Created
January 11, 2022 17:11
-
-
Save thesfinox/f51247306ed42aa365cb5ccb194fd02a to your computer and use it in GitHub Desktop.
Statsmodels regression (formula API)
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import matplotlib.pyplot as plt | |
import numpy as np | |
import pandas as pd | |
import seaborn as sns | |
import statsmodels.formula.api as sm | |
sns.set_theme() | |
####################### | |
# # | |
# ENTER THE DATA # | |
# # | |
####################### | |
x_values = [...] | |
y_values = [...] | |
data = pd.DataFrame({'x': np.array(x_values), 'y': np.array(y_values)}) | |
####################### | |
# # | |
# FIT THE DATA # | |
# # | |
####################### | |
# linear w/ intercept | |
results = sm.ols('y ~ x', data).fit() | |
# linear w/o intercept | |
# results = sm.ols('y ~ x -1', data).fit() | |
# quadratic w/intercept | |
# results = sm.ols('y ~ x + np.power(x,2)', data).fit() | |
# quadratic w/o intercept | |
# results = sm.ols('y ~ x + np.power(x,2) -1', data).fit() | |
# linear w/ intercept | |
print(results.summary(yname='y_values', | |
xname=['intercept', 'ang. coeff.'], | |
title='Regression w/ intercept' | |
) | |
) | |
# linear w/o intercept | |
# print(results.summary(yname='y_values', | |
# xname=['ang. coeff.'], | |
# title='Regression w/o intercept' | |
# ) | |
# ) | |
# quadratic w/ intercept | |
# print(results.summary(yname='y_values', | |
# xname=['intercept', 'ang. coeff.', 'quad. coeff.'], | |
# title='Regression w/ intercept' | |
# ) | |
# ) | |
# quadratic w/o intercept | |
# print(results.summary(yname='y_values', | |
# xname=['ang. coeff.', 'quad. coeff.'], | |
# title='Regression w/o intercept' | |
# ) | |
# ) | |
####################### | |
# # | |
# PLOT THE DATA # | |
# # | |
####################### | |
# linear w/ intercept | |
b, a = results.params.values | |
regression = lambda t: a * t + b | |
# linear w/o intercept | |
# a = results.params.values | |
# regression = lambda t: a * t | |
# quadratic w/ intercept | |
# c, b, a = results.params.values | |
# regression = lambda t: a * t * t + b * t + c | |
# quadratic w/o intercept | |
# b, a = results.params.values | |
# regression = lambda t: a * t * t + b * t | |
fig, ax = plt.subplots(figsize=(6, 5)) | |
x = np.linspace(min(x_values), max(x_values), num=100) | |
y = regression(x) | |
sns.scatterplot(x=data['x'], | |
y=data['y'], | |
color='tab:blue', | |
label='experimental', | |
ax=ax | |
) | |
sns.lineplot(x=x, | |
y=y, | |
linestyle='--', | |
color='tab:red', | |
label='best fit', | |
ax=ax | |
) | |
ax.set(xlabel='x-data', ylabel='y-data') | |
plt.tight_layout() | |
# plt.savefig('best_fit.pdf', dpi=300) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment