Created
July 23, 2024 13:04
-
-
Save teju85/8d09c985d07faf40686ec0639ef06f36 to your computer and use it in GitHub Desktop.
Analyze the output "nvcc -time ..."
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
import argparse | |
import pandas as pd | |
TO_MS = { | |
" s" : 1000, | |
" ms" : 1, | |
" us" : 0.001, | |
" ns" : 0.000001, | |
} | |
def parse_args(): | |
argparser = argparse.ArgumentParser("`nvcc -time` visualizer") | |
argparser.add_argument("csv", type=str, | |
help="CSV file containing the output of `nvcc -time`") | |
args = argparser.parse_args() | |
return args | |
def phasewise(df): | |
df_by_phase = df.groupby(" phase name ") | |
phases = { | |
"phase" : [], | |
"time(ms)" : [], | |
} | |
for phase, grp in df_by_phase: | |
phases["phase"].append(phase) | |
phases["time(ms)"].append(grp["time(ms)"].sum()) | |
phase = pd.DataFrame(phases) | |
phase.sort_values(by="time(ms)", ascending=False, inplace=True) | |
print("Total cpu time (in ms) spent phase-wise:") | |
for ind in phase.index: | |
print("%32s : %13.3f" % (phase["phase"][ind], phase["time(ms)"][ind])) | |
pass | |
def filewise(df): | |
df_by_file = df.groupby("source file name ") | |
files = { | |
"file" : [], | |
"time(ms)" : [], | |
} | |
for file, grp in df_by_file: | |
files["file"].append(file) | |
files["time(ms)"].append(grp["time(ms)"].sum()) | |
file = pd.DataFrame(files) | |
file.sort_values(by="time(ms)", ascending=False, inplace=True) | |
breakdown = {} | |
print("Total cpu time (in ms) spent file-wise, across the top 10 files:") | |
for id, ind in enumerate(file.index): | |
f = file["file"][ind] | |
print("%13.3f : %s" % (file["time(ms)"][ind], f)) | |
breakdown[f] = df_by_file.get_group(f).sort_values(by="time(ms)", ascending=False) | |
if id > 10: | |
break | |
print("Breakdown of total cpu time (in ms) spent file-wise, across the top 10 files:") | |
for id, ind in enumerate(file.index): | |
f = file["file"][ind] | |
print(" %s:" % f) | |
for j in breakdown[f].index: | |
print(" %32s : %13.3f" % (breakdown[f][" phase name "][j], breakdown[f]["time(ms)"][j])) | |
if id > 10: | |
break | |
pass | |
def main(): | |
args = parse_args() | |
df = pd.read_csv(args.csv) | |
df["time(ms)"] = df.apply(lambda row: row[" metric "] * TO_MS[row[" unit"]], axis=1) | |
phasewise(df) | |
filewise(df) | |
if __name__ == "__main__": | |
main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment