Filterbank responses for low level vision
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
########################################################################## | |
# Maximum Response filterbank from | |
# http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html | |
# based on several edge and bar filters. | |
# Adapted to Python by Andreas Mueller amueller@ais.uni-bonn.de | |
# Share and enjoy | |
# | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from itertools import product, chain | |
from scipy.misc import lena | |
#from sklearn.externals.joblib import Parallel, delayed | |
def makeRFSfilters(radius=24, sigmas=[1, 2, 4], n_orientations=6): | |
""" Generates filters for RFS filterbank. | |
Parameters | |
---------- | |
radius : int, default 28 | |
radius of all filters. Size will be 2 * radius + 1 | |
sigmas : list of floats, default [1, 2, 4] | |
define scales on which the filters will be computed | |
n_orientations : int | |
number of fractions the half-angle will be divided in | |
Returns | |
------- | |
edge : ndarray (len(sigmas), n_orientations, 2*radius+1, 2*radius+1) | |
Contains edge filters on different scales and orientations | |
bar : ndarray (len(sigmas), n_orientations, 2*radius+1, 2*radius+1) | |
Contains bar filters on different scales and orientations | |
rot : ndarray (2, 2*radius+1, 2*radius+1) | |
contains two rotation invariant filters, Gaussian and Laplacian of | |
Gaussian | |
""" | |
def make_gaussian_filter(x, sigma, order=0): | |
if order > 2: | |
raise ValueError("Only orders up to 2 are supported") | |
# compute unnormalized Gaussian response | |
response = np.exp(-x ** 2 / (2. * sigma ** 2)) | |
if order == 1: | |
response = -response * x | |
elif order == 2: | |
response = response * (x ** 2 - sigma ** 2) | |
# normalize | |
response /= np.abs(response).sum() | |
return response | |
def makefilter(scale, phasey, pts, sup): | |
gx = make_gaussian_filter(pts[0, :], sigma=3 * scale) | |
gy = make_gaussian_filter(pts[1, :], sigma=scale, order=phasey) | |
f = (gx * gy).reshape(sup, sup) | |
# normalize | |
f /= np.abs(f).sum() | |
return f | |
support = 2 * radius + 1 | |
x, y = np.mgrid[-radius:radius + 1, radius:-radius - 1:-1] | |
orgpts = np.vstack([x.ravel(), y.ravel()]) | |
rot, edge, bar = [], [], [] | |
for sigma in sigmas: | |
for orient in xrange(n_orientations): | |
# Not 2pi as filters have symmetry | |
angle = np.pi * orient / n_orientations | |
c, s = np.cos(angle), np.sin(angle) | |
rotpts = np.dot(np.array([[c, -s], [s, c]]), orgpts) | |
edge.append(makefilter(sigma, 1, rotpts, support)) | |
bar.append(makefilter(sigma, 2, rotpts, support)) | |
length = np.sqrt(x ** 2 + y ** 2) | |
rot.append(make_gaussian_filter(length, sigma=10)) | |
rot.append(make_gaussian_filter(length, sigma=10, order=2)) | |
# reshape rot and edge | |
edge = np.asarray(edge) | |
edge = edge.reshape(len(sigmas), n_orientations, support, support) | |
bar = np.asarray(bar).reshape(edge.shape) | |
rot = np.asarray(rot)[:, np.newaxis, :, :] | |
return edge, bar, rot | |
def apply_filterbank(img, filterbank): | |
from scipy.ndimage import convolve | |
result = [] | |
for battery in filterbank: | |
response = [convolve(img, filt) for filt in battery] | |
#response = Parallel(n_jobs=5)( | |
#delayed(convolve)(img, filt) for filt in battery) | |
max_response = np.max(response, axis=0) | |
result.append(max_response) | |
print("battery finished") | |
return result | |
if __name__ == "__main__": | |
sigmas = [1, 2, 4] | |
n_sigmas = len(sigmas) | |
n_orientations = 6 | |
edge, bar, rot = makeRFSfilters(sigmas=sigmas, | |
n_orientations=n_orientations) | |
n = n_sigmas * n_orientations | |
# plot filters | |
# 2 is for bar / edge, + 1 for rot | |
fig, ax = plt.subplots(n_sigmas * 2 + 1, n_orientations) | |
for k, filters in enumerate([bar, edge]): | |
for i, j in product(xrange(n_sigmas), xrange(n_orientations)): | |
row = i + k * n_sigmas | |
ax[row, j].imshow(filters[i, j, :, :], cmap=plt.cm.gray) | |
ax[row, j].set_xticks(()) | |
ax[row, j].set_yticks(()) | |
ax[-1, 0].imshow(rot[0, 0], cmap=plt.cm.gray) | |
ax[-1, 0].set_xticks(()) | |
ax[-1, 0].set_yticks(()) | |
ax[-1, 1].imshow(rot[1, 0], cmap=plt.cm.gray) | |
ax[-1, 1].set_xticks(()) | |
ax[-1, 1].set_yticks(()) | |
for i in xrange(2, n_orientations): | |
ax[-1, i].set_visible(False) | |
# apply filters to lena | |
img = lena().astype(np.float) | |
filterbank = chain(edge, bar, rot) | |
n_filters = len(edge) + len(bar) + len(rot) | |
response = apply_filterbank(img, filterbank) | |
# plot responses | |
fig2, ax2 = plt.subplots(3, 3) | |
for axes, res in zip(ax2.ravel(), response): | |
axes.imshow(res, cmap=plt.cm.gray) | |
axes.set_xticks(()) | |
axes.set_yticks(()) | |
ax2[-1, -1].set_visible(False) | |
plt.show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment