Last active
March 31, 2020 19:46
-
-
Save tigercosmos/050bc988ba1be3279a1733d94540b686 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# ------------------------------------------------------------------------------- | |
# Agent-based SIR Model | |
# Author: Liu An Chi @tigercosmos | |
# ------------------------------------------------------------------------------- | |
from pylab import * | |
from scipy import interpolate | |
from random import random | |
from math import log | |
from enum import Enum | |
# Exponential Distribution | |
def InfectiousEvent(rate, dt): | |
try: | |
return -log(random()) / rate*1000 < dt | |
except ZeroDivisionError: | |
return 0 | |
def RecoveredEvent(rate, dt): | |
try: | |
return -log(random()) / rate*1.25 < dt | |
except ZeroDivisionError: | |
return 0 | |
# Parameters | |
Beta = 1 | |
Gamma = 0.5 | |
N = 1000 | |
day = 20 | |
I0 = 10 | |
class State(Enum): | |
SUS = 1 | |
INF = 2 | |
RECV = 3 | |
class Person: | |
def __init__(self, id, state): | |
self.id = id | |
self.state = state | |
def step(self, people, dt=1): | |
if self.state == State.SUS: | |
new_beta = 0 | |
# suppose that touch all people, | |
# and add all's beta as new beta | |
for person in people: | |
if person.state == State.INF: | |
new_beta += Beta | |
if InfectiousEvent(new_beta, dt): | |
self.state = State.INF | |
elif self.state == State.INF: | |
if RecoveredEvent(Gamma, dt): | |
self.state = State.RECV | |
def sir_count(people): | |
s = 0 | |
i = 0 | |
r = 0 | |
for p in people: | |
if p.state == State.SUS: | |
s += 1 | |
elif p.state == State.INF: | |
i += 1 | |
else: | |
r += 1 | |
return s, i, r | |
if __name__ == '__main__': | |
LS = [] | |
LI = [] | |
LR = [] | |
people = [] | |
for i in range(0, N - I0): | |
people.append(Person(i, State.SUS)) | |
for i in range(0, I0): | |
people.append(Person(i, State.INF)) | |
for day in range(0, day + 1): | |
s, i, r = sir_count(people) | |
LS.append(s) | |
LI.append(i) | |
LR.append(r) | |
print(s, i, r) | |
for person in people: | |
person.step(people) | |
# Draw the figure | |
t = arange(0, day + 1, 1) | |
ls = interpolate.InterpolatedUnivariateSpline(t, LS) | |
li = interpolate.InterpolatedUnivariateSpline(t, LI) | |
lr = interpolate.InterpolatedUnivariateSpline(t, LR) | |
tnew = arange(0.001, day, 1/20) | |
lsnew = ls(tnew) | |
linew = li(tnew) | |
lrnew = lr(tnew) | |
line1, = plot(tnew, lsnew, label='S') | |
line2, = plot(tnew, linew, label='I') | |
line3, = plot(tnew, lrnew, label='R') | |
legend(handles=[line1, line2, line3], | |
shadow=True, loc=(0.85, 0.4)) # handle | |
line11, = plot(t, LS, '.') | |
line22, = plot(t, LI, '.') | |
line33, = plot(t, LR, '.') | |
text(16.5, 240, 'Beta=%g' % (Beta)) | |
text(16.5, 190, 'Gamma=%g' % (Gamma)) | |
text(16.5, 150, 'Infected:%d' % (I0)) | |
v = [0, day, 0, N] | |
axis(v) | |
xlabel('time (days)') | |
ylabel('Population(people)') | |
title('SIR Model') | |
grid(True) | |
show() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment