Instantly share code, notes, and snippets.

View complex_power.py
from math import *
# requires x != 0
def radial(x,y):
r = (x**2 + y**2)**0.5
t = atan(1.0*y/x)
return r,t
def cartesian(r,t):
x = cos(t) * r
View triples2.py
import sys
from operator import itemgetter
# greatest common divisor
from fractions import gcd
# pre-computed triples
fh = open('triples.txt')
data = fh.read().strip().split('\n')
fh.close()
View triples2.py
import sys
from operator import itemgetter
# greatest common divisor
from fractions import gcd
# pre-computed triples
fh = open('triples.txt')
data = fh.read().strip().split('\n')
fh.close()
View triples.py
# greatest common divisor
from fractions import gcd
n = 100
# pre-compute squares
N = 15*n
L = [False]
L.extend([i**2 for i in range(1,N)])
rL = list()
View pi_by_trig.py
def next(S,C,T):
C2 = (0.5 * (1 + C))**0.5
S2 = 0.5 * S / C2
T2 = S/(1+C)
return S2,C2,T2
S = 1/2**0.5
C = S
T = S/C
n = 4
View area_method.py
'''
radius 1
inscribed square
a = (2/sqrt(2))^2 = 2
circumscribed square
A = 2^2 = 4
'''
a = 2
A = 4
s = "%5d %3.10f %3.10f"
View pi.py
p = 4.0/(2**0.5)
P=4
def one_round(t):
p,P = t
P2 = 2*p*P/(p+P)
p2 = (p*P2)**0.5
return p2,P2
s = '%3.10f %3.10f'
View numerical_int.py
from math import e, pi, sqrt
def get_xvalues(a,b,N):
dist = 1.0*b - 1.0*a
dx = dist/N
half = dx/2.0
R = [(a + dx * n + half) for n in range(N)]
return R, dx
def integrate(a,b,f,N=100):
View gamma2.py
from matplotlib import pyplot as plt
import numpy as np
p = 81
q = 219
def f(x):
return x**(p-1)*(1-x)**(q-1)
X = np.linspace(0,1,1000)
View friends.py
from random import choice as ch
R = range(1,366)
# report doubles, triples for a single run
def analyze(L):
L.sort()
rD = dict()
i = 0
while i < len(L) - 1: # up to penultimate item
v = L[i]