Load Python 3 PyTorch Networks in Python 2 for ROS deployment
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import argparse | |
import torch | |
def load_model_txt(model, path): | |
print('Loading...') | |
data_dict = {} | |
fin = open(path, 'r') | |
i = 0 | |
odd = 1 | |
prev_key = None | |
while True: | |
s = fin.readline().strip() | |
if not s: | |
break | |
if odd: | |
prev_key = s | |
else: | |
# print('Iter', i) | |
val = eval(s) | |
if type(val) != type([]): | |
data_dict[prev_key] = torch.FloatTensor([eval(s)])[0] | |
else: | |
data_dict[prev_key] = torch.FloatTensor(eval(s)) | |
i += 1 | |
odd = (odd + 1) % 2 | |
# Replace existing values with loaded | |
own_state = model.state_dict() | |
print('Items:', len(own_state.items())) | |
for k, v in data_dict.items(): | |
if not k in own_state: | |
print('Parameter', k, 'not found in own_state!!!') | |
else: | |
try: | |
own_state[k].copy_(v) | |
except: | |
print('Key:', k) | |
print('Old:', own_state[k]) | |
print('New:', v) | |
sys.exit(0) | |
print('Model loaded') | |
if __name__ == '__main__': | |
# Run this script in python2 or call it from your ROS node | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--txt_path') | |
args = parser.parse_args() | |
txt_path = args.txt_path | |
# TODO: Initialize model | |
# model = | |
load_model_txt(model, txt_path) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import sys | |
import argparse | |
import torch | |
def save_model_txt(model, path): | |
fout = open(path, 'w') | |
# for k, v in model.state_dict().items(): | |
for k, v in model.items(): | |
fout.write(str(k) + '\n') | |
if not isinstance(v, torch.Tensor): | |
fout.write(str(v) + '\n') | |
else: | |
fout.write(str(v.tolist()) + '\n') | |
fout.close() | |
if __name__ == '__main__': | |
# Run this script in python3 | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--weight_path') | |
args = parser.parse_args() | |
weight_path = args.weight_path | |
model = torch.load(weight_path) | |
save_model_txt(model, weight_path.replace('.pt', '.txt')) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment