Skip to content

Instantly share code, notes, and snippets.

@tedwards
Created January 31, 2013 18:32
Show Gist options
  • Save tedwards/4685087 to your computer and use it in GitHub Desktop.
Save tedwards/4685087 to your computer and use it in GitHub Desktop.
Attempt at bayesian assessment of tickets store in TRAC
def service_bayes(aTicket, context_words, word_count, context_tickets, ticket_count):
'''
Input
aTicket: a ticket pulled from trac db stored as a list with the following fields
id, summary, type, status, service, created_date, lastupdated_date, reporter
context_words: a dictionary with the structure {service: {word: {count:integer}...}...}
used to correlate the number of times a word is associated with a service type
word_count: total number of words counted in all ticket summaries
context_tickets: a dictionary with the structure {service: {count:integer}...}
userd to correlate the number of times a ticket is associated with a service type
ticket_count: total number of tickets counted
Output
(top_key, top)
top_key: service type with the highest probability
top: probability associated with top_key
'''
priors={}
posteriors={}
for each in context_tickets.keys():
if context_tickets[each]>0:
priors[each]=float(context_tickets[each]['count'])/ticket_count
for each in context_words.keys():
posteriors[each]=0
normalizer=0
median_count=len(aTicket[1].split())
for aWord in aTicket[1].split():
if context_words[each].has_key(aWord):
likelihood=float(context_words[each][aWord]['count'])/context_words[each]['count']
else:
likelihood=1.0/word_count
l_h=0
for p in context_tickets.keys():
if context_words[p].has_key(aWord):
l_h+=float(context_words[p][aWord]['count'])/context_words[p]['count']
normalizer+=l_h*priors[p]
##print each,aWord,priors[each],likelihood,normalizer,(priors[each]*likelihood)/normalizer
posteriors[each]+=(priors[each]*likelihood)/normalizer
posteriors[each]=posteriors[each]/median_count
k=posteriors.keys()
k.sort()
top_key=k[0]
top=posteriors[top_key]
for p in k:
if posteriors[p]>top:
top=posteriors[p]
top_key=p
return (top_key, top)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment