-
-
Save thenoviceoof/7057d9eb9942a0e50ff469ab120a5289 to your computer and use it in GitHub Desktop.
Cleans up the data set specific to a re-analysis of '"What Went Right and What Went Wrong": An Analysis of 155 Postmortems from Game Development'
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python | |
################################################################################ | |
# Copyright (c) 2017 Nathan Hwang, "thenoviceoof" | |
# | |
# Permission is hereby granted, free of charge, to any person | |
# obtaining a copy of this software and associated documentation files | |
# (the "Software"), to deal in the Software without restriction, | |
# including without limitation the rights to use, copy, modify, merge, | |
# publish, distribute, sublicense, and/or sell copies of the Software, | |
# and to permit persons to whom the Software is furnished to do so, | |
# subject to the following conditions: | |
# | |
# The above copyright notice and this permission notice shall be | |
# included in all copies or substantial portions of the Software. | |
# | |
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | |
# EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | |
# MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | |
# NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | |
# BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | |
# ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | |
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | |
# SOFTWARE. | |
from argparse import ArgumentParser | |
from collections import defaultdict | |
import csv | |
################################################################################ | |
# Handle file arguments | |
parser = ArgumentParser() | |
parser.add_argument('input_path', default='raw_codes.csv') | |
parser.add_argument('output_path', default='clean_rows.csv') | |
args = parser.parse_args() | |
################################################################################ | |
# Data intake/cleanup | |
cases = defaultdict(list) | |
i = 0 | |
with open(args.input_path) as raw_codes: | |
csv_reader = csv.DictReader(raw_codes) | |
for row_number,row in enumerate(csv_reader): | |
# Remove bad data. | |
if row['COMPLETED'] == 'TRUE' and row['Ignore'] != 'TRUE': | |
# Clean up the rows a bit, remove data we don't use. | |
del row['Case'] | |
del row['Release Date'] | |
del row['Text'] | |
del row['Notes'] | |
row['Right/Wrong'] = row['Right/Wrong'] == 'What went right?' | |
del row['COMPLETED'] | |
del row['Ignore'] | |
# *Probably* doesn't mean anything, but uncertain. | |
del row['Category'] | |
cases[row['Case #']].append(row) | |
# Make sure we end up with 845 -734- (when we took out DP vars that | |
# were both false) cases. | |
assert sum(len(count) for count in cases.values()) == 845 | |
################################################################################ | |
# Collapse to one row per case | |
# Get the list of variables from the data. | |
codes = set() | |
for k,v in cases.iteritems(): | |
codes.update(case['Code'] for case in v) | |
# Sort alphabetically. | |
codes = sorted(list(codes)) | |
# 'dv' stands for dependent variable, 'iv' stands for independent variable. | |
assert len(codes) == 22 | |
codes = ['dv_' + code.lower().replace(' ', '_') for code in codes] | |
def most_common(key, list_of_dicts): | |
''' | |
Returns (most_common_value, number_of_times_value_shows_up, total_items) | |
''' | |
var_count = defaultdict(int) | |
for d in list_of_dicts: | |
var_count[d[key]] += 1 | |
value, count = max(var_count.iteritems(), key=lambda x:x[1]) | |
return value, count, len(list_of_dicts) | |
# Convert case lists to a single row. | |
out_cases = [] | |
iv_mapping = { | |
'iv_selfpublished': ['Self Published', 'Used Publisher'], | |
'iv_smallcompany': 'NUMDEVS', | |
'iv_singleplatform': ['Single Platform', 'Multiplatform'], | |
} | |
for k,v in cases.iteritems(): | |
initcase = v[0] | |
casenum = initcase['Case #'] | |
outcase = { | |
'case': casenum, | |
} | |
# Independent variables | |
# Have to choose the most common value, because the data is dark | |
# and full of terrors. Each row for a case does not match every | |
# other case row. | |
for iv,params in iv_mapping.iteritems(): | |
if not isinstance(params, list): | |
assert iv == 'iv_smallcompany' | |
# Just pass the number through. | |
value, vcount, tcount = most_common(params, v) | |
# Make sure there's at most one different value. | |
assert tcount - vcount <= 1, 'Too much variance %s' % casenum | |
# Do small vs big company checks. | |
if value == '0': | |
value = '' | |
elif int(value) <= 20: | |
value = True | |
else: | |
value = False | |
outcase[iv] = value | |
else: | |
# Decide whether there's data (if both are false). | |
pvalue, pcount, t1count = most_common(params[0], v) | |
nvalue, ncount, t2count = most_common(params[1], v) | |
# Do sanity checks on data. | |
assert t1count == t2count, 'Totals not matched %s' % casenum | |
tcount = t1count | |
assert tcount - pcount <= 1, 'Too much variance %s' % casenum | |
assert tcount - ncount <= 1, 'Too much variance %s' % casenum | |
value = None | |
if pvalue == 'FALSE' and nvalue == 'FALSE': | |
value = '' | |
elif pvalue == 'TRUE' and nvalue == 'FALSE': | |
value = True | |
elif pvalue == 'FALSE' and nvalue == 'TRUE': | |
value = False | |
else: | |
assert False, 'Should be impossible %s' % casenum | |
outcase[iv] = value | |
# Dependent variables. | |
for caserow in v: | |
casecode = caserow['Code'].lower().replace(' ', '_') | |
outcase['dv_' + casecode] = caserow['Right/Wrong'] | |
# If all the dependent variables aren't there, add dummy variables. | |
for code in codes: | |
if code not in outcase: | |
outcase[code] = '' | |
out_cases.append(outcase) | |
# Sort cases by case 'number'. | |
out_cases = sorted(out_cases, key=lambda x: int(x['case'])) | |
################################################################################ | |
# Output | |
# Define an ordering for the keys. | |
ordered_keys = (['case', | |
'iv_selfpublished', 'iv_smallcompany', 'iv_singleplatform'] + | |
codes) | |
with open(args.output_path, 'w') as out_csv: | |
csv_writer = csv.DictWriter(out_csv, ordered_keys) | |
csv_writer.writeheader() | |
for case in out_cases: | |
csv_writer.writerow(case) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment