This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from pathlib import Path | |
from blurr.data.language_modeling import (AutoModelForCausalLM, BLURR, CausalLMStrategy, | |
HF_LMBeforeBatchTransform, HF_CausalLMInput, HF_TextBlock, noop) | |
from fastai.text.all import mask2idxs, L | |
from fastai.data.block import DataBlock | |
from fastai.text.data import get_text_files, LMDataLoader | |
# Splitter for train and validatation | |
def _parent_idxs(items, name): | |
def _inner(items, name): return mask2idxs(Path(o).parent.name == name for o in items) | |
return [i for n in L(name) for i in _inner(items,n)] | |
def ParentSplitter(train_name='train', valid_name='valid'): | |
"Split `items` from the grand parent folder names (`train_name` and `valid_name`)." | |
def _inner(o, **kwargs): | |
return _parent_idxs(o, train_name),_parent_idxs(o, valid_name) | |
return _inner | |
# Config bits | |
SAMPLE_CFG = { | |
'data_path': '/media/HD/data/pt_wiki/wiki/pt-2', | |
'bs': 4, | |
'seed': 42, | |
'is_lm': True, | |
'splitter': ParrentSplitter(), | |
'lang': 'pt', | |
'fp_16': True, | |
'drop_mult': 0.3, | |
'model_name': 'pierreguillou/gpt2-small-portuguese', | |
'max_seq_len': 72 | |
} | |
# Defining blurr objects | |
pretrained_model_name = "pierreguillou/gpt2-small-portuguese" | |
hf_arch, hf_config, hf_tokenizer, hf_model = BLURR.get_hf_objects(pretrained_model_name, model_cls=AutoModelForCausalLM) | |
if (hf_tokenizer.pad_token is None): hf_tokenizer.pad_token = '[PAD]' | |
before_batch_tfm = HF_LMBeforeBatchTransform(hf_arch, hf_config, hf_tokenizer, hf_model, | |
lm_strategy_cls=CausalLMStrategy) | |
blocks = [HF_TextBlock(before_batch_tfm=before_batch_tfm, input_return_type=HF_CausalLMInput), noop] | |
# Fastai like loaders | |
def text_loader_from_blocks(blocks, config, train="train", valid="valid"): | |
path = config["data_path"] | |
get_items = partial(get_text_files, folders=[train, valid]) | |
dblock = DataBlock(blocks=blocks, get_items=get_items, splitter=config["splitter"], dl_type=LMDataLoader) | |
return dblock.dataloaders(path, seq_len=config["max_seq_len"], verbose=True) | |
lm_loader = text_loader_from_blocks(blocks, SAMPLE_CFG) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment