Created
December 19, 2020 22:17
-
-
Save tcbegley/48c409813d2c21e2708657c6ee08a32c to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import requests | |
# data source | |
URL = "http://www.stat.columbia.edu/~gelman/book/data/light.asc" | |
# simulation hyperparams | |
N_SIM = 200 # number of simulations | |
def load_data(): | |
resp = requests.get(URL) | |
_, data = resp.text.strip().split("\n\n") | |
return np.array([int(i) for i in data.replace("\n", " ").split(" ")]) | |
def order_stat(y, theta): | |
y_sorted = np.sort(y, axis=1) | |
return np.abs(y_sorted[:, 60] - theta) - np.abs(y_sorted[:, 5] - theta) | |
if __name__ == "__main__": | |
rng = np.random.default_rng() | |
y = load_data() | |
n_obs = y.size | |
s2 = ((y - y.mean()) ** 2).sum() / (n_obs - 1) # sample variance | |
# sample mu and sigma 2 from posterior distribution | |
sigma2 = (n_obs - 1) * s2 / rng.chisquare(n_obs - 1, size=N_SIM) | |
mu = rng.normal(y.mean(), np.sqrt(sigma2 / n_obs)) | |
y_post = rng.normal( | |
mu[:, None], np.sqrt(sigma2[:, None]), size=(N_SIM, n_obs) | |
) | |
# replicate Figure 6.2 | |
f, ax = plt.subplots(figsize=(10, 8), nrows=4, ncols=5) | |
ax = ax.flatten() | |
for i in range(20): | |
ax[i].hist(y_post[i], bins=10) | |
f.suptitle("Replication of Gelman Figure 6.2") | |
plt.show(block=True) | |
# replicate Figure 6.3 | |
f, ax = plt.subplots(figsize=(7, 5)) | |
ax.hist(y_post[:20].min(axis=1)) | |
ax.axvline(y.min(), color="k") | |
f.suptitle("Replication of Gelman Figure 6.3") | |
plt.show(block=True) | |
# replicate Figure 6.4 | |
f, ax = plt.subplots(figsize=(10, 5), ncols=2) | |
ax[0].hist(y_post.var(axis=1)) | |
ax[0].axvline(s2, color="k") | |
t = order_stat(np.tile(y, 200).reshape(-1, y.size), mu) | |
t_rep = order_stat(y_post, mu) | |
ax[1].scatter(t, t_rep, alpha=0.5) | |
ax[1].set_xlim((-15, 15)) | |
ax[1].set_ylim((-15, 15)) | |
ax[1].plot([-15, 15], [-15, 15], color="k") | |
ax[1].set_title(f"p-value: {(t_rep > t).mean():.2f}") | |
f.suptitle("Replication of Gelman Figure 6.4") | |
plt.show(block=True) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment