Skip to content

Instantly share code, notes, and snippets.

Last active March 10, 2021 23:09
Show Gist options
  • Star 0 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save techzizou/3f8cf31d041ec33670b3cc8eab5a5d41 to your computer and use it in GitHub Desktop.
Save techzizou/3f8cf31d041ec33670b3cc8eab5a5d41 to your computer and use it in GitHub Desktop.
import numpy as np
import os
import cv2
import six.moves.urllib as urllib
import sys
import tarfile
import tensorflow as tf
import zipfile
from google.colab.patches import cv2_imshow
from collections import defaultdict
from io import StringIO
import matplotlib
import pandas as pd
import matplotlib.pyplot as plt
from PIL import Image
# This is needed since the notebook is stored in the object_detection folder.
from object_detection.utils import ops as utils_ops
# This is needed to display the images.
%matplotlib inline
from object_detection.utils import label_map_util
from object_detection.utils import visualization_utils as vis_util
# Change these values for the model used
num_classes = 2 # Change this value to the number of classes of the model
IMAGE_SIZE = (12, 8) # Output display size as you want
# Use images in test dir
IMAGE_DIR = "/mydrive/images"
for file in os.listdir(IMAGE_DIR):
if file.endswith(".jpg") or file.endswith(".png"):
IMAGE_PATHS.append(os.path.join(IMAGE_DIR, file))
# Set paths to the trained model
PATH_TO_LABELS = '/content/gdrive/MyDrive/customTF1/data/label_map.pbtxt'
PATH_TO_CKPT = os.path.join(os.path.abspath("/content/gdrive/MyDrive/customTF1/data/inference_graph"), "frozen_inference_graph.pb")
# Set tensorflow graph
detection_graph = tf.Graph()
with detection_graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(PATH_TO_CKPT, 'rb') as fid:
serialized_graph =
tf.import_graph_def(od_graph_def, name='')
# Set categories
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(
label_map, max_num_classes=num_classes, use_display_name=True)
category_index = label_map_util.create_category_index(categories)
# Convert input image to a numpy array
def load_image_to_numpy(image):
(im_width, im_height) = image.size
return np.array(image.getdata()).reshape(
(im_height, im_width, 3)).astype(np.uint8)
# Inference pipeline
def run_inference(image, graph):
with graph.as_default():
with tf.Session() as sess:
# Get handles to input and output tensors
ops = tf.get_default_graph().get_operations()
all_tensor_names = { for op in ops for output in op.outputs}
tensor_dict = {}
for key in [
'num_detections', 'detection_boxes', 'detection_scores',
'detection_classes', 'detection_masks'
tensor_name = key + ':0'
if tensor_name in all_tensor_names:
tensor_dict[key] = tf.get_default_graph().get_tensor_by_name(
if 'detection_masks' in tensor_dict:
# The following processing is only for single image
detection_boxes = tf.squeeze(
tensor_dict['detection_boxes'], [0])
detection_masks = tf.squeeze(
tensor_dict['detection_masks'], [0])
# Reframe is required to translate mask from box coordinates to image coordinates and fit the image size.
real_num_detection = tf.cast(
tensor_dict['num_detections'][0], tf.int32)
detection_boxes = tf.slice(detection_boxes, [0, 0], [
real_num_detection, -1])
detection_masks = tf.slice(detection_masks, [0, 0, 0], [
real_num_detection, -1, -1])
detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks(
detection_masks, detection_boxes, image.shape[0], image.shape[1])
detection_masks_reframed = tf.cast(
tf.greater(detection_masks_reframed, .5), tf.uint8)
# Follow the convention by adding back the batch dimension
tensor_dict['detection_masks'] = tf.expand_dims(
detection_masks_reframed, 0)
image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0')
# Run inference
output_dict =,
feed_dict={image_tensor: np.expand_dims(image, 0)})
# all outputs are float32 numpy arrays, so convert types as appropriate
output_dict['num_detections'] = int(
output_dict['detection_classes'] = output_dict[
output_dict['detection_boxes'] = output_dict['detection_boxes'][0]
output_dict['detection_scores'] = output_dict['detection_scores'][0]
if 'detection_masks' in output_dict:
output_dict['detection_masks'] = output_dict['detection_masks'][0]
return output_dict
# Run the inference for each image
for image_path in IMAGE_PATHS:
image =
# Conver the image to numpy array
image_np = load_image_to_numpy(image)
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
# Perform the interence
output_dict = run_inference(image_np, detection_graph)
# Visualize
plt.figure(figsize=IMAGE_SIZE, dpi=200)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment