Skip to content

Instantly share code, notes, and snippets.

@terotil
Last active January 8, 2023 19:37
Show Gist options
  • Save terotil/3f83a473f372d31f55d5 to your computer and use it in GitHub Desktop.
Save terotil/3f83a473f372d31f55d5 to your computer and use it in GitHub Desktop.
JavaScript implementation of Bernoulli numbers algorithm as described by Ada Lovelace
node_modules/
*~

Ada's Bernoulli Number Function

Function to calculate Bernoulli numbers using the same algorightm Ada Lovelace used 1842 in (what is widely regarded as) the first ever computer program. Derivation of the formula and the Analytical Engine implementation appear in Note G of Lovelace's notes on Italian mathematician Luigi Menabrea's essay published 1842.

Usage

First clone this gist and install dependencies

git clone https://gist.github.com/terotil/3f83a473f372d31f55d5 ada-bernoulli
cd ada-bernoulli
npm install

All the Bernoulli numbers are yours to take!

var adaBernoulliNumber = require("../bernoulli");
adaBernoulliNumber(5);
// => 1/42

Development

Run tests

npm test
/**
* Expose `adaBernoulliNumber()`
*/
exports = module.exports = adaBernoulliNumber;
var Ratio = require("lb-ratio");
/**
* Calculate n:th Bernoulli number using the same algorightm Ada
* Lovelace used 1842 in the first ever computer program.
*
* Examples:
*
* adaBernoulliNumber(0);
* // => -0.5
*
* @param {Number} n
* @return {Ratio}
* @api public
*/
function adaBernoulliNumber(n) {
var termArgument, termBnIndex, termCount, termIndex, termSum, termVal;
switch (false) {
case !(n <= 0):
throw "Positive index expected, got " + n;
case !((n % 2) === 0):
// All even (in Ada's indexing) Bernoulli numbers are zero
return Ratio();
default:
// count of non-zero terms in addition to A0 in Ada's formula (8.)
termCount = (n - 1) / 2;
// value for which the n:th polynomial term equals 1 in Ada's formula (8.)
termArgument = termCount + 1;
// value of polynomial term A0
termSum = Ratio(-1, 2).multiply(Ratio(2 * termArgument - 1,
2 * termArgument + 1));
// sum the polynomial term values of further terms
for (termIndex = 0; termIndex <= termCount - 1; ++termIndex) {
termBnIndex = 2 * termIndex + 1; // the index of term's Bernoulli number
termVal = polynomialTerm(termBnIndex, termArgument);
termSum = termSum.add(adaBernoulliNumber(termBnIndex).multiply(termVal));
}
// Finding Bn using the equation (8.) results in all the terms
// on opposite side of Bn, thus the switch of sign.
return termSum.negate().simplify();
}
}
/**
* Calculate value of the polynomial multiplier term of given `degree`
* for given value of `n`.
*/
function polynomialTerm(degree, n) {
var denominator, i, numerator;
numerator = 1;
denominator = 1;
for (i = 0; i < degree; ++i) {
numerator *= 2 * n - i;
denominator *= 2 + i;
}
return Ratio(numerator, denominator).simplify();
}
{
"name": "ada-bernoulli",
"description": "Calculate Bernoulli numbers using the same algorightm Ada Lovelace used 1842 in the first ever computer program",
"version": "0.0.1",
"main": "./bernoulli.js",
"private": true,
"author": "Tero Tilus",
"homepage": "https://gist.github.com/terotil/3f83a473f372d31f55d5",
"license": "MIT",
"scripts": {
"test": "mocha",
"lint": "jshint --show-non-errors *.js"
},
"dependencies": {
"lb-ratio": "*"
},
"devDependencies": {
"mocha": "*",
"jshint": "*"
}
}
var assert = require("assert");
var Ratio = require("lb-ratio");
var adaBernoulliNumber = require("./bernoulli");
// Copied from http://oeis.org/A027641 and http://oeis.org/A027642
var bernoulliNumbers = {
0: Ratio( 1, 1),
1: Ratio( -1, 2),
2: Ratio( 1, 6),
3: Ratio( 0, 1),
4: Ratio( -1, 30),
5: Ratio( 0, 1),
6: Ratio( 1, 42),
7: Ratio( 0, 1),
8: Ratio( -1, 30),
9: Ratio( 0, 1),
10: Ratio( 5, 66),
11: Ratio( 0, 1),
12: Ratio( -691, 2730),
13: Ratio( 0, 1),
14: Ratio( 7, 6),
15: Ratio( 0, 1),
16: Ratio( -3617, 510),
17: Ratio( 0, 1),
18: Ratio( 43867, 798),
19: Ratio( 0, 1),
20: Ratio(-174611, 330)
};
describe('adaBernoulliNumber', function(){
var n;
var testFor = function(n) {
var abn, bn;
abn = adaBernoulliNumber(n - 1); // Ada's indexing is off-by-one
// compared to modern indexing of
// Bernoulli numbers.
bn = bernoulliNumbers[n];
it('should return '+bn.toString()+' as '+n+'th Bernoulli number', function(){
assert(abn.equals(bn), "expected "+bn.toString()+" got "+abn.toString());
});
};
for (n = 2; n <= 20; ++n) {
testFor(n);
}
});
@arindavis
Copy link

This is incredible! Great work!

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment