nTNFqypRXqvtrEOKaVtlrZ6278i5cuFCNGzfO8fqjjz5SDz30ULl1XDFhKHUuaYw8rwE5w1615GtP\nFmH2C3WE0hu6b1b6PN56NRDcoaChgtb2pKKU3kjeTMFeBacVeCoosb+3yV7d9fl5x5xhP9YRBWsU\nBCqIVJrmZ9+3TcECBQPP2+a00nto7bMnPF+1f//+cufm7x9kj0HfxstrvHr11Vcv+VkkJycrT88J\n5x1jt2rQoHl1fwVCXNMqe+2sdY3ezlZJTJkyxfE8Li6OuLi46gmoxmnoNx7sgj7C+4VqPFYcsAe4\nnZ49G7Bly3EqvsO5XtX1l7/8pRrjEkJUhbS0NNLS0qpuh1WUuKrMDz/8UK5KaurUqRc0fNfCsJ0C\n2P9Cf8n+V//5VVI+9r/8A+wlhs8UvG0vIfyxSqrZeVVSQ5U+NuJze9XRn1VJzTqvSipK6dViLypN\nM6mff/5ZRUV1U97eY+1VUg0UPPGHKqnrFASquLgBF5zbhVVSZierpKbbq6Q6SJWUENWsstfOWtfo\nbbFYCA0N5ZtvvqFp06Z06dLlqmj0PkcvQdVDb/Q+y+/TsPqg30fKH70x3A+9tHGuUdzdvq4nYEPv\ncuthf9+G3t3VYl/HBzc3T+rVc6dZs2Dc3RWa5oXNZnU0emtaKSUlbjRoUJe5c98jLi6OU6dO8fTT\nU9i5cy9hYa04e7aI/fsPkZNzhKysPNzdFbfeGs+8eR9dcKNCZW/0XrRoBY0aBTB16rOEhob+6Wdx\nrtH75MlTDB8+iAceuO+qaPQWoraq7LWz1iUMgOXLlzNx4kSsVitjx45l8uTJ5d535YQhhBBGuSoT\nRkUkYQghxOWTCZSEEELUCEkYQgghnCIJQwghhFMkYQghhHCKJAwhhBBOkYQhhBDCKZIwhBBCOEUS\nhhBCCKdIwhBCCOEUSRhCCCGcIglDCCGEUyRhCCGEcIokDCGEEE6RhCGEEMIpkjCEEEI4xZCEsXDh\nQiIjI3F3d2fLli3l3ktKSqJt27aEhYWxcuVKI8ITQghxEYYkjKioKL744gtuuOGGcst3797NggUL\n2L17NytWrGDChAnYbDYjQqxWVTopuwEkfmNJ/MZx5dirgiEJIywsjHbt2l2wfMmSJYwYMQJPT0+C\ng4Np06YNGzduNCDC6uXqPzqJ31gSv3FcOfaqUKvaMI4ePUrz5s0dr5s3b86RI0cMjEgIIcQ5HtW1\n4/j4eLKzsy9YPnXqVAYPHuz0fjRNq8qwhBBCXClloLi4OLV582bH66SkJJWUlOR4PWDAAPXjjz9e\nsF1ISIgC5CEPechDHpfxCAkJqdQ1u9pKGM5SSjmeDxkyhJEjR/LYY49x5MgR9u3bR5cuXS7Y5rff\nfqvJEIUQQmBQG8YXX3xBixYt+PHHHxk0aBADBw4EICIigoSEBCIiIhg4cCAzZ86UKikhhKglNHX+\nn/hCCCHEJdSqXlIVmTJlCs2bNyc2NpbY2FiWL1/ueM9VBvytWLGCsLAw2rZty7Rp04wOxynBwcF0\n6NCB2NhYRxVhbm4u8fHxtGvXjv79+5Ofn29wlLoxY8ZgNpuJiopyLPuzWGvb7+Zi8bvS7z4zM5M+\nffoQGRlJ+/bteeeddwDX+Q4uFb8rfAfFxcV07dqVmJgYIiIimDx5MlDFn32lWkBq2JQpU9Trr79+\nwfJdu3ap6OhoVVpaqtLT01VISIiyWq0GRPjnLBaLCgkJUenp6aq0tFRFR0er3bt3Gx1WhYKDg9XJ\nkyfLLXvyySfVtGnTlFJKJScnq6eeesqI0C6wbt06tWXLFtW+fXvHskvFWht/NxeL35V+91lZWWrr\n1q1KKaXOnDmj2rVrp3bv3u0y38Gl4neV76CgoEAppVRZWZnq2rWrWr9+fZV+9i5VwoDyjeTnuMqA\nv40bN9KmTRuCg4Px9PTkrrvuYsmSJUaH5ZQ/fu6pqakkJiYCkJiYyOLFi40I6wK9evWifv365ZZd\nKtba+Lu5WPzgOr/7oKAgYmJiAPDz8yM8PJwjR464zHdwqfjBNb4Dk8kEQGlpKVarlfr161fpZ+9y\nCWPGjBlER0czduxYR9HKVQb8HTlyhBYtWjhe19Y4/0jTNPr160enTp2YNWsWADk5OZjNZgDMZjM5\nOTlGhvinLhWrq/xuwDV/9xkZGWzdupWuXbu65HdwLv5u3boBrvEd2Gw2YmJiMJvNjqq1qvzsa13C\niI+PJyoq6oJHamoqDzzwAOnp6Wzbto0mTZrw+OOPX3I/tbF3VW2MyRnff/89W7duZfny5bz33nus\nX7++3PuaprnMuVUUa208D1f83Z89e5bbb7+dt99+m7p165Z7zxW+g7Nnz3LHHXfw9ttv4+fn5zLf\ngZubG9u2bePw4cOsW7eONWvWlHu/sp+94eMw/mjVqlVOrTdu3DjHiPFmzZqRmZnpeO/w4cM0a9as\nWuKrjD/GmZmZWS7D11ZNmjQBoHHjxgwbNoyNGzdiNpvJzs4mKCiIrKwsAgMDDY7y0i4Vq6v8bs7/\nbF3hd19WVsbtt9/Ovffey9ChQwHX+g7OxX/PPfc44ne178Df359BgwaxefPmKv3sa10J489kZWU5\nnn/xxReOniRDhgxh/vz5lJaWkp6efskBf0br1KkT+/btIyMjg9LSUhYsWMCQIUOMDutPFRYWcubM\nGQAKCgpYuXIlUVFRDBkyhJSUFABSUlIc/7Fqo0vF6iq/G1f63SulGDt2LBEREUycONGx3FW+g0vF\n7wrfwYkTJxxVZUVFRaxatYrY2Niq/eyrq7W+Otx7770qKipKdejQQd16660qOzvb8d4rr7yiQkJC\nVGhoqFqxYoWBUf65ZcuWqXbt2qmQkBA1depUo8Op0IEDB1R0dLSKjo5WkZGRjphPnjyp+vbtq9q2\nbavi4+NVXl6ewZHq7rrrLtWkSRPl6empmjdvrubMmfOnsda2380f4589e7ZL/e7Xr1+vNE1T0dHR\nKiYmRsXExKjly5e7zHdwsfiXLVvmEt/Bjh07VGxsrIqOjlZRUVFq+vTpSqk//796ubHLwD0hhBBO\ncakqKSGEEMaRhCGEEMIpkjCEEEI4RRKGEEIIp0jCEEII4RRJGEIIIZwiCUMIIYRTJGEIIYRwiiQM\nIc6TkZFBWFgYo0ePJjQ0lLvvvpuVK1dy/fXX065dOzZt2kRubi5Dhw4lOjqa7t27s3PnTkCfZGfM\nmDH06dOHkJAQZsyY4djvxx9/TNeuXYmNjeX+++/HZrMxZ84c/v73vzvWmTVrFo899liNn7MQTqum\nUepCuKT09HTl4eGhfvnlF2Wz2VTHjh3VmDFjlFJKLVmyRA0dOlQ9/PDD6p///KdSSqlvv/1WxcTE\nKKWUeuGFF9T111+vSktL1YkTJ1TDhg2VxWJRu3fvVoMHD1YWi0UppdQDDzyg5s6dq86ePatCQkIc\ny3v06KF++eUXA85aCOfUurvVCmG01q1bExkZCUBkZCT9+vUDICoqivT0dA4ePMjnn38OQJ8+fTh5\n8iRnzpxB0zQGDRqEp6cnDRs2JDAwkOzsbL755hs2b95Mp06dAP3GcEFBQfj6+nLjjTeydOlSwsLC\nKCsrcxxXiNpIEoYQf+Dt7e147ubmhpeXF6DPFWC1WnF3d7/o7GuAY10Ad3d3LBYLoM90NnXq1AvW\nHzduHK+88grh4eGMGTOmKk9DiConbRhCXKZevXrxySefAJCWlkbjxo2pW7fuRZOIpmn07duXRYsW\ncfz4cQByc3M5dOgQAF26dOHw4cN8+umnjBgxouZOQogrICUMIf7gj7OOnf9a0zReeOEFxowZQ3R0\nNL6+vo65Bi41m1l4eDgvv/wy/fv3x2az4enpycyZM2nZsiUACQkJbN++HX9//2o8KyEqT25vLoTB\nBg8ezGOPPUafPn2MDkWIPyVVUkIYJD8/n9DQUEwmkyQL4RKkhCGEEMIpUsIQQgjhFEkYQgghnCIJ\nQwghhFMkYQghhHCKJAwhhBBOkYQhhBDCKf8PVpSGMNb40F4AAAAASUVORK5CYII=\n", | |
"text": "<matplotlib.figure.Figure at 0x11ac3c050>" | |
} | |
], | |
"prompt_number": 187 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "plt.hist(temp_m)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 203, | |
"text": "(array([ 676., 21., 55., 69., 45., 259., 198., 96.,\n 135., 3532.]),\n array([ 0., 10., 20., 30., 40., 50., 60., 70., 80.,\n 90., 100.]),\n <a list of 10 Patch objects>)" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEACAYAAAC+gnFaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAG89JREFUeJzt3X9MXfX9x/HnaSBZOluti1zqPV1uLZfS29LC7G6XZc7b\n4e0PFFZXQ8St0NruD8giar/L1ETFJSsYl7lqJTEGE1ITof8IjbE3WBU3fxSVlmh6u/ROaXbv5UJU\nZKOKpYXz/YP2KvYHFSiX9vN6JCe5fO758T6ftOd1fnzuvZbjOA4iImKsWakuQEREUktBICJiOAWB\niIjhFAQiIoZTEIiIGE5BICJiuIsKguHhYfLz8ykqKgKgr6+PYDBIdnY2a9asob+/PzlvTU0NXq+X\nnJwcWltbk+0dHR3k5ubi9Xqpqqqa4t0QEZGJuqgg2LlzJz6fD8uyAKitrSUYDHL06FEKCgqora0F\nIBwO09TURDgcJhQKUVlZyZmPKVRUVFBfX08kEiESiRAKhS7RLomIyPcxbhDEYjFeeeUVtm3bljyo\n7927l/LycgDKy8tpbm4GoKWlhdLSUtLT0/F4PGRlZdHe3k4ikWBgYAC/3w9AWVlZchkREUmtcYPg\nvvvu44knnmDWrG9m7e3txeVyAeByuejt7QWgu7sb27aT89m2TTweP6vd7XYTj8enbCdERGTiLhgE\nL7/8MhkZGeTn53O+b6KwLCt5y0hERC4/aRd685133mHv3r288sorfP311/zvf/9j06ZNuFwuenp6\nyMzMJJFIkJGRAYye6Uej0eTysVgM27Zxu93EYrEx7W63+5zbzMrK4uOPP56KfRMRMcKiRYv497//\nPfEVOBepra3Nue222xzHcZw//vGPTm1treM4jlNTU+P86U9/chzHcQ4fPuysWLHCOXHihPPJJ584\nN9xwgzMyMuI4juP4/X7nwIEDzsjIiLN+/Xpn375959zO9yjpivboo4+muoQZQ33xDfXFN9QX35js\ncfOCVwTfdeYW0AMPPEBJSQn19fV4PB727NkDgM/no6SkBJ/PR1paGnV1dcll6urq2Lx5M4ODgxQW\nFrJu3bqJp5eIiEyZiw6Cm2++mZtvvhmAa6+9lv37959zvoceeoiHHnrorPYbb7yRjz76aIJliojI\npaJPFs9QgUAg1SXMGOqLb6gvvqG+mDrW6ftLM4ZlWecdoSQiImeb7HFTVwQiIoZTEIiIGE5BICJi\nOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiI\nGE5BICJiOAWBiIjhFAQiIoa7YBB8/fXXrFq1iry8PHw+Hw8++CAA1dXV2LZNfn4++fn57Nu3L7lM\nTU0NXq+XnJwcWltbk+0dHR3k5ubi9Xqpqqq6RLsjIiLf17g/VfnVV18xe/ZsTp06xS9+8Qv++te/\n8tprrzFnzhzuv//+MfOGw2Huuusu3n//feLxOLfccguRSATLsvD7/ezatQu/309hYSH33HMP69at\nO7sg/VSliMj3csl/qnL27NkADA0NMTw8zLx58wDOudGWlhZKS0tJT0/H4/GQlZVFe3s7iUSCgYEB\n/H4/AGVlZTQ3N0+4aBERmTrjBsHIyAh5eXm4XC5Wr17N0qVLAXj66adZsWIFW7dupb+/H4Du7m5s\n204ua9s28Xj8rHa32008Hp/qfRERmXZz516LZVkpnSZr3CCYNWsWnZ2dxGIx/vGPf9DW1kZFRQVd\nXV10dnYyf/58tm/fPulCREQuRwMDXwBOiqfJSbvYGa+++mpuvfVWPvjgAwKBQLJ927ZtFBUVAaNn\n+tFoNPleLBbDtm3cbjexWGxMu9vtPu+2qqurk68DgcCY7YmISNvpaYo4F/Dpp586X3zxheM4jvPV\nV185N910k7N//34nkUgk5/nb3/7mlJaWOo7jOIcPH3ZWrFjhnDhxwvnkk0+cG264wRkZGXEcx3H8\nfr9z4MABZ2RkxFm/fr2zb9++c25znJJERGYUwAEnxdPkjpsXvCJIJBKUl5czMjLCyMgImzZtoqCg\ngLKyMjo7O7Esi4ULF/Lss88C4PP5KCkpwefzkZaWRl1dXfL+VV1dHZs3b2ZwcJDCwsJzjhgSEZHp\nN+7w0emm4aMicjkZPdlN9THrEg8fFRGRK5uCQETEcAoCERHDKQhERAynIBARMZyCQETEcAoCERHD\nKQhERAynIBARMZyCQETEcAoCERHDKQhERAynIBARMZyCQETEcAoCERHDKQhERAynIBARMZyCQETE\ncAoCERHDXTAIvv76a1atWkVeXh4+n48HH3wQgL6+PoLBINnZ2axZs4b+/v7kMjU1NXi9XnJycmht\nbU22d3R0kJubi9frpaqq6hLtjoiIfF8XDIIf/OAHvPHGG3R2dvLhhx/yxhtv8NZbb1FbW0swGOTo\n0aMUFBRQW1sLQDgcpqmpiXA4TCgUorKyMvmDyhUVFdTX1xOJRIhEIoRCoUu/dyIiMq5xbw3Nnj0b\ngKGhIYaHh5k3bx579+6lvLwcgPLycpqbmwFoaWmhtLSU9PR0PB4PWVlZtLe3k0gkGBgYwO/3A1BW\nVpZcRkREUmvcIBgZGSEvLw+Xy8Xq1atZunQpvb29uFwuAFwuF729vQB0d3dj23ZyWdu2icfjZ7W7\n3W7i8fhU74uIiExA2ngzzJo1i87OTv773/+ydu1a3njjjTHvW5aFZVlTWlR1dXXydSAQIBAITOn6\nRUQub22np6kxbhCccfXVV3PrrbfS0dGBy+Wip6eHzMxMEokEGRkZwOiZfjQaTS4Ti8WwbRu3200s\nFhvT7na7z7utbweBiIh8V+D0dMZjk1rbBW8NffbZZ8kRQYODg7z66qvk5+dTXFxMQ0MDAA0NDWzY\nsAGA4uJiGhsbGRoaoquri0gkgt/vJzMzk7lz59Le3o7jOOzevTu5jIiIpNYFrwgSiQTl5eWMjIww\nMjLCpk2bKCgoID8/n5KSEurr6/F4POzZswcAn89HSUkJPp+PtLQ06urqkreN6urq2Lx5M4ODgxQW\nFrJu3bpLv3ciIjIuyzkzvnOGsCyLGVaSiMh5jZ7spvqYNbnjpj5ZLCJiOAWBiIjhFAQiIoZTEIiI\nGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQi\nIoZTEIiIGE5BICJiOAWBiIjhFAQiIoYbNwii0SirV69m6dKlLFu2jKeeegqA6upqbNsmPz+f/Px8\n9u3bl1ympqYGr9dLTk4Ora2tyfaOjg5yc3Pxer1UVVVdgt0REZHva9wfr+/p6aGnp4e8vDyOHz/O\njTfeSHNzM3v27GHOnDncf//9Y+YPh8PcddddvP/++8TjcW655RYikQiWZeH3+9m1axd+v5/CwkLu\nuece1q1bN7Yg/Xi9iFxGjPjx+szMTPLy8gC46qqrWLJkCfF4HOCcG25paaG0tJT09HQ8Hg9ZWVm0\nt7eTSCQYGBjA7/cDUFZWRnNz84QLFxGRqfG9nhEcO3aMQ4cO8bOf/QyAp59+mhUrVrB161b6+/sB\n6O7uxrbt5DK2bROPx89qd7vdyUAREZHUSbvYGY8fP84dd9zBzp07ueqqq6ioqOCRRx4B4OGHH2b7\n9u3U19dPSVHV1dXJ14FAgEAgMCXrFRG5MrSdnqbGRQXByZMn2bhxI7/73e/YsGEDABkZGcn3t23b\nRlFRETB6ph+NRpPvxWIxbNvG7XYTi8XGtLvd7nNu79tBICIi3xU4PZ3x2KTWNu6tIcdx2Lp1Kz6f\nj3vvvTfZnkgkkq9feuklcnNzASguLqaxsZGhoSG6urqIRCL4/X4yMzOZO3cu7e3tOI7D7t27k6Ei\nIiKpM+4Vwdtvv80LL7zA8uXLyc/PB2DHjh28+OKLdHZ2YlkWCxcu5NlnnwXA5/NRUlKCz+cjLS2N\nurq600/Voa6ujs2bNzM4OEhhYeFZI4ZERGT6jTt8dLpp+KiIXE6MGD4qIiJXNgWBiIjhFAQiIoZT\nEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjh\nFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoYbNwii0SirV69m6dKlLFu2jKeeegqAvr4+gsEg2dnZ\nrFmzhv7+/uQyNTU1eL1ecnJyaG1tTbZ3dHSQm5uL1+ulqqrqEuyOiIh8X+MGQXp6Ok8++SSHDx/m\nwIEDPPPMMxw5coTa2lqCwSBHjx6loKCA2tpaAMLhME1NTYTDYUKhEJWVlckfVa6oqKC+vp5IJEIk\nEiEUCl3avRMRkXGNGwSZmZnk5eUBcNVVV7FkyRLi8Th79+6lvLwcgPLycpqbmwFoaWmhtLSU9PR0\nPB4PWVlZtLe3k0gkGBgYwO/3A1BWVpZcRkREUud7PSM4duwYhw4dYtWqVfT29uJyuQBwuVz09vYC\n0N3djW3byWVs2yYej5/V7na7icfjU7EPIiIyCWkXO+Px48fZuHEjO3fuZM6cOWPesywLy7KmrKjq\n6urk60AgQCAQmLJ1i4hc/tpOT1PjooLg5MmTbNy4kU2bNrFhwwZg9Cqgp6eHzMxMEokEGRkZwOiZ\nfjQaTS4bi8WwbRu3200sFhvT7na7z7m9bweBiIh8V+D0dMZjk1rbuLeGHMdh69at+Hw+7r333mR7\ncXExDQ0NADQ0NCQDori4mMbGRoaGhujq6iISieD3+8nMzGTu3Lm0t7fjOA67d+9OLiMiIqljOWeG\n9JzHW2+9xS9/+UuWL1+evP1TU1OD3++npKSE//znP3g8Hvbs2cM111wDwI4dO3j++edJS0tj586d\nrF27FhgdPrp582YGBwcpLCxMDkUdU5BlMU5JIiIzxuhxMdXHrMkdN8cNgummIBCRy8mVEAT6ZLGI\niOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEg\nImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYbtwguPvuu3G5XOTm5ibbqqur\nsW2b/Px88vPz2bdvX/K9mpoavF4vOTk5tLa2Jts7OjrIzc3F6/VSVVU1xbshIiITNW4QbNmyhVAo\nNKbNsizuv/9+Dh06xKFDh1i/fj0A4XCYpqYmwuEwoVCIysrK5A8qV1RUUF9fTyQSIRKJnLVOERFJ\njXGD4KabbmLevHlntZ85wH9bS0sLpaWlpKen4/F4yMrKor29nUQiwcDAAH6/H4CysjKam5unoHwR\nEZmsCT8jePrpp1mxYgVbt26lv78fgO7ubmzbTs5j2zbxePysdrfbTTwen0TZIiIyVdImslBFRQWP\nPPIIAA8//DDbt2+nvr5+yoqqrq5Ovg4EAgQCgSlbt4jI5a/t9DQ1JhQEGRkZydfbtm2jqKgIGD3T\nj0ajyfdisRi2beN2u4nFYmPa3W73edf/7SAQEZHvCpyeznhsUmub0K2hRCKRfP3SSy8lRxQVFxfT\n2NjI0NAQXV1dRCIR/H4/mZmZzJ07l/b2dhzHYffu3WzYsGFShYuIyNQY94qgtLSUN998k88++4wF\nCxbw2GOP0dbWRmdnJ5ZlsXDhQp599lkAfD4fJSUl+Hw+0tLSqKurw7IsAOrq6ti8eTODg4MUFhay\nbt26S7tnIiJyUSznXMN/UsiyrHOOSBIRmYlGT3ZTfcya3HFTnywWETGcgkBExHAKAhERwykIREQM\npyAQETGcgkBExHAKAhERwykIREQMpyAQETGcgkBExHAKAhERwykIREQMpyAQETGcgkBExHAKAhER\nwykIREQMpyAQETGcgkBExHAKAhERw40bBHfffTcul4vc3NxkW19fH8FgkOzsbNasWUN/f3/yvZqa\nGrxeLzk5ObS2tibbOzo6yM3Nxev1UlVVNcW7ISIiEzVuEGzZsoVQKDSmrba2lmAwyNGjRykoKKC2\nthaAcDhMU1MT4XCYUChEZWVl8geVKyoqqK+vJxKJEIlEzlqniIikxrhBcNNNNzFv3rwxbXv37qW8\nvByA8vJympubAWhpaaG0tJT09HQ8Hg9ZWVm0t7eTSCQYGBjA7/cDUFZWllxGRERSa0LPCHp7e3G5\nXAC4XC56e3sB6O7uxrbt5Hy2bROPx89qd7vdxOPxydQtIiJTJG2yK7AsC8uypqKWpOrq6uTrQCBA\nIBCY0vWLiFze2k5PU2NCQeByuejp6SEzM5NEIkFGRgYweqYfjUaT88ViMWzbxu12E4vFxrS73e7z\nrv/bQSAiIt8VOD2d8dik1jahW0PFxcU0NDQA0NDQwIYNG5LtjY2NDA0N0dXVRSQSwe/3k5mZydy5\nc2lvb8dxHHbv3p1cRkREUmvcK4LS0lLefPNNPvvsMxYsWMCf//xnHnjgAUpKSqivr8fj8bBnzx4A\nfD4fJSUl+Hw+0tLSqKurS942qqurY/PmzQwODlJYWMi6desu7Z6JiMhFsZwz4ztnCMuymGEliYic\n1+jJbqqPWZM7buqTxSIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIi\nhlMQiIgYTkEgImI4BYGIiOEm/cM0l8KuXbtSuv3169ezaNGilNYgIjJdZmQQ/N///Stl2x4ebqev\nr49HHnkkZTWIiEynGRkEJ06k8opAASAiZtEzAhERwykIREQMpyAQETHcpILA4/GwfPly8vPz8fv9\nAPT19REMBsnOzmbNmjX09/cn56+pqcHr9ZKTk0Nra+vkKhcRkSkxqSCwLIu2tjYOHTrEe++9B0Bt\nbS3BYJCjR49SUFBAbW0tAOFwmKamJsLhMKFQiMrKSkZGRia/ByIiMimTvjX03R9M3rt3L+Xl5QCU\nl5fT3NwMQEtLC6WlpaSnp+PxeMjKykqGh4iIpM6krwhuueUWVq5cyXPPPQdAb28vLpcLAJfLRW9v\nLwDd3d3Ytp1c1rZt4vH4ZDYvIiJTYFKfI3j77beZP38+n376KcFgkJycnDHvW5aFZVnnXf5C74mI\nyPSYVBDMnz8fgOuuu47bb7+d9957D5fLRU9PD5mZmSQSCTIyMgBwu91Eo9HksrFYDLfbfZ41V3/r\ndeD0JCIio9pOT1NjwreGvvrqKwYGBgD48ssvaW1tJTc3l+LiYhoaGgBoaGhgw4YNABQXF9PY2MjQ\n0BBdXV1EIpHkSKOzVX9rCky0RBGRK1SAscfJyZnwFUFvby+33347AKdOneK3v/0ta9asYeXKlZSU\nlFBfX4/H42HPnj0A+Hw+SkpK8Pl8pKWlUVdXp1tDIiIzgOV8d9hPio2GQypLeoTHHkvTl86JyEVJ\n/TELwDprBOf3oU8Wi4gYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgY\nblJfOidikrlzr2Vg4IuU1jBnzjz+97++lNYgVx4FgchFGg2B1H6VwMCAvp9Lpp5uDYmIGE5BICJi\nON0aErmspM2Ir2/Xs4ori4JA5LJyilQ/pwA9q7jS6NaQiIjhdEUgIpelmTCc90qhIBCRy9JMGM47\n6vK/TaYgEJEJmBkPrWVqTPszglAoRE5ODl6vl8cff3y6Ny8iU+LMQ+tUTjJVpjUIhoeH+cMf/kAo\nFCIcDvPiiy9y5MiR6SzhstHW1pbqEoDR+7CWZaV0mj17Tqq7QeSKNq23ht577z2ysrLweDwA3Hnn\nnbS0tLBkyZLpLOOysHbteoaGvk51Gael9uxrcHCWbkOIXELTekUQj8dZsGBB8m/btonH49NZwmVj\nNARSfek9Uy6/U90HM6kvRKbetF4RXOxZ3dy5RZe4kvM7ceJf/OUvCR599NGU1SAiMp2mNQjcbjfR\naDT5dzQaxbbtMfMsWrSIjz9+eTrLmsFmyu2QmVDHTKgBZkYdM6EGmBl1zIQaINV1LFq0aFLLW47j\nTNs176lTp1i8eDGvvfYa119/PX6/nxdffFHPCEREUmharwjS0tLYtWsXa9euZXh4mK1btyoERERS\nbFqvCEREZOaZMV86Z/IHzaLRKKtXr2bp0qUsW7aMp556CoC+vj6CwSDZ2dmsWbOG/v7+FFc6fYaH\nh8nPz6eoaHTggKl90d/fzx133MGSJUvw+Xy0t7cb2xc1NTUsXbqU3Nxc7rrrLk6cOGFMX9x99924\nXC5yc3OTbRfa95qaGrxeLzk5ObS2to67/hkRBKZ/0Cw9PZ0nn3ySw4cPc+DAAZ555hmOHDlCbW0t\nwWCQo0ePUlBQQG1tbapLnTY7d+7E5/MlR5qZ2hdVVVUUFhZy5MgRPvzwQ3Jycozsi2PHjvHcc89x\n8OBBPvroI4aHh2lsbDSmL7Zs2UIoFBrTdr59D4fDNDU1EQ6HCYVCVFZWMjIycuENODPAO++846xd\nuzb5d01NjVNTU5PCilLr17/+tfPqq686ixcvdnp6ehzHcZxEIuEsXrw4xZVNj2g06hQUFDivv/66\nc9tttzmO4xjZF/39/c7ChQvPajexLz7//HMnOzvb6evrc06ePOncdtttTmtrq1F90dXV5Sxbtiz5\n9/n2fceOHU5tbW1yvrVr1zrvvvvuBdc9I64I9EGzbxw7doxDhw6xatUqent7cblcALhcLnp7e1Nc\n3fS47777eOKJJ5g165t/nib2RVdXF9dddx1btmzhJz/5Cb///e/58ssvjeyLa6+9lu3bt/PjH/+Y\n66+/nmuuuYZgMGhkX5xxvn3v7u4eMyz/Yo6nMyII9PUBo44fP87GjRvZuXMnc+aM/X6dM9+7c6V7\n+eWXycjIID8/H+c84xhM6YtTp05x8OBBKisrOXjwID/84Q/PuvVhSl98/PHH/P3vf+fYsWN0d3dz\n/PhxXnjhhTHzmNIX5zLevo/XLzMiCC7mg2ZXupMnT7Jx40Y2bdrEhg0bgNGU7+npASCRSJCRkZHK\nEqfFO++8w969e1m4cCGlpaW8/vrrbNq0yci+sG0b27b56U9/CsAdd9zBwYMHyczMNK4vPvjgA37+\n85/zox/9iLS0NH7zm9/w7rvvGtkXZ5zv/8R3j6exWAy3233Bdc2IIFi5ciWRSIRjx44xNDREU1MT\nxcXFqS5r2jiOw9atW/H5fNx7773J9uLiYhoaGgBoaGhIBsSVbMeOHUSjUbq6umhsbORXv/oVu3fv\nNrIvMjMzWbBgAUePHgVg//79LF26lKKiIuP6IicnhwMHDjA4OIjjOOzfvx+fz2dkX5xxvv8TxcXF\nNDY2MjQ0RFdXF5FIBL/ff+GVTfUDjYl65ZVXnOzsbGfRokXOjh07Ul3OtPrnP//pWJblrFixwsnL\ny3Py8vKcffv2OZ9//rlTUFDgeL1eJxgMOl988UWqS51WbW1tTlFRkeM4jrF90dnZ6axcudJZvny5\nc/vttzv9/f3G9sXjjz/u+Hw+Z9myZU5ZWZkzNDRkTF/ceeedzvz585309HTHtm3n+eefv+C+/+Uv\nf3EWLVrkLF682AmFQuOuXx8oExEx3Iy4NSQiIqmjIBARMZyCQETEcAoCERHDKQhERAynIBARMZyC\nQETEcAoCERHD/T8xHd+pumsLRQAAAABJRU5ErkJggg==\n", | |
"text": "<matplotlib.figure.Figure at 0x11ac44110>" | |
} | |
], | |
"prompt_number": 203 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "plt.hist(temp_nm)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 207, | |
"text": "(array([ 3524., 100., 131., 177., 43., 261., 97., 43.,\n 32., 678.]),\n array([ 0., 10., 20., 30., 40., 50., 60., 70., 80.,\n 90., 100.]),\n <a list of 10 Patch objects>)" | |
}, | |
{ | |
"metadata": {}, | |
"output_type": "display_data", | |
"png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEACAYAAAC+gnFaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAHDpJREFUeJzt3X9sleX9//HnTU6XxWkVF3uOnputfOgp5UChR9nBLDMe\nVg9glQ6HaawbLQj7o81iFbJMzYfaLhmtcfs6/NHEmC7pMLEly9eWGDmpv47ZVOosEI2HbzhzJek5\nPW2GrK5opUDv7x+VowxooS09HdfrkZzknOvcP97XddrzOvevcyzHcRxERMRYczJdgIiIZJaCQETE\ncAoCERHDKQhERAynIBARMZyCQETEcBcVBKdPnyYQCLB27VoAjh07RjgcJj8/n1WrVjE4OJietqGh\nAZ/PR0FBAZ2dnen27u5uCgsL8fl81NTUTHM3RERksi4qCHbu3Inf78eyLAAaGxsJh8McPnyY4uJi\nGhsbAYjFYrS1tRGLxYhEIlRXV3PmMoWqqiqam5uJx+PE43Eikchl6pKIiFyKCYMgkUjw6quvsmXL\nlvSb+p49e6isrASgsrKS9vZ2ADo6OigvLycrK4vc3Fzy8vLo6uoilUoxNDREMBgEoKKiIj2PiIhk\n1oRB8PDDD/Pkk08yZ87Xkw4MDOB2uwFwu90MDAwA0NfXh23b6els2yaZTJ7T7vV6SSaT09YJERGZ\nvHGD4JVXXiEnJ4dAIMCFvonCsqz0LiMREfnv4xrvyXfffZc9e/bw6quv8uWXX/Lvf/+bDRs24Ha7\n6e/vx+PxkEqlyMnJAcY+6ff29qbnTyQS2LaN1+slkUic1e71es+7zry8PD755JPp6JuIiBEWLFjA\n3//+98kvwLlI0WjUufvuux3HcZxf/epXTmNjo+M4jtPQ0OD8+te/dhzHcT7++GNn2bJlzokTJ5x/\n/OMfzv/8z/84o6OjjuM4TjAYdPbt2+eMjo46d955p7N3797zrucSSrqiPf7445kuYdbQWHxNY/E1\njcXXpvq+Oe4WwX86swvokUceoaysjObmZnJzc9m9ezcAfr+fsrIy/H4/LpeLpqam9DxNTU1s3LiR\n4eFhSkpKWLNmzeTTS0REps1FB8Htt9/O7bffDsD111/P66+/ft7pHnvsMR577LFz2m+55RY++uij\nSZYpIiKXi64snqVCoVCmS5g1NBZf01h8TWMxfayv9i/NGpZlXfAMJREROddU3ze1RSAiYjgFgYiI\n4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAi\nYjgFgYiI4RQEIiKGUxCIiBhOQSAiYrhxg+DLL79kxYoVFBUV4ff7efTRRwGoq6vDtm0CgQCBQIC9\ne/em52loaMDn81FQUEBnZ2e6vbu7m8LCQnw+HzU1NZepOyIicqkm/KnKL774gquuuopTp07xox/9\niN/97ne88cYbXHPNNWzduvWsaWOxGPfffz9/+9vfSCaT3HHHHcTjcSzLIhgM8uyzzxIMBikpKeHB\nBx9kzZo15xakn6oUEbkkU33fdE00wVVXXQXAyMgIp0+fZu7cuQDnXWlHRwfl5eVkZWWRm5tLXl4e\nXV1dfP/732doaIhgMAhARUUF7e3t5w0CgLa2tkl3aDrcdttt3HTTTRmtQURkpkwYBKOjo9x88818\n8sknVFVVsXjxYv785z/zzDPP8Kc//Ynly5fz+9//nuuuu46+vj5uvfXW9Ly2bZNMJsnKysK27XS7\n1+slmUxecJ2/+MX/nWK3Ju/EiY/43/8tZ/v27RmrQURkJk0YBHPmzOHgwYN89tlnrF69mmg0SlVV\nFbW1tQBs376dbdu20dzcPG1FDQ1lcougVrumRMQoEwbBGddeey133XUXH3zwAaFQKN2+ZcsW1q5d\nC4x90u/t7U0/l0gksG0br9dLIpE4q93r9Y6ztrpv3A99dRMREYBoNEo0Gp225Y0bBEePHsXlcnHd\nddcxPDzMa6+9xuOPP05/fz8ejweAl19+mcLCQgBKS0u5//772bp1K8lkkng8TjAYxLIssrOz6erq\nIhgMsmvXLh588MFx1lw3Xf0TEbnihEKhsz6Q19fXT2l54wZBKpWisrKS0dFRRkdH2bBhA8XFxVRU\nVHDw4EEsy2L+/Pk8//zzAPj9fsrKyvD7/bhcLpqamrAsC4CmpiY2btzI8PAwJSUlFzxQLCIiM2vC\n00dn2lhwZLKkWurrXeljICIis91UTx/VlcUiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5B\nICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQiIoZT\nEIiIGE5BICJiuHGD4Msvv2TFihUUFRXh9/t59NFHATh27BjhcJj8/HxWrVrF4OBgep6GhgZ8Ph8F\nBQV0dnam27u7uyksLMTn81FTU3OZuiMiIpdq3CD49re/zVtvvcXBgwf58MMPeeutt/jrX/9KY2Mj\n4XCYw4cPU1xcTGNjIwCxWIy2tjZisRiRSITq6ur0DypXVVXR3NxMPB4nHo8TiUQuf+9ERGRCE+4a\nuuqqqwAYGRnh9OnTzJ07lz179lBZWQlAZWUl7e3tAHR0dFBeXk5WVha5ubnk5eXR1dVFKpViaGiI\nYDAIQEVFRXoeERHJrAmDYHR0lKKiItxuNytXrmTx4sUMDAzgdrsBcLvdDAwMANDX14dt2+l5bdsm\nmUye0+71ekkmk9PdFxERmQTXRBPMmTOHgwcP8tlnn7F69Wreeuuts563LAvLsqa5rLpv3A99dRMR\nEYBoNEo0Gp225U0YBGdce+213HXXXXR3d+N2u+nv78fj8ZBKpcjJyQHGPun39vam50kkEti2jdfr\nJZFInNXu9XrHWVvdJXdERMQUoVCIUCiUflxfXz+l5Y27a+jo0aPpM4KGh4d57bXXCAQClJaW0tLS\nAkBLSwvr1q0DoLS0lNbWVkZGRujp6SEejxMMBvF4PGRnZ9PV1YXjOOzatSs9j4iIZNa4WwSpVIrK\nykpGR0cZHR1lw4YNFBcXEwgEKCsro7m5mdzcXHbv3g2A3++nrKwMv9+Py+WiqakpvduoqamJjRs3\nMjw8TElJCWvWrLn8vRMRkQlZzpnzO2eJseDIZEm11Ne7qK2tzWANIiIXz7IspvJWriuLRUQMpyAQ\nETGcgkBExHAKAhERwykIREQMpyAQETGcgkBExHAKAhERwykIREQMpyAQETGcgkBExHAKAhERwykI\nREQMpyAQETGcgkBExHAKAhERwykIREQMpyAQETGcgkBExHATBkFvby8rV65k8eLFLFmyhKeffhqA\nuro6bNsmEAgQCATYu3dvep6GhgZ8Ph8FBQV0dnam27u7uyksLMTn81FTU3MZuiMiIpfKNdEEWVlZ\nPPXUUxQVFXH8+HFuueUWwuEwlmWxdetWtm7detb0sViMtrY2YrEYyWSSO+64g3g8jmVZVFVV0dzc\nTDAYpKSkhEgkwpo1ay5b50REZGITbhF4PB6KiooAuPrqq1m0aBHJZBIAx3HOmb6jo4Py8nKysrLI\nzc0lLy+Prq4uUqkUQ0NDBINBACoqKmhvb5/OvoiIyCRc0jGCI0eOcODAAW699VYAnnnmGZYtW8bm\nzZsZHBwEoK+vD9u20/PYtk0ymTyn3ev1pgNFREQyZ8JdQ2ccP36ce++9l507d3L11VdTVVVFbW0t\nANu3b2fbtm00NzdPU1l137gf+uomIiIA0WiUaDQ6bcu7qCA4efIk69ev5+c//znr1q0DICcnJ/38\nli1bWLt2LTD2Sb+3tzf9XCKRwLZtvF4viUTirHav13uBNdZdYjdERMwRCoUIhULpx/X19VNa3oS7\nhhzHYfPmzfj9fh566KF0eyqVSt9/+eWXKSwsBKC0tJTW1lZGRkbo6ekhHo8TDAbxeDxkZ2fT1dWF\n4zjs2rUrHSoiIpI5E24RvPPOO7z44ossXbqUQCAAwI4dO3jppZc4ePAglmUxf/58nn/+eQD8fj9l\nZWX4/X5cLhdNTU1YlgVAU1MTGzduZHh4mJKSEp0xJCIyC1jO+U79yaCx0MhkSbXU17vSxz9ERGY7\ny7LOexbnxdKVxSIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQ\niIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImK4CYOgt7eX\nlStXsnjxYpYsWcLTTz8NwLFjxwiHw+Tn57Nq1SoGBwfT8zQ0NODz+SgoKKCzszPd3t3dTWFhIT6f\nj5qamsvQHRERuVQTBkFWVhZPPfUUH3/8Mfv27eO5557j0KFDNDY2Eg6HOXz4MMXFxTQ2NgIQi8Vo\na2sjFosRiUSorq5O/6hyVVUVzc3NxONx4vE4kUjk8vZOREQmNGEQeDweioqKALj66qtZtGgRyWSS\nPXv2UFlZCUBlZSXt7e0AdHR0UF5eTlZWFrm5ueTl5dHV1UUqlWJoaIhgMAhARUVFeh4REcmcSzpG\ncOTIEQ4cOMCKFSsYGBjA7XYD4Ha7GRgYAKCvrw/bttPz2LZNMpk8p93r9ZJMJqejDyIiMgWui53w\n+PHjrF+/np07d3LNNdec9ZxlWViWNY1l1X3jfuirm4iIAESjUaLR6LQt76KC4OTJk6xfv54NGzaw\nbt06YGwroL+/H4/HQyqVIicnBxj7pN/b25ueN5FIYNs2Xq+XRCJxVrvX673AGusm1xsREQOEQiFC\noVD6cX19/ZSWN+GuIcdx2Lx5M36/n4ceeijdXlpaSktLCwAtLS3pgCgtLaW1tZWRkRF6enqIx+ME\ng0E8Hg/Z2dl0dXXhOA67du1KzyMiIpkz4RbBO++8w4svvsjSpUsJBALA2OmhjzzyCGVlZTQ3N5Ob\nm8vu3bsB8Pv9lJWV4ff7cblcNDU1pXcbNTU1sXHjRoaHhykpKWHNmjWXsWsiInIxLOfMuZ2zxFho\nZLKkWurrXdTW1mawBhGRi2dZFlN5K9eVxSIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEg\nImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQ\niIgYTkEgImK4CYPggQcewO12U1hYmG6rq6vDtm0CgQCBQIC9e/emn2toaMDn81FQUEBnZ2e6vbu7\nm8LCQnw+HzU1NdPcDRERmawJg2DTpk1EIpGz2izLYuvWrRw4cIADBw5w5513AhCLxWhrayMWixGJ\nRKiurk7/oHJVVRXNzc3E43Hi8fg5yxQRkcyYMAhuu+025s6de077mTf4b+ro6KC8vJysrCxyc3PJ\ny8ujq6uLVCrF0NAQwWAQgIqKCtrb26ehfBERmapJHyN45plnWLZsGZs3b2ZwcBCAvr4+bNtOT2Pb\nNslk8px2r9dLMpmcQtkiIjJdXJOZqaqqitraWgC2b9/Otm3baG5unsay6r5xP/TVTUREAKLRKNFo\ndNqWN6kgyMnJSd/fsmULa9euBcY+6ff29qafSyQS2LaN1+slkUic1e71esdZQ91kyhIRMUIoFCIU\nCqUf19fXT2l5k9o1lEql0vdffvnl9BlFpaWltLa2MjIyQk9PD/F4nGAwiMfjITs7m66uLhzHYdeu\nXaxbt25KhYuIyPSYcIugvLyct99+m6NHjzJv3jzq6+uJRqMcPHgQy7KYP38+zz//PAB+v5+ysjL8\nfj8ul4umpiYsywKgqamJjRs3Mjw8TElJCWvWrLm8PRMRkYtiOec7/SeDxoIjkyXVUl/vSh8DERGZ\n7SzLOu+ZnBdLVxaLiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhO\nQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4RQEIiKGUxCIiBhOQSAiYjgFgYiI4SYMggce\neAC3201hYWG67dixY4TDYfLz81m1ahWDg4Pp5xoaGvD5fBQUFNDZ2Zlu7+7uprCwEJ/PR01NzTR3\nQ0REJmvCINi0aRORSOSstsbGRsLhMIcPH6a4uJjGxkYAYrEYbW1txGIxIpEI1dXV6R9Urqqqorm5\nmXg8TjweP2eZIiKSGRMGwW233cbcuXPPatuzZw+VlZUAVFZW0t7eDkBHRwfl5eVkZWWRm5tLXl4e\nXV1dpFIphoaGCAaDAFRUVKTnERGRzJrUMYKBgQHcbjcAbrebgYEBAPr6+rBtOz2dbdskk8lz2r1e\nL8lkcip1i4jINHFNdQGWZWFZ1nTU8g1137gf+uomIiIA0WiUaDQ6bcubVBC43W76+/vxeDykUily\ncnKAsU/6vb296ekSiQS2beP1ekkkEme1e73ecdZQN5myRESMEAqFCIVC6cf19fVTWt6kdg2VlpbS\n0tICQEtLC+vWrUu3t7a2MjIyQk9PD/F4nGAwiMfjITs7m66uLhzHYdeuXel5REQksybcIigvL+ft\nt9/m6NGjzJs3j9/85jc88sgjlJWV0dzcTG5uLrt37wbA7/dTVlaG3+/H5XLR1NSU3m3U1NTExo0b\nGR4epqSkhDVr1lzenomIyEWxnDPnd84SY8GRyZJqqa93UVtbm8EaREQunmVZTOWtXFcWi4gYTkEg\nImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQiIgYTkEgImI4BYGIiOEUBCIihlMQ\niIgYbsq/UCYiYrLs7OsZGvpXpsuYEgWBiMgUjIVApr/Nf2o/F6xdQyIihlMQiIgYTkEgImK4KQVB\nbm4uS5cuJRAIEAwGATh27BjhcJj8/HxWrVrF4OBgevqGhgZ8Ph8FBQV0dnZOrXIREZkWUwoCy7KI\nRqMcOHCA999/H4DGxkbC4TCHDx+muLiYxsZGAGKxGG1tbcRiMSKRCNXV1YyOjk69ByIiMiVT3jX0\nnz+YvGfPHiorKwGorKykvb0dgI6ODsrLy8nKyiI3N5e8vLx0eIiISOZMeYvgjjvuYPny5bzwwgsA\nDAwM4Ha7AXC73QwMDADQ19eHbdvpeW3bJplMTmX1IiIyDaZ0HcE777zDjTfeyD//+U/C4TAFBQVn\nPW9ZFpZ14fNbx3tORERmxpSC4MYbbwTghhtu4J577uH999/H7XbT39+Px+MhlUqRk5MDgNfrpbe3\nNz1vIpHA6/VeYMl137gf+uomIiJjol/dpsekdw198cUXDA0NAfD555/T2dlJYWEhpaWltLS0ANDS\n0sK6desAKC0tpbW1lZGREXp6eojH4+kzjc5V941baLIliohcoUKc/T45NZPeIhgYGOCee+4B4NSp\nU/zsZz9j1apVLF++nLKyMpqbm8nNzWX37t0A+P1+ysrK8Pv9uFwumpqatGtIRGQWsJz/PO0nw8bC\nIZMl1VJf76K2tjaDNYjIf4vMv2cBWOecwXkpdGWxiIjhFAQiIoZTEIiIGE5BICJiOAWBiIjhFAQi\nIoZTEIiIGE5BICJiOAWBiIjhpvSlcyImyc6+nqGhf2W0hmuumcu//30sozXIlUdBIHKRxkIgs18l\nMDSk7+eS6addQyIihlMQiIgYTkEgImI4HSOQcekAqciVT0Eg49IBUpErn4JglpoNn8RFxAwKgllq\nNnwSH6NP4yJXOv1U5Tlq+da3/g8jI59nsIYzZsNLk+nXY6yG2fBnmvm/TYAs4FSGa9Bxm2+aHX8X\n/2U/VRmJRCgoKMDn8/HEE0/M9OovylgIOBm+iZzPKTL/t+lot+UVZkaD4PTp0/zyl78kEokQi8V4\n6aWXOHTo0EyWICJXiGg0mukSrhgzeozg/fffJy8vj9zcXADuu+8+Ojo6WLRo0UyWIf91rK82v2X2\ncGX8NfnWt77NiRPDGa3hSjGjQZBMJpk3b176sW3bdHV1zWQJ8l9ptuwuUxh97cwuqswZGZmT8TC6\nUsxoEFzsi5advfYyV3JhJ078P06cyNjqReSi6QPCdJnRIPB6vfT29qYf9/b2Ytv2WdMsWLCATz55\nZSbLuoDZ8OLOhhpgdtQxG2qA2VHHbKgBZkcds6EGyHQdCxYsmNL8M3r66KlTp1i4cCFvvPEGN910\nE8FgkJdeeknHCEREMmhGtwhcLhfPPvssq1ev5vTp02zevFkhICKSYbPugjIREZlZs+ZrqP8bLjS7\nXHp7e1m5ciWLFy9myZIlPP300wAcO3aMcDhMfn4+q1atYnBwMMOVzpzTp08TCARYu3bsxAFTx2Jw\ncJB7772XRYsW4ff76erqMnYsGhoaWLx4MYWFhdx///2cOHHCmLF44IEHcLvdFBYWptvG63tDQwM+\nn4+CggI6OzsnXP6sCALTLzTLysriqaee4uOPP2bfvn0899xzHDp0iMbGRsLhMIcPH6a4uJjGxsZM\nlzpjdu7cid/vT59pZupY1NTUUFJSwqFDh/jwww8pKCgwciyOHDnCCy+8wP79+/noo484ffo0ra2t\nxozFpk2biEQiZ7VdqO+xWIy2tjZisRiRSITq6mpGR0fHX4EzC7z77rvO6tWr048bGhqchoaGDFaU\nWT/5yU+c1157zVm4cKHT39/vOI7jpFIpZ+HChRmubGb09vY6xcXFzptvvuncfffdjuM4Ro7F4OCg\nM3/+/HPaTRyLTz/91MnPz3eOHTvmnDx50rn77rudzs5Oo8aip6fHWbJkSfrxhfq+Y8cOp7GxMT3d\n6tWrnffee2/cZc+KLYLzXWiWTCYzWFHmHDlyhAMHDrBixQoGBgZwu90AuN1uBgYGMlzdzHj44Yd5\n8sknmTPn6z9PE8eip6eHG264gU2bNnHzzTfzi1/8gs8//9zIsbj++uvZtm0b3/ve97jpppu47rrr\nCIfDRo7FGRfqe19f31mn5V/M++msCAJdHTjm+PHjrF+/np07d3LNNdec9ZxlmfE1C6+88go5OTkE\nAoELfpuiKWNx6tQp9u/fT3V1Nfv37+c73/nOObs+TBmLTz75hD/84Q8cOXKEvr4+jh8/zosvvnjW\nNKaMxflM1PeJxmVWBMHFXGh2pTt58iTr169nw4YNrFu3DhhL+f7+fgBSqRQ5OTmZLHFGvPvuu+zZ\ns4f58+dTXl7Om2++yYYNG4wcC9u2sW2bH/zgBwDce++97N+/H4/HY9xYfPDBB/zwhz/ku9/9Li6X\ni5/+9Ke89957Ro7FGRf6n/jP99NEIoHX6x13WbMiCJYvX048HufIkSOMjIzQ1tZGaWlppsuaMY7j\nsHnzZvx+Pw899FC6vbS0lJaWFgBaWlrSAXEl27FjB729vfT09NDa2sqPf/xjdu3aZeRYeDwe5s2b\nx+HDhwF4/fXXWbx4MWvXrjVuLAoKCti3bx/Dw8M4jsPrr7+O3+83cizOuND/RGlpKa2trYyMjNDT\n00M8HicYDI6/sOk+oDFZr776qpOfn+8sWLDA2bFjR6bLmVF/+ctfHMuynGXLljlFRUVOUVGRs3fv\nXufTTz91iouLHZ/P54TDYedf//pXpkudUdFo1Fm7dq3jOI6xY3Hw4EFn+fLlztKlS5177rnHGRwc\nNHYsnnjiCcfv9ztLlixxKioqnJGREWPG4r777nNuvPFGJysry7Ft2/njH/84bt9/+9vfOgsWLHAW\nLlzoRCKRCZevC8pERAw3K3YNiYhI5igIREQMpyAQETGcgkBExHAKAhERwykIREQMpyAQETGcgkBE\nxHD/H/k7LaP0ilo8AAAAAElFTkSuQmCC\n", | |
"text": "<matplotlib.figure.Figure at 0x11b093e90>" | |
} | |
], | |
"prompt_number": 207 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "data_501=data_310[data_310.community_id==\"501\"]\ntemp_usr_501=data_501.author_id\nusr_501=[]\nfor i in temp_usr_501:\n if i not in usr_501:\n usr_501.append(i)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 212 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "len(usr_501)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 213, | |
"text": "2021" | |
} | |
], | |
"prompt_number": 213 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "user_money_no_money=[]\nuser_in_out=[]\nuser_in_out_mon_no_mon=[]\nfor x in usr_501:\n temp=data_501[data_501.author_id==x][['mon_dir']].values\n temp_dir=data_501[data_310.author_id==x][['direction']].values\n temp_mon=data_501[data_310.author_id==x][['money']].values\n ln=len(data_501[data_501.author_id==x][['mon_dir']])\n money=0\n no_money=0\n inward=0\n outward=0\n in_mon=0\n in_no_mon=0\n out_mon=0\n out_no_mon=0\n for j in temp_dir:\n if j==\"in\":\n inward+=1\n if j==\"out\":\n outward+=1\n for j in temp_mon:\n if j==\"y\":\n money+=1\n elif j==\"n\":\n no_money+=1\n for j in temp:\n if j==\"in_y\":\n in_mon+=1\n elif j==\"in_n\":\n in_no_mon+=1\n elif j==\"out_y\":\n out_mon+=1\n elif j==\"out_n\":\n out_no_mon+=1\n user_money_no_money.append(( x,( float(money)/float(ln))*100, float(no_money)/float(ln)*100, money, no_money,ln))\n user_in_out.append((x,(float(inward)/float(ln))*100, float(outward)/float(ln)*100, inward, outward, ln))\n user_in_out_mon_no_mon.append((x, float(in_mon)/float(ln)*100, float(in_no_mon)/float(ln)*100, float(out_mon)/float(ln)*100, float(out_no_mon)/float(ln)*100, in_mon, in_no_mon, out_mon, out_no_mon, ln)) \n", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stderr", | |
"text": "/Library/Python/2.7/site-packages/pandas/core/frame.py:2021: UserWarning: Boolean Series key will be reindexed to match DataFrame index.\n \"DataFrame index.\", UserWarning)\n" | |
} | |
], | |
"prompt_number": 214 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "temp_in=[]\ntemp_out=[]\ntemp_in_number=[]\ntemp_out_number=[]\nfor i in user_in_out:\n temp_in.append(i[1])\n temp_out.append(i[2])\n temp_in_number.append(i[3])\n temp_out_number.append(i[4])", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 215 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "authors=[]\n# authors=(data_310.author_id, data_310.mon_dir)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 251 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in range(len(data_310)):\n authors.append((data_310.author_id[i],data_310.mon_dir[i], data_310.created_at))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 258 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "author=data_310.author_id\nauthors[100]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 260, | |
"text": "('dopEXwTamr3PY0aaWPfx7J', 'out_y')" | |
} | |
], | |
"prompt_number": 260 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "auth_state=[]\nfor i in usr:\n temp_state=[]\n for j in authors:\n if j[0]==i:\n temp_state.append(j[1])\n auth_state.append((i, temp_state, len(temp_state)))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 265 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "auth_state[1]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 429, | |
"text": "('acnSYy-rer3BOyaaWPfx7J',\n ['out_n', 'out_n', 'out_n', 'out_n', 'out_n', 'out_n', 'out_n', 'out_n'],\n 8)" | |
} | |
], | |
"prompt_number": 429 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "temp_auth_state=auth_state[103][1]\ntemp_auth_state", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 370, | |
"text": "['in_n',\n 'in_n',\n 'in_n',\n 'out_n',\n 'in_n',\n 'in_n',\n 'in_n',\n 'in_n',\n 'in_n',\n 'out_n',\n 'in_n',\n 'in_n']" | |
} | |
], | |
"prompt_number": 370 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "def state(i):\n temp_auth_state=auth_state[i][1]\n prev_letter=0\n prev_count=0\n tmp=[]\n state=[]\n for i in range(len(temp_auth_state)):\n if i==0:\n tmp.append((temp_auth_state[0], 0))\n if i>0:\n if temp_auth_state[i]==temp_auth_state[i-1]:\n prev_letter=temp_auth_state[i]\n prev_count+=1\n else:\n prev_letter=temp_auth_state[i]\n prev_count+=1\n tmp.append((prev_letter, prev_count))\n if i==len(temp_auth_state)-1:\n tmp.append((temp_auth_state[i], i))\n \n for i in range(1,len(tmp)+1):\n if i<len(tmp):\n state.append((tmp[i-1][0], (tmp[i][1]-tmp[i-1][1])))\n if i==len(tmp):\n state.append((tmp[i-1][0], (tmp[i-1][1]-tmp[i-2][1])))\n print auth_state[i][0],state[:-1]\n return state[:-1]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 433 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "for i in range(10):\n state(i)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "bXeUScR0ar3QO0aaWPfx7J [('in_n', 1), ('out_n', 1), ('in_n', 9), ('out_y', 1), ('out_n', 1), ('in_n', 3), ('out_y', 1), ('in_n', 1), ('out_y', 1), ('in_n', 1), ('out_y', 1), ('in_n', 2), ('out_n', 1), ('in_n', 3), ('out_y', 1), ('in_n', 1), ('out_y', 1), ('in_n', 1), ('out_n', 14), ('out_y', 5), ('in_y', 1), ('in_n', 5), ('out_n', 1), ('in_n', 9), ('out_y', 1), ('out_n', 1), ('in_n', 3), ('out_y', 1), ('in_n', 1), ('out_y', 1), ('in_n', 1), ('out_y', 1), ('in_n', 2), ('out_n', 1), ('in_n', 3), ('out_y', 1), ('in_n', 1), ('out_y', 1), ('in_n', 1), ('out_n', 14), ('out_y', 5), ('in_y', 1), ('in_n', 3)]\nd4e6Gypx8r3PExaaWPfx7J [('out_n', 7)]\nd4e6Gypx8r3PExaaWPfx7J [('out_n', 1)]\naCDLmUyimr3RJHaaWPfx7J [('in_n', 1), ('out_n', 1), ('out_y', 1), ('in_n', 1), ('out_n', 1), ('out_y', 0)]\na5es-et0er3RJHaaWPfx7J [('out_y', 1), ('out_n', 3), ('out_y', 3), ('out_n', 3), ('out_y', 1)]\najgQjUuA4r3RM4aaWPfx7J [('in_n', 1), ('out_y', 1), ('in_n', 1), ('out_y', 0)]\naCDLmUyimr3RJHaaWPfx7J [('in_n', 1), ('out_n', 2), ('out_y', 2), ('in_n', 1), ('out_n', 2), ('out_y', 1)]\najgQjUuA4r3RM4aaWPfx7J [('out_n', 5), ('out_y', 2), ('out_n', 5), ('out_y', 1)]\nd4e6Gypx8r3PExaaWPfx7J [('out_n', 11)]\na5es-et0er3RJHaaWPfx7J [('out_y', 1), ('out_n', 3), ('out_y', 2), ('out_n', 3), ('out_y', 0)]\n" | |
} | |
], | |
"prompt_number": 434 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "a=[1,2,3]\na[:-1]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 432, | |
"text": "[1, 2]" | |
} | |
], | |
"prompt_number": 432 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "from datetime import datetime\nfrom dateutil import parser\ncreated=data_310.created_at\nlen(created)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 455, | |
"text": "16470" | |
} | |
], | |
"prompt_number": 455 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "dt=(parser.parse(created[2])-parser.parse(created[1]))\ndt.", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 454, | |
"text": "300" | |
} | |
], | |
"prompt_number": 454 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "authtime=[]\nfor i in range(len(data_310)):\n authtime.append((data_310.author_id[i], data_310.created_at[i]))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 459 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "at=[]\nfor i in usr:\n temp_at=[]\n for j in range(len(authtime)):\n if i==authtime[j][0]:\n temp_at.append(authtime[j][1])\n if len(temp_at)>1:\n temp_ath=[]\n for k in range(len(temp_at)-1):\n temp_ath.append((parser.parse(temp_at[k+1])-parser.parse(temp_at[k])).seconds/86400)\n else:\n at.append((i, \"NA\"))\n at.append((i,temp_ath))", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 479 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "at[210]", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 478, | |
"text": "('d6p1oWMRKr34RiaaWPfx7J', [47220, 63600])" | |
} | |
], | |
"prompt_number": 478 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "import pandas.io.sql as psql\nimport sqlite3 as lite\ncon = lite.connect(\"sharetribe.db\")\nwith con:\n user_log_sql = \"SELECT * FROM user_log\"\n df_user_log = psql.frame_query(user_log_sql, con)\n print df_user_log.shape", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "(1084292, 6)\n" | |
} | |
], | |
"prompt_number": 4 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_user_log.to_csv(\"user_log.csv\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [], | |
"prompt_number": 17 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "with con:\n user_act_freq_sql = \"SELECT * FROM user_act_freq\"\n df_user_act_freq = psql.frame_query(user_act_freq_sql, con)\n print df_user_act_freq.shape\n user_act_freq_sql = \"SELECT * FROM user_act_freq\"\n df_user_act_freq = psql.frame_query(user_act_freq_sql, con)\n print df_user_act_freq.shape\n visitfreq_sql = \"SELECT * FROM visitfreq1\"\n df_visitfreq = psql.frame_query(visitfreq_sql, con)\n print df_visitfreq.shape\n post_freq_sql = \"SELECT * FROM post_freq1\"\n df_post_freq = psql.frame_query(post_freq_sql, con)\n print df_post_freq.shape\ndf_user_act_freq.to_csv(\"user_act_freq.csv\")\ndf_visitfreq.to_csv(\"userfreq.csv\")\ndf_post_freq.to_csv(\"post_freq.csv\")", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "(97837, 4)\n(97837, 4)" | |
}, | |
{ | |
"output_type": "stream", | |
"stream": "stdout", | |
"text": "\n(797, 2)\n(782, 2)\n" | |
} | |
], | |
"prompt_number": 22 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_user_act_freq.head(10)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>user_id</th>\n <th>date(created_at)</th>\n <th>count(id)</th>\n <th>community_id</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> a--1rI380r4Oac3LC_sCEq</td>\n <td> 2013-06-28</td>\n <td> 4</td>\n <td> 19</td>\n </tr>\n <tr>\n <th>1</th>\n <td> a-0Beu_nSr4B_IabWuarwG</td>\n <td> 2012-09-12</td>\n <td> 8</td>\n <td> NaN</td>\n </tr>\n <tr>\n <th>2</th>\n <td> a-0Beu_nSr4B_IabWuarwG</td>\n <td> 2012-09-13</td>\n <td> 7</td>\n <td> NaN</td>\n </tr>\n <tr>\n <th>3</th>\n <td> a-0Beu_nSr4B_IabWuarwG</td>\n <td> 2012-09-19</td>\n <td> 1</td>\n <td> NaN</td>\n </tr>\n <tr>\n <th>4</th>\n <td> a-0Beu_nSr4B_IabWuarwG</td>\n <td> 2012-10-24</td>\n <td> 3</td>\n <td> NaN</td>\n </tr>\n <tr>\n <th>5</th>\n <td> a-1j5GZ4yr4ARnabWuarwG</td>\n <td> 2012-07-16</td>\n <td> 3</td>\n <td> NaN</td>\n </tr>\n <tr>\n <th>6</th>\n <td> a-1j5GZ4yr4ARnabWuarwG</td>\n <td> 2012-07-24</td>\n <td> 11</td>\n <td> NaN</td>\n </tr>\n <tr>\n <th>7</th>\n <td> a-1j5GZ4yr4ARnabWuarwG</td>\n <td> 2013-05-23</td>\n <td> 1</td>\n <td> 297</td>\n </tr>\n <tr>\n <th>8</th>\n <td> a-659UU9Cr4OaaHRwIatgc</td>\n <td> 2013-05-13</td>\n <td> 9</td>\n <td> 297</td>\n </tr>\n <tr>\n <th>9</th>\n <td> a-7mnM8Iqr4OaaXLbny1Fu</td>\n <td> 2013-07-21</td>\n <td> 5</td>\n <td> NaN</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 9, | |
"text": " user_id date(created_at) count(id) community_id\n0 a--1rI380r4Oac3LC_sCEq 2013-06-28 4 19\n1 a-0Beu_nSr4B_IabWuarwG 2012-09-12 8 NaN\n2 a-0Beu_nSr4B_IabWuarwG 2012-09-13 7 NaN\n3 a-0Beu_nSr4B_IabWuarwG 2012-09-19 1 NaN\n4 a-0Beu_nSr4B_IabWuarwG 2012-10-24 3 NaN\n5 a-1j5GZ4yr4ARnabWuarwG 2012-07-16 3 NaN\n6 a-1j5GZ4yr4ARnabWuarwG 2012-07-24 11 NaN\n7 a-1j5GZ4yr4ARnabWuarwG 2013-05-23 1 297\n8 a-659UU9Cr4OaaHRwIatgc 2013-05-13 9 297\n9 a-7mnM8Iqr4OaaXLbny1Fu 2013-07-21 5 NaN" | |
} | |
], | |
"prompt_number": 9 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "df_community_memberships.head(10)", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>id</th>\n <th>person_id</th>\n <th>community_id</th>\n <th>admin</th>\n <th>created_at</th>\n <th>updated_at</th>\n <th>consent</th>\n <th>invitation_id</th>\n <th>last_page_load_date</th>\n <th>status</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> 147</td>\n <td> d_8CcgNxqr4lLjabWuarwG</td>\n <td> 4</td>\n <td> 1</td>\n <td> 2011-06-23 08:44:25</td>\n <td> 2013-02-21 11:13:38</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2013-02-21 11:13:38</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 148</td>\n <td> aWCO7INy8r4lLjabWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-06-23 11:51:54</td>\n <td> 2012-04-24 10:01:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2012-04-24 10:01:44</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>2</th>\n <td> 150</td>\n <td> aE013ONKir4lLjabWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-06-24 09:12:44</td>\n <td> 2012-08-03 12:17:59</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2012-08-03 12:17:59</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>3</th>\n <td> 151</td>\n <td> dhqCOaNKir4lLjabWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-06-24 09:17:27</td>\n <td> 2011-11-21 16:25:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2011-06-24 09:17:28</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>4</th>\n <td> 152</td>\n <td> aZqiLYNKCr4kwAabWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-06-24 09:49:06</td>\n <td> 2012-08-27 15:35:15</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2012-08-27 15:35:15</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>5</th>\n <td> 157</td>\n <td> cPhMgeOiKr4ib_abWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-06-27 06:49:53</td>\n <td> 2011-11-21 16:25:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2011-06-30 07:24:05</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>6</th>\n <td> 171</td>\n <td> a97Kp8Q34r4iZKabWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-07-11 05:25:52</td>\n <td> 2011-11-21 16:25:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2011-07-11 05:25:56</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>7</th>\n <td> 172</td>\n <td> c1c0aEQ4ar4iZKabWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-07-11 05:43:32</td>\n <td> 2011-11-21 16:25:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2011-07-27 13:46:03</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>8</th>\n <td> 183</td>\n <td> c_LuL0U_qr4lv1abWuarwG</td>\n <td> 4</td>\n <td> 0</td>\n <td> 2011-08-01 04:14:28</td>\n <td> 2011-11-21 16:25:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2011-10-26 10:21:22</td>\n <td> accepted</td>\n </tr>\n <tr>\n <th>9</th>\n <td> 186</td>\n <td> bYQ5AuVMSr4knrabWuarwG</td>\n <td> 7</td>\n <td> 0</td>\n <td> 2011-08-04 07:29:11</td>\n <td> 2011-11-21 16:25:44</td>\n <td> KASSI_CO1.0</td>\n <td>NaN</td>\n <td> 2011-08-04 07:29:16</td>\n <td> accepted</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 12, | |
"text": " id person_id community_id admin created_at \\\n0 147 d_8CcgNxqr4lLjabWuarwG 4 1 2011-06-23 08:44:25 \n1 148 aWCO7INy8r4lLjabWuarwG 4 0 2011-06-23 11:51:54 \n2 150 aE013ONKir4lLjabWuarwG 4 0 2011-06-24 09:12:44 \n3 151 dhqCOaNKir4lLjabWuarwG 4 0 2011-06-24 09:17:27 \n4 152 aZqiLYNKCr4kwAabWuarwG 4 0 2011-06-24 09:49:06 \n5 157 cPhMgeOiKr4ib_abWuarwG 4 0 2011-06-27 06:49:53 \n6 171 a97Kp8Q34r4iZKabWuarwG 4 0 2011-07-11 05:25:52 \n7 172 c1c0aEQ4ar4iZKabWuarwG 4 0 2011-07-11 05:43:32 \n8 183 c_LuL0U_qr4lv1abWuarwG 4 0 2011-08-01 04:14:28 \n9 186 bYQ5AuVMSr4knrabWuarwG 7 0 2011-08-04 07:29:11 \n\n updated_at consent invitation_id last_page_load_date \\\n0 2013-02-21 11:13:38 KASSI_CO1.0 NaN 2013-02-21 11:13:38 \n1 2012-04-24 10:01:44 KASSI_CO1.0 NaN 2012-04-24 10:01:44 \n2 2012-08-03 12:17:59 KASSI_CO1.0 NaN 2012-08-03 12:17:59 \n3 2011-11-21 16:25:44 KASSI_CO1.0 NaN 2011-06-24 09:17:28 \n4 2012-08-27 15:35:15 KASSI_CO1.0 NaN 2012-08-27 15:35:15 \n5 2011-11-21 16:25:44 KASSI_CO1.0 NaN 2011-06-30 07:24:05 \n6 2011-11-21 16:25:44 KASSI_CO1.0 NaN 2011-07-11 05:25:56 \n7 2011-11-21 16:25:44 KASSI_CO1.0 NaN 2011-07-27 13:46:03 \n8 2011-11-21 16:25:44 KASSI_CO1.0 NaN 2011-10-26 10:21:22 \n9 2011-11-21 16:25:44 KASSI_CO1.0 NaN 2011-08-04 07:29:16 \n\n status \n0 accepted \n1 accepted \n2 accepted \n3 accepted \n4 accepted \n5 accepted \n6 accepted \n7 accepted \n8 accepted \n9 accepted " | |
} | |
], | |
"prompt_number": 12 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [ | |
{ | |
"html": "<div style=\"max-height:1000px;max-width:1500px;overflow:auto;\">\n<table border=\"1\" class=\"dataframe\">\n <thead>\n <tr style=\"text-align: right;\">\n <th></th>\n <th>community_id</th>\n <th>listing_id</th>\n </tr>\n </thead>\n <tbody>\n <tr>\n <th>0</th>\n <td> 4</td>\n <td> 57</td>\n </tr>\n <tr>\n <th>1</th>\n <td> 11</td>\n <td> 57</td>\n </tr>\n <tr>\n <th>2</th>\n <td> 297</td>\n <td> 57</td>\n </tr>\n <tr>\n <th>3</th>\n <td> 4</td>\n <td> 58</td>\n </tr>\n <tr>\n <th>4</th>\n <td> 4</td>\n <td> 59</td>\n </tr>\n <tr>\n <th>5</th>\n <td> 4</td>\n <td> 60</td>\n </tr>\n <tr>\n <th>6</th>\n <td> 4</td>\n <td> 61</td>\n </tr>\n <tr>\n <th>7</th>\n <td> 11</td>\n <td> 61</td>\n </tr>\n <tr>\n <th>8</th>\n <td> 297</td>\n <td> 61</td>\n </tr>\n <tr>\n <th>9</th>\n <td> 4</td>\n <td> 62</td>\n </tr>\n </tbody>\n</table>\n</div>", | |
"metadata": {}, | |
"output_type": "pyout", | |
"prompt_number": 13, | |
"text": " community_id listing_id\n0 4 57\n1 11 57\n2 297 57\n3 4 58\n4 4 59\n5 4 60\n6 4 61\n7 11 61\n8 297 61\n9 4 62" | |
} | |
], | |
"prompt_number": 13 | |
}, | |
{ | |
"cell_type": "code", | |
"collapsed": false, | |
"input": "", | |
"language": "python", | |
"metadata": {}, | |
"outputs": [] | |
} | |
], | |
"metadata": {} | |
} | |
] | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment