Last active
February 6, 2024 08:33
-
-
Save teamdandelion/4f02ab8f1451e276fea1f165a20336f1 to your computer and use it in GitHub Desktop.
TensorBoard: TF Dev Summit Tutorial
We can make this file beautiful and searchable if this error is corrected: No tabs found in this TSV file in line 0.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
7 | |
2 | |
1 | |
0 | |
4 | |
1 | |
4 | |
9 | |
5 | |
9 | |
0 | |
6 | |
9 | |
0 | |
1 | |
5 | |
9 | |
7 | |
3 | |
4 | |
9 | |
6 | |
6 | |
5 | |
4 | |
0 | |
7 | |
4 | |
0 | |
1 | |
3 | |
1 | |
3 | |
4 | |
7 | |
2 | |
7 | |
1 | |
2 | |
1 | |
1 | |
7 | |
4 | |
2 | |
3 | |
5 | |
1 | |
2 | |
4 | |
4 | |
6 | |
3 | |
5 | |
5 | |
6 | |
0 | |
4 | |
1 | |
9 | |
5 | |
7 | |
8 | |
9 | |
3 | |
7 | |
4 | |
6 | |
4 | |
3 | |
0 | |
7 | |
0 | |
2 | |
9 | |
1 | |
7 | |
3 | |
2 | |
9 | |
7 | |
7 | |
6 | |
2 | |
7 | |
8 | |
4 | |
7 | |
3 | |
6 | |
1 | |
3 | |
6 | |
9 | |
3 | |
1 | |
4 | |
1 | |
7 | |
6 | |
9 | |
6 | |
0 | |
5 | |
4 | |
9 | |
9 | |
2 | |
1 | |
9 | |
4 | |
8 | |
7 | |
3 | |
9 | |
7 | |
4 | |
4 | |
4 | |
9 | |
2 | |
5 | |
4 | |
7 | |
6 | |
7 | |
9 | |
0 | |
5 | |
8 | |
5 | |
6 | |
6 | |
5 | |
7 | |
8 | |
1 | |
0 | |
1 | |
6 | |
4 | |
6 | |
7 | |
3 | |
1 | |
7 | |
1 | |
8 | |
2 | |
0 | |
2 | |
9 | |
9 | |
5 | |
5 | |
1 | |
5 | |
6 | |
0 | |
3 | |
4 | |
4 | |
6 | |
5 | |
4 | |
6 | |
5 | |
4 | |
5 | |
1 | |
4 | |
4 | |
7 | |
2 | |
3 | |
2 | |
7 | |
1 | |
8 | |
1 | |
8 | |
1 | |
8 | |
5 | |
0 | |
8 | |
9 | |
2 | |
5 | |
0 | |
1 | |
1 | |
1 | |
0 | |
9 | |
0 | |
3 | |
1 | |
6 | |
4 | |
2 | |
3 | |
6 | |
1 | |
1 | |
1 | |
3 | |
9 | |
5 | |
2 | |
9 | |
4 | |
5 | |
9 | |
3 | |
9 | |
0 | |
3 | |
6 | |
5 | |
5 | |
7 | |
2 | |
2 | |
7 | |
1 | |
2 | |
8 | |
4 | |
1 | |
7 | |
3 | |
3 | |
8 | |
8 | |
7 | |
9 | |
2 | |
2 | |
4 | |
1 | |
5 | |
9 | |
8 | |
7 | |
2 | |
3 | |
0 | |
4 | |
4 | |
2 | |
4 | |
1 | |
9 | |
5 | |
7 | |
7 | |
2 | |
8 | |
2 | |
6 | |
8 | |
5 | |
7 | |
7 | |
9 | |
1 | |
8 | |
1 | |
8 | |
0 | |
3 | |
0 | |
1 | |
9 | |
9 | |
4 | |
1 | |
8 | |
2 | |
1 | |
2 | |
9 | |
7 | |
5 | |
9 | |
2 | |
6 | |
4 | |
1 | |
5 | |
8 | |
2 | |
9 | |
2 | |
0 | |
4 | |
0 | |
0 | |
2 | |
8 | |
4 | |
7 | |
1 | |
2 | |
4 | |
0 | |
2 | |
7 | |
4 | |
3 | |
3 | |
0 | |
0 | |
3 | |
1 | |
9 | |
6 | |
5 | |
2 | |
5 | |
9 | |
2 | |
9 | |
3 | |
0 | |
4 | |
2 | |
0 | |
7 | |
1 | |
1 | |
2 | |
1 | |
5 | |
3 | |
3 | |
9 | |
7 | |
8 | |
6 | |
5 | |
6 | |
1 | |
3 | |
8 | |
1 | |
0 | |
5 | |
1 | |
3 | |
1 | |
5 | |
5 | |
6 | |
1 | |
8 | |
5 | |
1 | |
7 | |
9 | |
4 | |
6 | |
2 | |
2 | |
5 | |
0 | |
6 | |
5 | |
6 | |
3 | |
7 | |
2 | |
0 | |
8 | |
8 | |
5 | |
4 | |
1 | |
1 | |
4 | |
0 | |
3 | |
3 | |
7 | |
6 | |
1 | |
6 | |
2 | |
1 | |
9 | |
2 | |
8 | |
6 | |
1 | |
9 | |
5 | |
2 | |
5 | |
4 | |
4 | |
2 | |
8 | |
3 | |
8 | |
2 | |
4 | |
5 | |
0 | |
3 | |
1 | |
7 | |
7 | |
5 | |
7 | |
9 | |
7 | |
1 | |
9 | |
2 | |
1 | |
4 | |
2 | |
9 | |
2 | |
0 | |
4 | |
9 | |
1 | |
4 | |
8 | |
1 | |
8 | |
4 | |
5 | |
9 | |
8 | |
8 | |
3 | |
7 | |
6 | |
0 | |
0 | |
3 | |
0 | |
2 | |
6 | |
6 | |
4 | |
9 | |
3 | |
3 | |
3 | |
2 | |
3 | |
9 | |
1 | |
2 | |
6 | |
8 | |
0 | |
5 | |
6 | |
6 | |
6 | |
3 | |
8 | |
8 | |
2 | |
7 | |
5 | |
8 | |
9 | |
6 | |
1 | |
8 | |
4 | |
1 | |
2 | |
5 | |
9 | |
1 | |
9 | |
7 | |
5 | |
4 | |
0 | |
8 | |
9 | |
9 | |
1 | |
0 | |
5 | |
2 | |
3 | |
7 | |
8 | |
9 | |
4 | |
0 | |
6 | |
3 | |
9 | |
5 | |
2 | |
1 | |
3 | |
1 | |
3 | |
6 | |
5 | |
7 | |
4 | |
2 | |
2 | |
6 | |
3 | |
2 | |
6 | |
5 | |
4 | |
8 | |
9 | |
7 | |
1 | |
3 | |
0 | |
3 | |
8 | |
3 | |
1 | |
9 | |
3 | |
4 | |
4 | |
6 | |
4 | |
2 | |
1 | |
8 | |
2 | |
5 | |
4 | |
8 | |
8 | |
4 | |
0 | |
0 | |
2 | |
3 | |
2 | |
7 | |
7 | |
0 | |
8 | |
7 | |
4 | |
4 | |
7 | |
9 | |
6 | |
9 | |
0 | |
9 | |
8 | |
0 | |
4 | |
6 | |
0 | |
6 | |
3 | |
5 | |
4 | |
8 | |
3 | |
3 | |
9 | |
3 | |
3 | |
3 | |
7 | |
8 | |
0 | |
8 | |
2 | |
1 | |
7 | |
0 | |
6 | |
5 | |
4 | |
3 | |
8 | |
0 | |
9 | |
6 | |
3 | |
8 | |
0 | |
9 | |
9 | |
6 | |
8 | |
6 | |
8 | |
5 | |
7 | |
8 | |
6 | |
0 | |
2 | |
4 | |
0 | |
2 | |
2 | |
3 | |
1 | |
9 | |
7 | |
5 | |
1 | |
0 | |
8 | |
4 | |
6 | |
2 | |
6 | |
7 | |
9 | |
3 | |
2 | |
9 | |
8 | |
2 | |
2 | |
9 | |
2 | |
7 | |
3 | |
5 | |
9 | |
1 | |
8 | |
0 | |
2 | |
0 | |
5 | |
2 | |
1 | |
3 | |
7 | |
6 | |
7 | |
1 | |
2 | |
5 | |
8 | |
0 | |
3 | |
7 | |
2 | |
4 | |
0 | |
9 | |
1 | |
8 | |
6 | |
7 | |
7 | |
4 | |
3 | |
4 | |
9 | |
1 | |
9 | |
5 | |
1 | |
7 | |
3 | |
9 | |
7 | |
6 | |
9 | |
1 | |
3 | |
7 | |
8 | |
3 | |
3 | |
6 | |
7 | |
2 | |
8 | |
5 | |
8 | |
5 | |
1 | |
1 | |
4 | |
4 | |
3 | |
1 | |
0 | |
7 | |
7 | |
0 | |
7 | |
9 | |
4 | |
4 | |
8 | |
5 | |
5 | |
4 | |
0 | |
8 | |
2 | |
1 | |
0 | |
8 | |
4 | |
5 | |
0 | |
4 | |
0 | |
6 | |
1 | |
7 | |
3 | |
2 | |
6 | |
7 | |
2 | |
6 | |
9 | |
3 | |
1 | |
4 | |
6 | |
2 | |
5 | |
4 | |
2 | |
0 | |
6 | |
2 | |
1 | |
7 | |
3 | |
4 | |
1 | |
0 | |
5 | |
4 | |
3 | |
1 | |
1 | |
7 | |
4 | |
9 | |
9 | |
4 | |
8 | |
4 | |
0 | |
2 | |
4 | |
5 | |
1 | |
1 | |
6 | |
4 | |
7 | |
1 | |
9 | |
4 | |
2 | |
4 | |
1 | |
5 | |
5 | |
3 | |
8 | |
3 | |
1 | |
4 | |
5 | |
6 | |
8 | |
9 | |
4 | |
1 | |
5 | |
3 | |
8 | |
0 | |
3 | |
2 | |
5 | |
1 | |
2 | |
8 | |
3 | |
4 | |
4 | |
0 | |
8 | |
8 | |
3 | |
3 | |
1 | |
7 | |
3 | |
5 | |
9 | |
6 | |
3 | |
2 | |
6 | |
1 | |
3 | |
6 | |
0 | |
7 | |
2 | |
1 | |
7 | |
1 | |
4 | |
2 | |
4 | |
2 | |
1 | |
7 | |
9 | |
6 | |
1 | |
1 | |
2 | |
4 | |
8 | |
1 | |
7 | |
7 | |
4 | |
8 | |
0 | |
7 | |
3 | |
1 | |
3 | |
1 | |
0 | |
7 | |
7 | |
0 | |
3 | |
5 | |
5 | |
2 | |
7 | |
6 | |
6 | |
9 | |
2 | |
8 | |
3 | |
5 | |
2 | |
2 | |
5 | |
6 | |
0 | |
8 | |
2 | |
9 | |
2 | |
8 | |
8 | |
8 | |
8 | |
7 | |
4 | |
9 | |
3 | |
0 | |
6 | |
6 | |
3 | |
2 | |
1 | |
3 | |
2 | |
2 | |
9 | |
3 | |
0 | |
0 | |
5 | |
7 | |
8 | |
1 | |
4 | |
4 | |
6 | |
0 | |
2 | |
9 | |
1 | |
4 | |
7 | |
4 | |
7 | |
3 | |
9 | |
8 | |
8 | |
4 | |
7 | |
1 | |
2 | |
1 | |
2 | |
2 | |
3 | |
2 | |
3 | |
2 | |
3 | |
9 | |
1 | |
7 | |
4 | |
0 | |
3 | |
5 | |
5 | |
8 | |
6 | |
3 | |
2 | |
6 | |
7 | |
6 | |
6 | |
3 | |
2 | |
7 | |
8 | |
1 | |
1 | |
7 | |
5 | |
6 | |
4 | |
9 | |
5 | |
1 | |
3 | |
3 | |
4 | |
7 | |
8 | |
9 | |
1 | |
1 | |
6 | |
9 | |
1 | |
4 | |
4 | |
5 | |
4 | |
0 | |
6 | |
2 | |
2 | |
3 | |
1 | |
5 | |
1 | |
2 | |
0 | |
3 | |
8 | |
1 | |
2 | |
6 | |
7 | |
1 | |
6 | |
2 | |
3 | |
9 | |
0 | |
1 | |
2 | |
2 | |
0 | |
8 | |
9 | |
9 | |
0 | |
2 | |
5 | |
1 | |
9 | |
7 | |
8 | |
1 | |
0 | |
4 | |
1 | |
7 | |
9 | |
6 | |
4 | |
2 | |
6 | |
8 | |
1 | |
3 | |
7 | |
5 | |
4 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Copyright 2017 Google, Inc. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================== | |
import os | |
import tensorflow as tf | |
import urllib | |
LOGDIR = '/tmp/mnist_tutorial/' | |
GIST_URL = 'https://gist.githubusercontent.com/dandelionmane/4f02ab8f1451e276fea1f165a20336f1/raw/dfb8ee95b010480d56a73f324aca480b3820c180' | |
### MNIST EMBEDDINGS ### | |
mnist = tf.contrib.learn.datasets.mnist.read_data_sets(train_dir=LOGDIR + 'data', one_hot=True) | |
### Get a sprite and labels file for the embedding projector ### | |
urllib.urlretrieve(GIST_URL + 'labels_1024.tsv', LOGDIR + 'labels_1024.tsv') | |
urllib.urlretrieve(GIST_URL + 'sprite_1024.png', LOGDIR + 'sprite_1024.png') | |
def conv_layer(input, size_in, size_out, name="conv"): | |
with tf.name_scope(name): | |
w = tf.Variable(tf.truncated_normal([5, 5, size_in, size_out], stddev=0.1), name="W") | |
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") | |
conv = tf.nn.conv2d(input, w, strides=[1, 1, 1, 1], padding="SAME") | |
act = tf.nn.relu(conv + b) | |
tf.summary.histogram("weights", w) | |
tf.summary.histogram("biases", b) | |
tf.summary.histogram("activations", act) | |
return tf.nn.max_pool(act, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") | |
def fc_layer(input, size_in, size_out, name="fc"): | |
with tf.name_scope(name): | |
w = tf.Variable(tf.truncated_normal([size_in, size_out], stddev=0.1), name="W") | |
b = tf.Variable(tf.constant(0.1, shape=[size_out]), name="B") | |
act = tf.nn.relu(tf.matmul(input, w) + b) | |
tf.summary.histogram("weights", w) | |
tf.summary.histogram("biases", b) | |
tf.summary.histogram("activations", act) | |
return act | |
def mnist_model(learning_rate, use_two_conv, use_two_fc, hparam): | |
tf.reset_default_graph() | |
sess = tf.Session() | |
# Setup placeholders, and reshape the data | |
x = tf.placeholder(tf.float32, shape=[None, 784], name="x") | |
x_image = tf.reshape(x, [-1, 28, 28, 1]) | |
tf.summary.image('input', x_image, 3) | |
y = tf.placeholder(tf.float32, shape=[None, 10], name="labels") | |
if use_two_conv: | |
conv1 = conv_layer(x_image, 1, 32, "conv1") | |
conv_out = conv_layer(conv1, 32, 64, "conv2") | |
else: | |
conv1 = conv_layer(x_image, 1, 64, "conv") | |
conv_out = tf.nn.max_pool(conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding="SAME") | |
flattened = tf.reshape(conv_out, [-1, 7 * 7 * 64]) | |
if use_two_fc: | |
fc1 = fc_layer(flattened, 7 * 7 * 64, 1024, "fc1") | |
embedding_input = fc1 | |
embedding_size = 1024 | |
logits = fc_layer(fc1, 1024, 10, "fc2") | |
else: | |
embedding_input = flattened | |
embedding_size = 7*7*64 | |
logits = fc_layer(flattened, 7*7*64, 10, "fc") | |
with tf.name_scope("xent"): | |
xent = tf.reduce_mean( | |
tf.nn.softmax_cross_entropy_with_logits( | |
logits=logits, labels=y), name="xent") | |
tf.summary.scalar("xent", xent) | |
with tf.name_scope("train"): | |
train_step = tf.train.AdamOptimizer(learning_rate).minimize(xent) | |
with tf.name_scope("accuracy"): | |
correct_prediction = tf.equal(tf.argmax(logits, 1), tf.argmax(y, 1)) | |
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) | |
tf.summary.scalar("accuracy", accuracy) | |
summ = tf.summary.merge_all() | |
embedding = tf.Variable(tf.zeros([1024, embedding_size]), name="test_embedding") | |
assignment = embedding.assign(embedding_input) | |
saver = tf.train.Saver() | |
sess.run(tf.global_variables_initializer()) | |
writer = tf.summary.FileWriter(LOGDIR + hparam) | |
writer.add_graph(sess.graph) | |
config = tf.contrib.tensorboard.plugins.projector.ProjectorConfig() | |
embedding_config = config.embeddings.add() | |
embedding_config.tensor_name = embedding.name | |
embedding_config.sprite.image_path = LOGDIR + 'sprite_1024.png' | |
embedding_config.metadata_path = LOGDIR + 'labels_1024.tsv' | |
# Specify the width and height of a single thumbnail. | |
embedding_config.sprite.single_image_dim.extend([28, 28]) | |
tf.contrib.tensorboard.plugins.projector.visualize_embeddings(writer, config) | |
for i in range(2001): | |
batch = mnist.train.next_batch(100) | |
if i % 5 == 0: | |
[train_accuracy, s] = sess.run([accuracy, summ], feed_dict={x: batch[0], y: batch[1]}) | |
writer.add_summary(s, i) | |
if i % 500 == 0: | |
sess.run(assignment, feed_dict={x: mnist.test.images[:1024], y: mnist.test.labels[:1024]}) | |
saver.save(sess, os.path.join(LOGDIR, "model.ckpt"), i) | |
sess.run(train_step, feed_dict={x: batch[0], y: batch[1]}) | |
def make_hparam_string(learning_rate, use_two_fc, use_two_conv): | |
conv_param = "conv=2" if use_two_conv else "conv=1" | |
fc_param = "fc=2" if use_two_fc else "fc=1" | |
return "lr_%.0E,%s,%s" % (learning_rate, conv_param, fc_param) | |
def main(): | |
# You can try adding some more learning rates | |
for learning_rate in [1E-4]: | |
# Include "False" as a value to try different model architectures | |
for use_two_fc in [True]: | |
for use_two_conv in [True]: | |
# Construct a hyperparameter string for each one (example: "lr_1E-3,fc=2,conv=2) | |
hparam = make_hparam_string(learning_rate, use_two_fc, use_two_conv) | |
print('Starting run for %s' % hparam) | |
# Actually run with the new settings | |
mnist_model(learning_rate, use_two_fc, use_two_conv, hparam) | |
if __name__ == '__main__': | |
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
@shekhovt Yes, the same problem to me. At this time, one dropout layer between two fully-connected neural network would make results better. Have a try.
embedding visualisation is not working for me. I can see both label and sprite image files, but tensorboard is unable to load them, it just says loading forever... I have downloaded the files from https://github.com/dandelionmane/tf-dev-summit-tensorboard-tutorial
labels file does not have a header in the first line, it simply has label(digit) in each row. Could that be a problem?
I am able to see all other graphs without any issue... Any help appreciated
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Beautiful relatable example for humans to comprehend the power of tensorboard. Switching to my own data use cases will be cool.