Created
October 3, 2017 18:23
A Python Implementation of a Markov Chain Text Generator
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import random | |
class Markov(object): | |
def __init__(self, open_file): | |
self.dist = {} | |
self.open_file = open_file | |
self.words = self.split_to_words() | |
self.word_size = len(self.words) | |
self.create_distribution() | |
def split_to_words(self): | |
self.open_file.seek(0) | |
data = self.open_file.read() | |
words = data.split() | |
return words | |
def triples(self): | |
if len(self.words) < 3: | |
return | |
for i in range(len(self.words) - 2): | |
yield (self.words[i], self.words[i+1], self.words[i+2]) | |
def create_distribution(self): | |
for w1, w2, w3 in self.triples(): | |
key = (w1, w2) | |
if key in self.dist: | |
self.dist[key].append(w3) | |
else: | |
self.dist[key] = [w3] | |
print(self.dist) | |
def generate_song(self, size=25): | |
seed = random.randint(0, self.word_size-3) | |
seed_word, next_word = self.words[seed], self.words[seed+1] | |
w1, w2 = seed_word, next_word | |
gen_words = [] | |
for i in xrange(size): | |
gen_words.append(w1) | |
w1, w2 = w2, random.choice(self.dist[(w1, w2)]) | |
gen_words.append(w2) | |
return ' '.join(gen_words) | |
if(__name__ == "__main__"): | |
lyrics_file = open("lyrics.txt","r") | |
markov = Markov(lyrics_file) | |
print(markov.generate_song()) | |
# purposefully uncommented so you're obliged to read my blog post. :) | |
# https://authomaton.blogspot.co.uk/2017/10/machine-learning-but-funner-01-rap-bot.html |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment