Last active
July 10, 2024 13:49
-
-
Save tboggs/8778945 to your computer and use it in GitHub Desktop.
A script to generate contour plots of Dirichlet distributions
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
'''Functions for drawing contours of Dirichlet distributions. | |
MIT License | |
Copyright (c) 2014 Thomas Boggs | |
Permission is hereby granted, free of charge, to any person obtaining a copy | |
of this software and associated documentation files (the "Software"), to deal | |
in the Software without restriction, including without limitation the rights | |
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | |
copies of the Software, and to permit persons to whom the Software is | |
furnished to do so, subject to the following conditions: | |
The above copyright notice and this permission notice shall be included in all | |
copies or substantial portions of the Software. | |
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | |
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | |
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | |
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | |
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | |
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
SOFTWARE. | |
''' | |
from __future__ import division, print_function | |
import numpy as np | |
import matplotlib.pyplot as plt | |
import matplotlib.tri as tri | |
_corners = np.array([[0, 0], [1, 0], [0.5, 0.75**0.5]]) | |
_AREA = 0.5 * 1 * 0.75**0.5 | |
_triangle = tri.Triangulation(_corners[:, 0], _corners[:, 1]) | |
# For each corner of the triangle, the pair of other corners | |
_pairs = [_corners[np.roll(range(3), -i)[1:]] for i in range(3)] | |
# The area of the triangle formed by point xy and another pair or points | |
tri_area = lambda xy, pair: 0.5 * np.linalg.norm(np.cross(*(pair - xy))) | |
def xy2bc(xy, tol=1.e-4): | |
'''Converts 2D Cartesian coordinates to barycentric. | |
Arguments: | |
`xy`: A length-2 sequence containing the x and y value. | |
''' | |
coords = np.array([tri_area(xy, p) for p in _pairs]) / _AREA | |
return np.clip(coords, tol, 1.0 - tol) | |
class Dirichlet(object): | |
def __init__(self, alpha): | |
'''Creates Dirichlet distribution with parameter `alpha`.''' | |
from math import gamma | |
from operator import mul | |
self._alpha = np.array(alpha) | |
self._coef = gamma(np.sum(self._alpha)) / \ | |
np.multiply.reduce([gamma(a) for a in self._alpha]) | |
def pdf(self, x): | |
'''Returns pdf value for `x`.''' | |
from operator import mul | |
return self._coef * np.multiply.reduce([xx ** (aa - 1) | |
for (xx, aa)in zip(x, self._alpha)]) | |
def sample(self, N): | |
'''Generates a random sample of size `N`.''' | |
return np.random.dirichlet(self._alpha, N) | |
def draw_pdf_contours(dist, border=False, nlevels=200, subdiv=8, **kwargs): | |
'''Draws pdf contours over an equilateral triangle (2-simplex). | |
Arguments: | |
`dist`: A distribution instance with a `pdf` method. | |
`border` (bool): If True, the simplex border is drawn. | |
`nlevels` (int): Number of contours to draw. | |
`subdiv` (int): Number of recursive mesh subdivisions to create. | |
kwargs: Keyword args passed on to `plt.triplot`. | |
''' | |
from matplotlib import ticker, cm | |
import math | |
refiner = tri.UniformTriRefiner(_triangle) | |
trimesh = refiner.refine_triangulation(subdiv=subdiv) | |
pvals = [dist.pdf(xy2bc(xy)) for xy in zip(trimesh.x, trimesh.y)] | |
plt.tricontourf(trimesh, pvals, nlevels, cmap='jet', **kwargs) | |
plt.axis('equal') | |
plt.xlim(0, 1) | |
plt.ylim(0, 0.75**0.5) | |
plt.axis('off') | |
if border is True: | |
plt.triplot(_triangle, linewidth=1) | |
def plot_points(X, barycentric=True, border=True, **kwargs): | |
'''Plots a set of points in the simplex. | |
Arguments: | |
`X` (ndarray): A 2xN array (if in Cartesian coords) or 3xN array | |
(if in barycentric coords) of points to plot. | |
`barycentric` (bool): Indicates if `X` is in barycentric coords. | |
`border` (bool): If True, the simplex border is drawn. | |
kwargs: Keyword args passed on to `plt.plot`. | |
''' | |
if barycentric is True: | |
X = X.dot(_corners) | |
plt.plot(X[:, 0], X[:, 1], 'k.', ms=1, **kwargs) | |
plt.axis('equal') | |
plt.xlim(0, 1) | |
plt.ylim(0, 0.75**0.5) | |
plt.axis('off') | |
if border is True: | |
plt.triplot(_triangle, linewidth=1) | |
if __name__ == '__main__': | |
f = plt.figure(figsize=(8, 6)) | |
alphas = [[0.999] * 3, | |
[5] * 3, | |
[2, 5, 15]] | |
for (i, alpha) in enumerate(alphas): | |
plt.subplot(2, len(alphas), i + 1) | |
dist = Dirichlet(alpha) | |
draw_pdf_contours(dist) | |
title = r'$\alpha$ = (%.3f, %.3f, %.3f)' % tuple(alpha) | |
plt.title(title, fontdict={'fontsize': 8}) | |
plt.subplot(2, len(alphas), i + 1 + len(alphas)) | |
plot_points(dist.sample(5000)) | |
plt.savefig('dirichlet_plots.png') | |
print('Wrote plots to "dirichlet_plots.png".') | |
Your code is very nice showing how to implement Dirichlet straight from the formula. I ve also tried to experiment it calling scipy.stats.dirichlet library instead. It worked well but we needed to change the tolerance of the xy2bc generator from 1e-4 to 1e-9. Otherwise the assertion of the library code _multivariate.py wont let us to run.
if (np.abs(np.sum(x, 0) - 1.0) > 10e-10).any():
raise ValueError("The input vector 'x' must lie within the normal "
"simplex. but np.sum(x, 0) = %s." % np.sum(x, 0))
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Really useful - thanks!