Create a gist now

Instantly share code, notes, and snippets.

horizon plot examples
require(lattice)
require(latticeExtra)
require(directlabels)
require(reshape2)
require(quantmod)
require(PerformanceAnalytics)
data(managers)
managers[which(is.na(managers),arr.ind=TRUE)[,1],
unique(which(is.na(managers),arr.ind=TRUE)[,2])] = 0
testprice <- cumprod(1+managers)-1
testdf <- as.data.frame(cbind(index(testprice),coredata(testprice)),stringsAsFactors=FALSE)
testmelt <- melt(testdf,id.vars=1)
colnames(testmelt) <- c("date","series","growth")
testmelt[,"date"] <- as.Date(testmelt[,"date"])
#just plain old xyplot from xts package examples
direct.label(
xyplot(testprice,
lwd=2,
screens=1,
col = c(brewer.pal(n=8,"Dark2")[1:6],brewer.pal(n=9,"PuBu")[5:9]),
panel = function(x, y, ...) {
panel.xyplot(x, y, ...)
},
scales = list(tck = c(1,0), y = list(draw = TRUE,relation = "same", alternating = FALSE)),
xlab = NULL,
main="Performance Since 1996 or Inception"),
list(last.bumpup,hjust=0.75, cex=0.8))
#get panel in row 1 and column 1, since only one panel because screens = 1
trellis.focus("panel", 1, 1, highlight = FALSE)
panel.refline(h = pretty(coredata(testprice)), col = "gray70", lty = 3)
#does not even qualify but here as another example
xyplot(testprice,
scales = list(tck = c(1,0), y = list(draw = TRUE,relation = "same", alternating = FALSE)),
panel = function(x, y, ...) {
panel.grid(col = "grey", lty = 3)
panel.xyplot(x, y, ...)
},
layout= c(1,NCOL(testprice)))
xyplot(testprice,
col = c(brewer.pal(n=8,"Dark2")[1:6],brewer.pal(n=9,"PuBu")[5:9]),
screens = colnames(testprice),
lwd = 3,
strip = FALSE, strip.left = TRUE,
scales = list(x = list(tck = c(1,0), alternating = FALSE),
y = list(tck = c(0,1), draw = TRUE, relation = "same", alternating = 2)),
panel = function(x, y, ...) {
panel.refline(h = pretty(coredata(testprice)), col = "gray70", lty = 3)
panel.xyplot(x, y, ...)
},
main = "Performance Since 1996 or Inception")
#first horizonplot with little adjustment
horizonplot(testprice, horizonscale = 1,
#turn off ticks on top and do not draw y ticks or axis
scales = list(tck = c(1,0), y = list(draw = FALSE,relation = "same")),
#draw strip on top
strip=TRUE,
#do not draw strip to left since we have strip = TRUE above
strip.left=FALSE,
#do standard horizon but also add horizontal white grid lines
panel = function(x, ...) {
panel.horizonplot(x, ...)
#here we draw white horizontal grid
#h = 3 means 3 lines so will divide into fourths
#v = 0 will not draw any vertical grid lines
panel.grid(h=3, v=0,col = "white", lwd=1,lty = 1)
},
layout=c(1,ncol(testprice)),
main = "Performance Since 1996 or Inception")
## amended from horizonplot example given in documentation
horizonplot(testprice,
scales = list(tck = c(1,0), y = list(draw = FALSE,relation = "same")),
origin = 0,
horizonscale = 1,
colorkey = FALSE,
panel = function(x, ...) {
panel.horizonplot(x, ...)
panel.grid(h=3, v=0,col = "white", lwd=1,lty = 3)
},
ylab = list(rev(colnames(testprice)), rot = 0, cex = 0.8, pos = 3),
xlab = NULL,
par.settings=theEconomist.theme(box = "gray70"),
strip.left = FALSE,
layout = c(1,ncol(testprice)),
main = "Performance Since 1996 or Inception")
#horizon plot version of http://www.mebanefaber.com/timing-model/
#do horizon of percent above or below 10 month or 200 day moving average
tckrs <- c("VTI","VEU","IEF","VNQ","DBC")
getSymbols(tckrs, from = "2010-12-31")
#do horizon of percent above or below 10 month or 200 day moving average
prices <- get(tckrs[1])[,4]
for (i in 2:length(tckrs)) {
prices <- merge(prices,get(tckrs[i])[,4])
}
colnames(prices) <- tckrs
n=200
#get percent above or below
pctdiff <- (prices / apply(prices, MARGIN = 2, FUN = runMean, n = n) - 1)[n:NROW(prices),]
horizonplot(pctdiff,
scales = list(tck = c(1,0), y = list(draw = FALSE,relation = "same")),
origin = 0,
horizonscale = 0.05,
colorkey = FALSE,
panel = function(x, ...) {
panel.horizonplot(x, ...)
panel.grid(h=3, v=0,col = "white", lwd=1,lty = 3)
},
ylab = list(rev(colnames(prices)), rot = 0, cex = 0.8, pos = 3),
xlab = NULL,
par.settings=theEconomist.theme(box = "gray70"),
strip.left = FALSE,
layout = c(1,ncol(prices)),
main = "Percent Above or Below 200 Days Moving Average")
# for one more example, let's do a mirror horizon plot
horizonplot.offset <- function(x,horizon.type="offset",horizonscale=0.05,title=NA,alpha=0.4){
#get the positive and negative plots for the offset chart
#very similar to the mirror chart above
#except the negative values will be moved to the top of y range
#and inverted
ppos<-
xyplot(x,ylim=c(0,horizonscale),origin=0,
par.settings=theEconomist.theme(box="transparent"),
lattice.options=theEconomist.opts(),
xlab=NULL,ylab=NULL,
panel = function(x,y,...){
#
for (i in 0:round(max(y)/horizonscale,0))
panel.xyarea(x,y=ifelse(y>0,y,NA)-(horizonscale * i),col="green",border="green",col.line="green",alpha=alpha,lwd=2,
scales = list(y=list(draw=FALSE)),...)
},
main=title)
pneg <-
xyplot(x,ylim=c(0,horizonscale),origin=horizonscale,
panel=function(x, y ,...){
for (i in 0:round(min(y)/-horizonscale,0)) {
panel.xyarea(x,y=horizonscale+ifelse(y<0,y,NA)+(horizonscale*i),col.line="red",border="red",col="red",lwd=2,alpha=alpha,...)
}
})
return(ppos+pneg)
}
horizonplot.offset(pctdiff, title = "Percent Difference from 200 Day Moving Average")
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment