Skip to content

Instantly share code, notes, and snippets.

@tcbegley
Created September 1, 2022 12:38
Show Gist options
  • Save tcbegley/91afccc8f702a61617f7ec6da250effe to your computer and use it in GitHub Desktop.
Save tcbegley/91afccc8f702a61617f7ec6da250effe to your computer and use it in GitHub Desktop.
import warnings
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
from torchvision import models
from torchvision.datasets import CIFAR10
from tqdm.auto import tqdm
from opacus import PrivacyEngine
from opacus.utils.batch_memory_manager import BatchMemoryManager
from opacus.validators import ModuleValidator
warnings.simplefilter("ignore")
MAX_GRAD_NORM = 1.2
EPSILON = 50.0
DELTA = 1e-5
EPOCHS = 20
LR = 1e-3
BATCH_SIZE = 512
MAX_PHYSICAL_BATCH_SIZE = 128
# These values, specific to the CIFAR10 dataset, are assumed to be known.
# If necessary, they can be computed with modest privacy budgets.
CIFAR10_MEAN = (0.4914, 0.4822, 0.4465)
CIFAR10_STD_DEV = (0.2023, 0.1994, 0.2010)
DATA_ROOT = "./cifar10"
def get_data_loader(train=True):
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize(CIFAR10_MEAN, CIFAR10_STD_DEV),
]
)
dataset = CIFAR10(root=DATA_ROOT, train=train, download=True, transform=transform)
return torch.utils.data.DataLoader(
dataset,
batch_size=BATCH_SIZE,
shuffle=not train,
)
def accuracy(preds, labels):
return (preds == labels).mean()
def train(model, train_loader, optimizer, epoch, device):
model.train()
criterion = nn.CrossEntropyLoss()
losses = []
top1_acc = []
with BatchMemoryManager(
data_loader=train_loader,
max_physical_batch_size=MAX_PHYSICAL_BATCH_SIZE,
optimizer=optimizer,
) as memory_safe_data_loader:
for i, (images, target) in enumerate(memory_safe_data_loader):
optimizer.zero_grad()
images = images.to(device)
target = target.to(device)
# compute output
output = model(images)
loss = criterion(output, target)
preds = np.argmax(output.detach().cpu().numpy(), axis=1)
labels = target.detach().cpu().numpy()
# measure accuracy and record loss
acc = accuracy(preds, labels)
losses.append(loss.item())
top1_acc.append(acc)
loss.backward()
optimizer.step()
if (i + 1) % 200 == 0:
epsilon = privacy_engine.get_epsilon(DELTA)
print(
f"\tTrain Epoch: {epoch} \t"
f"Loss: {np.mean(losses):.6f} "
f"Acc@1: {np.mean(top1_acc) * 100:.6f} "
f"(ε = {epsilon:.2f}, δ = {DELTA})"
)
def test(model, test_loader, device):
model.eval()
criterion = nn.CrossEntropyLoss()
losses = []
top1_acc = []
with torch.no_grad():
for images, target in test_loader:
images = images.to(device)
target = target.to(device)
output = model(images)
loss = criterion(output, target)
preds = np.argmax(output.detach().cpu().numpy(), axis=1)
labels = target.detach().cpu().numpy()
acc = accuracy(preds, labels)
losses.append(loss.item())
top1_acc.append(acc)
top1_avg = np.mean(top1_acc)
print(f"\tTest set:" f"Loss: {np.mean(losses):.6f} " f"Acc: {top1_avg * 100:.6f} ")
return np.mean(top1_acc)
if __name__ == "__main__":
train_loader = get_data_loader(train=True)
test_loader = get_data_loader(train=False)
model = ModuleValidator.fix(models.resnet18(num_classes=10))
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
privacy_engine = PrivacyEngine(accountant="prv")
model, optimizer, train_loader = privacy_engine.make_private_with_epsilon(
module=model,
optimizer=optim.RMSprop(model.parameters(), lr=LR),
data_loader=train_loader,
epochs=EPOCHS,
target_epsilon=EPSILON,
target_delta=DELTA,
max_grad_norm=MAX_GRAD_NORM,
)
print(f"Using sigma={optimizer.noise_multiplier} and C={MAX_GRAD_NORM}")
for epoch in tqdm(range(EPOCHS), desc="Epoch", unit="epoch"):
train(model, train_loader, optimizer, epoch + 1, device)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment