Skip to content

Instantly share code, notes, and snippets.

@tilarids
Last active July 19, 2016 22:01
Show Gist options
  • Save tilarids/a47fd736d9e61750072a5a83adcf1881 to your computer and use it in GitHub Desktop.
Save tilarids/a47fd736d9e61750072a5a83adcf1881 to your computer and use it in GitHub Desktop.
Minimized TensorFlow regression model
import os.path
import time
import numpy as np
import tensorflow as tf
from tensorflow.python.training import saver as saver_lib
from tensorflow.python.training import summary_io
# Basic model parameters as external flags.
flags = tf.app.flags
FLAGS = flags.FLAGS
flags.DEFINE_float('learning_rate', 0.01, 'Initial learning rate.')
flags.DEFINE_integer('num_steps', 10000, 'Number of steps to run trainer.')
flags.DEFINE_integer('hidden_layers', 5, 'Number of hidden layers.')
flags.DEFINE_integer('hidden_layers_size', 64, 'Number of units in hidden layers.')
flags.DEFINE_integer('batch_size', 10, 'Batch size. ')
def input_pipeline(batch_size):
label = tf.constant([[10.1], [1.3], [12.5], [372.0], [443.0], [0.3], [23.45], [1.42], [0.0], [56.7]], dtype=tf.float32)
example = tf.constant([[11.0], [11.0], [13.0], [370.0], [422.0], [125.0], [25.0], [15.0], [100.0], [55.0]], dtype=tf.float32)
example, label = tf.train.slice_input_producer(
[example, label],
shuffle=True,
capacity=30+3*batch_size)
example_batch, label_batch = tf.train.batch(
[example, label],
batch_size=batch_size,
capacity=30+3*batch_size)
return example_batch, label_batch
def input_fn():
return input_pipeline(FLAGS.batch_size)
def model_fn(features, target):
# features = tf.Print(features, [features], message="This is features: ")
# target = tf.Print(target, [target], message="This is target: ")
# return {}, tf.constant(0), tf.group(features, target)
out = tf.contrib.layers.stack(features,
tf.contrib.layers.fully_connected,
[FLAGS.hidden_layers_size] * FLAGS.hidden_layers,
activation_fn=tf.nn.relu)
prediction = tf.contrib.layers.fully_connected(
out,
num_outputs=1,
activation_fn=None)
loss = tf.nn.l2_loss(prediction - target)
train_op = tf.contrib.layers.optimize_loss(
loss,
tf.contrib.framework.get_global_step(),
optimizer='Adagrad',
learning_rate=FLAGS.learning_rate)
rmse, update_op = tf.contrib.metrics.streaming_root_mean_squared_error(prediction, target)
tf.scalar_summary("rmse", rmse)
return prediction, loss, tf.group(train_op, update_op)
def create_eval_metrics():
return {'rmse': tf.contrib.metrics.streaming_root_mean_squared_error}
def main(_):
model_dir = time.strftime("/tmp/tf_regression/%m-%d-%H-%M-%S", time.gmtime())
estimator = tf.contrib.learn.Estimator(model_fn=model_fn, model_dir=model_dir)
estimator.fit(
input_fn=input_fn,
steps=FLAGS.num_steps,
monitors=[])
if __name__ == '__main__':
tf.app.run()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment