Skip to content

Instantly share code, notes, and snippets.

What would you like to do?
require 'great_schools'
GreatSchools::API.key = KEY
schools = GreatSchools::School.nearby('NJ', city: ARGV[0], radius: 5, school_types: ['public'], level: 'high-schools')
# schools = GreatSchools::School.nearby('NJ', city: 'princeton', school_types: ['public'], level: 'high-schools')
# schools.each do |s|
# puts
# end
ratings ={|r| r.to_i}
puts ratings.reduce(:+).to_f / ratings.size
import constants
import googlemaps
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt
import simplekml
import numpy as np
import csv
import subprocess
import os
import random
from scipy import interpolate
see docs at:
Browse Schools - Returns a list of schools in a city.
Nearby Schools - Returns a list of schools closest to the center of a city, ZIP Code or address.
School Profile - Returns a profile data for a specific school.
School Search - Returns a list of schools based on a search string.
School Reviews - Returns a list of the most recent reviews for a school or for any schools in a city.
School Test Scores - Returns test and rank data for a specific school.
School Census Data - Returns census and profile data for a school.
City Overview - Returns information about a city.
Nearby Cities - Returns a list of cities near another city.
Browse Districts - Returns a list of school districts in a city.
gmaps = googlemaps.Client(key=constants.GOOGLE_KEY)
extent = constants.EXTENTS
def parse_city(geocode_data):
if (not geocode_data is None) and ('address_components' in geocode_data):
for component in geocode_data['address_components']:
if 'locality' in component['types']:
return component['long_name']
elif 'postal_town' in component['types']:
return component['long_name']
elif 'administrative_area_level_2' in component['types']:
return component['long_name']
elif 'administrative_area_level_1' in component['types']:
return component['long_name']
return None
def save_polygon(cs, m, levels):
kml = simplekml.Kml()
for i in range(len(cs.collections)):
if cs.collections[i].get_paths():
poly_name = str(levels[i])
pol = kml.newlinestring(name=poly_name)
p = cs.collections[i].get_paths()[0]
v = p.vertices
x = v[:, 0]
y = v[:, 1]
lonpt, latpt = m(x, y, inverse=True)
pol.coords = list(zip(lonpt, latpt))
pol.extrude = 1
pol.altitudemode = simplekml.AltitudeMode.relativetoground
# = simplekml.Color.hex(constants.COLORS[i]) = 2'schools.kml')
def get_rating(city):
# return random.randint(0, 10)
if city:
str = 'ruby /Users/tim/Hacking/greatschools/get_school_info.rb ' + city
output = subprocess.check_output(str, shell=True)
return float(output.strip())
except subprocess.CalledProcessError as e:
print(city, e.output)
return np.nan
return np.nan
def build_c(m, grid_size, csv_file):
c = np.zeros((grid_size, grid_size))
lons, lats = m.makegrid(grid_size, grid_size)
x, y = m(lons, lats)
for i in range(0, grid_size):
for j in range(0, grid_size):
reverse_geocode_result = gmaps.reverse_geocode((lats[i, j], lons[i, j]))
city = parse_city(reverse_geocode_result[0])
rating = get_rating(city)
print(lats[i, j], lons[i, j], city, rating)
c[i][j] = rating
csv_file.writerow([i, j, c[i][j], lons[i][j], lats[i][j]])'x_data_schools', x)'y_data_schools', y)'c_data_backup_schools', c)
return x, y, c
def fill_array(my_array):
x = np.arange(0, my_array.shape[1])
y = np.arange(0, my_array.shape[0])
# mask invalid values
array =
xx, yy = np.meshgrid(x, y)
# get only the valid values
x1 = xx[~array.mask]
y1 = yy[~array.mask]
newarr = array[~array.mask]
return interpolate.griddata((x1, y1), newarr.ravel(),
(xx, yy),
def build_map(m, cont, extent):
name = 'schools'
im = plt.imread('../nj_modified.tif')
m.imshow(im, origin='upper', extent=extent)
# plt.clabel(cont, inline=1, fontsize=10)
m = Basemap(llcrnrlon=extent[0], llcrnrlat=extent[1], urcrnrlon=extent[2], urcrnrlat=extent[3],
projection='lcc', lat_1=40.880841, lat_2=40.197260, lon_0=-74.851512,
resolution='l', area_thresh=1000.)
levels = [i for i in range(2,11)]
grid_size = 20
f = open('great_schools.csv', 'w')
csv_file = csv.writer(f)
# x, y, c = build_c(m, grid_size, csv_file)
c = fill_array(np.load('c_data_backup_schools.npy'))
x = np.load('x_data_schools.npy')
y = np.load('y_data_schools.npy')
cs = m.contourf(x, y, c, levels, alpha=0.5)
save_polygon(cs, m, levels)
build_map(m, cs, extent)
# print(get_rating('princeton'))
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
You can’t perform that action at this time.
You signed in with another tab or window. Reload to refresh your session. You signed out in another tab or window. Reload to refresh your session.