|
(function (global, factory) { |
|
typeof exports === 'object' && typeof module !== 'undefined' ? factory(exports) : |
|
typeof define === 'function' && define.amd ? define(['exports'], factory) : |
|
(factory((global.d3 = global.d3 || {}))); |
|
}(this, (function (exports) { 'use strict'; |
|
|
|
function defaultSeparation(a, b) { |
|
return a.parent === b.parent ? 1 : 2; |
|
} |
|
|
|
function meanX(children) { |
|
return children.reduce(meanXReduce, 0) / children.length; |
|
} |
|
|
|
function meanXReduce(x, c) { |
|
return x + c.x; |
|
} |
|
|
|
function maxY(children) { |
|
return 1 + children.reduce(maxYReduce, 0); |
|
} |
|
|
|
function maxYReduce(y, c) { |
|
return Math.max(y, c.y); |
|
} |
|
|
|
function leafLeft(node) { |
|
var children; |
|
while (children = node.children) node = children[0]; |
|
return node; |
|
} |
|
|
|
function leafRight(node) { |
|
var children; |
|
while (children = node.children) node = children[children.length - 1]; |
|
return node; |
|
} |
|
|
|
var cluster = function() { |
|
var separation = defaultSeparation, |
|
dx = 1, |
|
dy = 1, |
|
nodeSize = false; |
|
|
|
function cluster(root) { |
|
var previousNode, |
|
x = 0; |
|
|
|
// First walk, computing the initial x & y values. |
|
root.eachAfter(function(node) { |
|
var children = node.children; |
|
if (children) { |
|
node.x = meanX(children); |
|
node.y = maxY(children); |
|
} else { |
|
node.x = previousNode ? x += separation(node, previousNode) : 0; |
|
node.y = 0; |
|
previousNode = node; |
|
} |
|
}); |
|
|
|
var left = leafLeft(root), |
|
right = leafRight(root), |
|
x0 = left.x - separation(left, right) / 2, |
|
x1 = right.x + separation(right, left) / 2; |
|
|
|
// Second walk, normalizing x & y to the desired size. |
|
return root.eachAfter(nodeSize ? function(node) { |
|
node.x = (node.x - root.x) * dx; |
|
node.y = (root.y - node.y) * dy; |
|
} : function(node) { |
|
node.x = (node.x - x0) / (x1 - x0) * dx; |
|
node.y = (1 - (root.y ? node.y / root.y : 1)) * dy; |
|
}); |
|
} |
|
|
|
cluster.separation = function(x) { |
|
return arguments.length ? (separation = x, cluster) : separation; |
|
}; |
|
|
|
cluster.size = function(x) { |
|
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? null : [dx, dy]); |
|
}; |
|
|
|
cluster.nodeSize = function(x) { |
|
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], cluster) : (nodeSize ? [dx, dy] : null); |
|
}; |
|
|
|
return cluster; |
|
}; |
|
|
|
var node_each = function(callback) { |
|
var node = this, current, next = [node], children, i, n; |
|
do { |
|
current = next.reverse(), next = []; |
|
while (node = current.pop()) { |
|
callback(node), children = node.children; |
|
if (children) for (i = 0, n = children.length; i < n; ++i) { |
|
next.push(children[i]); |
|
} |
|
} |
|
} while (next.length); |
|
return this; |
|
}; |
|
|
|
var node_eachBefore = function(callback) { |
|
var node = this, nodes = [node], children, i; |
|
while (node = nodes.pop()) { |
|
callback(node), children = node.children; |
|
if (children) for (i = children.length - 1; i >= 0; --i) { |
|
nodes.push(children[i]); |
|
} |
|
} |
|
return this; |
|
}; |
|
|
|
var node_eachAfter = function(callback) { |
|
var node = this, nodes = [node], next = [], children, i, n; |
|
while (node = nodes.pop()) { |
|
next.push(node), children = node.children; |
|
if (children) for (i = 0, n = children.length; i < n; ++i) { |
|
nodes.push(children[i]); |
|
} |
|
} |
|
while (node = next.pop()) { |
|
callback(node); |
|
} |
|
return this; |
|
}; |
|
|
|
var node_sum = function(value) { |
|
return this.eachAfter(function(node) { |
|
var sum = +value(node.data) || 0, |
|
children = node.children, |
|
i = children && children.length; |
|
while (--i >= 0) sum += children[i].value; |
|
node.value = sum; |
|
}); |
|
}; |
|
|
|
var node_sort = function(compare) { |
|
return this.eachBefore(function(node) { |
|
if (node.children) { |
|
node.children.sort(compare); |
|
} |
|
}); |
|
}; |
|
|
|
var node_path = function(end) { |
|
var start = this, |
|
ancestor = leastCommonAncestor(start, end), |
|
nodes = [start]; |
|
while (start !== ancestor) { |
|
start = start.parent; |
|
nodes.push(start); |
|
} |
|
var k = nodes.length; |
|
while (end !== ancestor) { |
|
nodes.splice(k, 0, end); |
|
end = end.parent; |
|
} |
|
return nodes; |
|
}; |
|
|
|
function leastCommonAncestor(a, b) { |
|
if (a === b) return a; |
|
var aNodes = a.ancestors(), |
|
bNodes = b.ancestors(), |
|
c = null; |
|
a = aNodes.pop(); |
|
b = bNodes.pop(); |
|
while (a === b) { |
|
c = a; |
|
a = aNodes.pop(); |
|
b = bNodes.pop(); |
|
} |
|
return c; |
|
} |
|
|
|
var node_ancestors = function() { |
|
var node = this, nodes = [node]; |
|
while (node = node.parent) { |
|
nodes.push(node); |
|
} |
|
return nodes; |
|
}; |
|
|
|
var node_descendants = function() { |
|
var nodes = []; |
|
this.each(function(node) { |
|
nodes.push(node); |
|
}); |
|
return nodes; |
|
}; |
|
|
|
var node_leaves = function() { |
|
var leaves = []; |
|
this.eachBefore(function(node) { |
|
if (!node.children) { |
|
leaves.push(node); |
|
} |
|
}); |
|
return leaves; |
|
}; |
|
|
|
var node_links = function() { |
|
var root = this, links = []; |
|
root.each(function(node) { |
|
if (node !== root) { // Don’t include the root’s parent, if any. |
|
links.push({source: node.parent, target: node}); |
|
} |
|
}); |
|
return links; |
|
}; |
|
|
|
function hierarchy(data, children) { |
|
var root = new Node(data), |
|
valued = +data.value && (root.value = data.value), |
|
node, |
|
nodes = [root], |
|
child, |
|
childs, |
|
i, |
|
n; |
|
|
|
if (children == null) children = defaultChildren; |
|
|
|
while (node = nodes.pop()) { |
|
if (valued) node.value = +node.data.value; |
|
if ((childs = children(node.data)) && (n = childs.length)) { |
|
node.children = new Array(n); |
|
for (i = n - 1; i >= 0; --i) { |
|
nodes.push(child = node.children[i] = new Node(childs[i])); |
|
child.parent = node; |
|
child.depth = node.depth + 1; |
|
} |
|
} |
|
} |
|
|
|
return root.eachBefore(computeHeight); |
|
} |
|
|
|
function node_copy() { |
|
return hierarchy(this).eachBefore(copyData); |
|
} |
|
|
|
function defaultChildren(d) { |
|
return d.children; |
|
} |
|
|
|
function copyData(node) { |
|
node.data = node.data.data; |
|
} |
|
|
|
function computeHeight(node) { |
|
var height = 0; |
|
do node.height = height; |
|
while ((node = node.parent) && (node.height < ++height)); |
|
} |
|
|
|
function Node(data) { |
|
this.data = data; |
|
this.depth = |
|
this.height = 0; |
|
this.parent = null; |
|
} |
|
|
|
Node.prototype = hierarchy.prototype = { |
|
constructor: Node, |
|
each: node_each, |
|
eachAfter: node_eachAfter, |
|
eachBefore: node_eachBefore, |
|
sum: node_sum, |
|
sort: node_sort, |
|
path: node_path, |
|
ancestors: node_ancestors, |
|
descendants: node_descendants, |
|
leaves: node_leaves, |
|
links: node_links, |
|
copy: node_copy |
|
}; |
|
|
|
function Node$2(value) { |
|
this._ = value; |
|
this.next = null; |
|
} |
|
|
|
var shuffle = function(array) { |
|
var i, |
|
n = (array = array.slice()).length, |
|
head = null, |
|
node = head; |
|
|
|
while (n) { |
|
var next = new Node$2(array[n - 1]); |
|
if (node) node = node.next = next; |
|
else node = head = next; |
|
array[i] = array[--n]; |
|
} |
|
|
|
return { |
|
head: head, |
|
tail: node |
|
}; |
|
}; |
|
|
|
var enclose = function(circles) { |
|
return encloseN(shuffle(circles), []); |
|
}; |
|
|
|
function encloses(a, b) { |
|
var dx = b.x - a.x, |
|
dy = b.y - a.y, |
|
dr = a.r - b.r; |
|
return dr * dr + 1e-6 > dx * dx + dy * dy; |
|
} |
|
|
|
// Returns the smallest circle that contains circles L and intersects circles B. |
|
function encloseN(L, B) { |
|
var circle, |
|
l0 = null, |
|
l1 = L.head, |
|
l2, |
|
p1; |
|
|
|
switch (B.length) { |
|
case 1: circle = enclose1(B[0]); break; |
|
case 2: circle = enclose2(B[0], B[1]); break; |
|
case 3: circle = enclose3(B[0], B[1], B[2]); break; |
|
} |
|
|
|
while (l1) { |
|
p1 = l1._, l2 = l1.next; |
|
if (!circle || !encloses(circle, p1)) { |
|
|
|
// Temporarily truncate L before l1. |
|
if (l0) L.tail = l0, l0.next = null; |
|
else L.head = L.tail = null; |
|
|
|
B.push(p1); |
|
circle = encloseN(L, B); // Note: reorders L! |
|
B.pop(); |
|
|
|
// Move l1 to the front of L and reconnect the truncated list L. |
|
if (L.head) l1.next = L.head, L.head = l1; |
|
else l1.next = null, L.head = L.tail = l1; |
|
l0 = L.tail, l0.next = l2; |
|
|
|
} else { |
|
l0 = l1; |
|
} |
|
l1 = l2; |
|
} |
|
|
|
L.tail = l0; |
|
return circle; |
|
} |
|
|
|
function enclose1(a) { |
|
return { |
|
x: a.x, |
|
y: a.y, |
|
r: a.r |
|
}; |
|
} |
|
|
|
function enclose2(a, b) { |
|
var x1 = a.x, y1 = a.y, r1 = a.r, |
|
x2 = b.x, y2 = b.y, r2 = b.r, |
|
x21 = x2 - x1, y21 = y2 - y1, r21 = r2 - r1, |
|
l = Math.sqrt(x21 * x21 + y21 * y21); |
|
return { |
|
x: (x1 + x2 + x21 / l * r21) / 2, |
|
y: (y1 + y2 + y21 / l * r21) / 2, |
|
r: (l + r1 + r2) / 2 |
|
}; |
|
} |
|
|
|
function enclose3(a, b, c) { |
|
var x1 = a.x, y1 = a.y, r1 = a.r, |
|
x2 = b.x, y2 = b.y, r2 = b.r, |
|
x3 = c.x, y3 = c.y, r3 = c.r, |
|
a2 = 2 * (x1 - x2), |
|
b2 = 2 * (y1 - y2), |
|
c2 = 2 * (r2 - r1), |
|
d2 = x1 * x1 + y1 * y1 - r1 * r1 - x2 * x2 - y2 * y2 + r2 * r2, |
|
a3 = 2 * (x1 - x3), |
|
b3 = 2 * (y1 - y3), |
|
c3 = 2 * (r3 - r1), |
|
d3 = x1 * x1 + y1 * y1 - r1 * r1 - x3 * x3 - y3 * y3 + r3 * r3, |
|
ab = a3 * b2 - a2 * b3, |
|
xa = (b2 * d3 - b3 * d2) / ab - x1, |
|
xb = (b3 * c2 - b2 * c3) / ab, |
|
ya = (a3 * d2 - a2 * d3) / ab - y1, |
|
yb = (a2 * c3 - a3 * c2) / ab, |
|
A = xb * xb + yb * yb - 1, |
|
B = 2 * (xa * xb + ya * yb + r1), |
|
C = xa * xa + ya * ya - r1 * r1, |
|
r = (-B - Math.sqrt(B * B - 4 * A * C)) / (2 * A); |
|
return { |
|
x: xa + xb * r + x1, |
|
y: ya + yb * r + y1, |
|
r: r |
|
}; |
|
} |
|
|
|
function place(a, b, c) { |
|
var ax = a.x, |
|
ay = a.y, |
|
da = b.r + c.r, |
|
db = a.r + c.r, |
|
dx = b.x - ax, |
|
dy = b.y - ay, |
|
dc = dx * dx + dy * dy; |
|
if (dc) { |
|
var x = 0.5 + ((db *= db) - (da *= da)) / (2 * dc), |
|
y = Math.sqrt(Math.max(0, 2 * da * (db + dc) - (db -= dc) * db - da * da)) / (2 * dc); |
|
c.x = ax + x * dx + y * dy; |
|
c.y = ay + x * dy - y * dx; |
|
} else { |
|
c.x = ax + db; |
|
c.y = ay; |
|
} |
|
} |
|
|
|
function intersects(a, b) { |
|
var dx = b.x - a.x, |
|
dy = b.y - a.y, |
|
dr = a.r + b.r; |
|
return dr * dr > dx * dx + dy * dy; |
|
} |
|
|
|
function distance2(circle, x, y) { |
|
var dx = circle.x - x, |
|
dy = circle.y - y; |
|
return dx * dx + dy * dy; |
|
} |
|
|
|
function Node$1(circle) { |
|
this._ = circle; |
|
this.next = null; |
|
this.previous = null; |
|
} |
|
|
|
function packEnclose(circles) { |
|
if (!(n = circles.length)) return 0; |
|
|
|
var a, b, c, n; |
|
|
|
// Place the first circle. |
|
a = circles[0], a.x = 0, a.y = 0; |
|
if (!(n > 1)) return a.r; |
|
|
|
// Place the second circle. |
|
b = circles[1], a.x = -b.r, b.x = a.r, b.y = 0; |
|
if (!(n > 2)) return a.r + b.r; |
|
|
|
// Place the third circle. |
|
place(b, a, c = circles[2]); |
|
|
|
// Initialize the weighted centroid. |
|
var aa = a.r * a.r, |
|
ba = b.r * b.r, |
|
ca = c.r * c.r, |
|
oa = aa + ba + ca, |
|
ox = aa * a.x + ba * b.x + ca * c.x, |
|
oy = aa * a.y + ba * b.y + ca * c.y, |
|
cx, cy, i, j, k, sj, sk; |
|
|
|
// Initialize the front-chain using the first three circles a, b and c. |
|
a = new Node$1(a), b = new Node$1(b), c = new Node$1(c); |
|
a.next = c.previous = b; |
|
b.next = a.previous = c; |
|
c.next = b.previous = a; |
|
|
|
// Attempt to place each remaining circle… |
|
pack: for (i = 3; i < n; ++i) { |
|
place(a._, b._, c = circles[i]), c = new Node$1(c); |
|
|
|
// If there are only three elements in the front-chain… |
|
if ((k = a.previous) === (j = b.next)) { |
|
// If the new circle intersects the third circle, |
|
// rotate the front chain to try the next position. |
|
if (intersects(j._, c._)) { |
|
a = b, b = j, --i; |
|
continue pack; |
|
} |
|
} |
|
|
|
// Find the closest intersecting circle on the front-chain, if any. |
|
else { |
|
sj = j._.r, sk = k._.r; |
|
do { |
|
if (sj <= sk) { |
|
if (intersects(j._, c._)) { |
|
b = j, a.next = b, b.previous = a, --i; |
|
continue pack; |
|
} |
|
j = j.next, sj += j._.r; |
|
} else { |
|
if (intersects(k._, c._)) { |
|
a = k, a.next = b, b.previous = a, --i; |
|
continue pack; |
|
} |
|
k = k.previous, sk += k._.r; |
|
} |
|
} while (j !== k.next); |
|
} |
|
|
|
// Success! Insert the new circle c between a and b. |
|
c.previous = a, c.next = b, a.next = b.previous = b = c; |
|
|
|
// Update the weighted centroid. |
|
oa += ca = c._.r * c._.r; |
|
ox += ca * c._.x; |
|
oy += ca * c._.y; |
|
|
|
// Compute the new closest circle a to centroid. |
|
aa = distance2(a._, cx = ox / oa, cy = oy / oa); |
|
while ((c = c.next) !== b) { |
|
if ((ca = distance2(c._, cx, cy)) < aa) { |
|
a = c, aa = ca; |
|
} |
|
} |
|
b = a.next; |
|
} |
|
|
|
// Compute the enclosing circle of the front chain. |
|
a = [b._], c = b; while ((c = c.next) !== b) a.push(c._); c = enclose(a); |
|
|
|
// Translate the circles to put the enclosing circle around the origin. |
|
for (i = 0; i < n; ++i) a = circles[i], a.x -= c.x, a.y -= c.y; |
|
|
|
return c.r; |
|
} |
|
|
|
var siblings = function(circles) { |
|
packEnclose(circles); |
|
return circles; |
|
}; |
|
|
|
function optional(f) { |
|
return f == null ? null : required(f); |
|
} |
|
|
|
function required(f) { |
|
if (typeof f !== "function") throw new Error; |
|
return f; |
|
} |
|
|
|
function constantZero() { |
|
return 0; |
|
} |
|
|
|
var constant = function(x) { |
|
return function() { |
|
return x; |
|
}; |
|
}; |
|
|
|
function defaultRadius(d) { |
|
return Math.sqrt(d.value); |
|
} |
|
|
|
var index = function() { |
|
var radius = null, |
|
dx = 1, |
|
dy = 1, |
|
padding = constantZero; |
|
|
|
function pack(root) { |
|
root.x = dx / 2, root.y = dy / 2; |
|
if (radius) { |
|
root.eachBefore(radiusLeaf(radius)) |
|
.eachAfter(packChildren(padding, 0.5)) |
|
.eachBefore(translateChild(1)); |
|
} else { |
|
root.eachBefore(radiusLeaf(defaultRadius)) |
|
.eachAfter(packChildren(constantZero, 1)) |
|
.eachAfter(packChildren(padding, root.r / Math.min(dx, dy))) |
|
.eachBefore(translateChild(Math.min(dx, dy) / (2 * root.r))); |
|
} |
|
return root; |
|
} |
|
|
|
pack.radius = function(x) { |
|
return arguments.length ? (radius = optional(x), pack) : radius; |
|
}; |
|
|
|
pack.size = function(x) { |
|
return arguments.length ? (dx = +x[0], dy = +x[1], pack) : [dx, dy]; |
|
}; |
|
|
|
pack.padding = function(x) { |
|
return arguments.length ? (padding = typeof x === "function" ? x : constant(+x), pack) : padding; |
|
}; |
|
|
|
return pack; |
|
}; |
|
|
|
function radiusLeaf(radius) { |
|
return function(node) { |
|
if (!node.children) { |
|
node.r = Math.max(0, +radius(node) || 0); |
|
} |
|
}; |
|
} |
|
|
|
function packChildren(padding, k) { |
|
return function(node) { |
|
if (children = node.children) { |
|
var children, |
|
i, |
|
n = children.length, |
|
r = padding(node) * k || 0, |
|
e; |
|
|
|
if (r) for (i = 0; i < n; ++i) children[i].r += r; |
|
e = packEnclose(children); |
|
if (r) for (i = 0; i < n; ++i) children[i].r -= r; |
|
node.r = e + r; |
|
} |
|
}; |
|
} |
|
|
|
function translateChild(k) { |
|
return function(node) { |
|
var parent = node.parent; |
|
node.r *= k; |
|
if (parent) { |
|
node.x = parent.x + k * node.x; |
|
node.y = parent.y + k * node.y; |
|
} |
|
}; |
|
} |
|
|
|
var roundNode = function(node) { |
|
node.x0 = Math.round(node.x0); |
|
node.y0 = Math.round(node.y0); |
|
node.x1 = Math.round(node.x1); |
|
node.y1 = Math.round(node.y1); |
|
}; |
|
|
|
var treemapDice = function(parent, x0, y0, x1, y1) { |
|
var nodes = parent.children, |
|
node, |
|
i = -1, |
|
n = nodes.length, |
|
k = parent.value && (x1 - x0) / parent.value; |
|
|
|
while (++i < n) { |
|
node = nodes[i], node.y0 = y0, node.y1 = y1; |
|
node.x0 = x0, node.x1 = x0 += node.value * k; |
|
} |
|
}; |
|
|
|
var partition = function() { |
|
var dx = 1, |
|
dy = 1, |
|
padding = 0, |
|
round = false; |
|
|
|
function partition(root) { |
|
var n = root.height + 1; |
|
root.x0 = |
|
root.y0 = padding; |
|
root.x1 = dx; |
|
root.y1 = dy / n; |
|
root.eachBefore(positionNode(dy, n)); |
|
if (round) root.eachBefore(roundNode); |
|
return root; |
|
} |
|
|
|
function positionNode(dy, n) { |
|
return function(node) { |
|
if (node.children) { |
|
treemapDice(node, node.x0, dy * (node.depth + 1) / n, node.x1, dy * (node.depth + 2) / n); |
|
} |
|
var x0 = node.x0, |
|
y0 = node.y0, |
|
x1 = node.x1 - padding, |
|
y1 = node.y1 - padding; |
|
if (x1 < x0) x0 = x1 = (x0 + x1) / 2; |
|
if (y1 < y0) y0 = y1 = (y0 + y1) / 2; |
|
node.x0 = x0; |
|
node.y0 = y0; |
|
node.x1 = x1; |
|
node.y1 = y1; |
|
}; |
|
} |
|
|
|
partition.round = function(x) { |
|
return arguments.length ? (round = !!x, partition) : round; |
|
}; |
|
|
|
partition.size = function(x) { |
|
return arguments.length ? (dx = +x[0], dy = +x[1], partition) : [dx, dy]; |
|
}; |
|
|
|
partition.padding = function(x) { |
|
return arguments.length ? (padding = +x, partition) : padding; |
|
}; |
|
|
|
return partition; |
|
}; |
|
|
|
var keyPrefix = "$"; |
|
var preroot = {depth: -1}; |
|
var ambiguous = {}; |
|
|
|
function defaultId(d) { |
|
return d.id; |
|
} |
|
|
|
function defaultParentId(d) { |
|
return d.parentId; |
|
} |
|
|
|
var stratify = function() { |
|
var id = defaultId, |
|
parentId = defaultParentId; |
|
|
|
function stratify(data) { |
|
var d, |
|
i, |
|
n = data.length, |
|
root, |
|
parent, |
|
node, |
|
nodes = new Array(n), |
|
nodeId, |
|
nodeKey, |
|
nodeByKey = {}; |
|
|
|
for (i = 0; i < n; ++i) { |
|
d = data[i], node = nodes[i] = new Node(d); |
|
if ((nodeId = id(d, i, data)) != null && (nodeId += "")) { |
|
nodeKey = keyPrefix + (node.id = nodeId); |
|
nodeByKey[nodeKey] = nodeKey in nodeByKey ? ambiguous : node; |
|
} |
|
} |
|
|
|
for (i = 0; i < n; ++i) { |
|
node = nodes[i], nodeId = parentId(data[i], i, data); |
|
if (nodeId == null || !(nodeId += "")) { |
|
if (root) throw new Error("multiple roots"); |
|
root = node; |
|
} else { |
|
parent = nodeByKey[keyPrefix + nodeId]; |
|
if (!parent) throw new Error("missing: " + nodeId); |
|
if (parent === ambiguous) throw new Error("ambiguous: " + nodeId); |
|
if (parent.children) parent.children.push(node); |
|
else parent.children = [node]; |
|
node.parent = parent; |
|
} |
|
} |
|
|
|
if (!root) throw new Error("no root"); |
|
root.parent = preroot; |
|
root.eachBefore(function(node) { node.depth = node.parent.depth + 1; --n; }).eachBefore(computeHeight); |
|
root.parent = null; |
|
if (n > 0) throw new Error("cycle"); |
|
|
|
return root; |
|
} |
|
|
|
stratify.id = function(x) { |
|
return arguments.length ? (id = required(x), stratify) : id; |
|
}; |
|
|
|
stratify.parentId = function(x) { |
|
return arguments.length ? (parentId = required(x), stratify) : parentId; |
|
}; |
|
|
|
return stratify; |
|
}; |
|
|
|
function defaultSeparation$1(a, b) { |
|
return a.parent === b.parent ? 1 : 2; |
|
} |
|
|
|
// function radialSeparation(a, b) { |
|
// return (a.parent === b.parent ? 1 : 2) / a.depth; |
|
// } |
|
|
|
// This function is used to traverse the left contour of a subtree (or |
|
// subforest). It returns the successor of v on this contour. This successor is |
|
// either given by the leftmost child of v or by the thread of v. The function |
|
// returns null if and only if v is on the highest level of its subtree. |
|
function nextLeft(v) { |
|
var children = v.children; |
|
return children ? children[0] : v.t; |
|
} |
|
|
|
// This function works analogously to nextLeft. |
|
function nextRight(v) { |
|
var children = v.children; |
|
return children ? children[children.length - 1] : v.t; |
|
} |
|
|
|
// Shifts the current subtree rooted at w+. This is done by increasing |
|
// prelim(w+) and mod(w+) by shift. |
|
function moveSubtree(wm, wp, shift) { |
|
var change = shift / (wp.i - wm.i); |
|
wp.c -= change; |
|
wp.s += shift; |
|
wm.c += change; |
|
wp.z += shift; |
|
wp.m += shift; |
|
} |
|
|
|
// All other shifts, applied to the smaller subtrees between w- and w+, are |
|
// performed by this function. To prepare the shifts, we have to adjust |
|
// change(w+), shift(w+), and change(w-). |
|
function executeShifts(v) { |
|
var shift = 0, |
|
change = 0, |
|
children = v.children, |
|
i = children.length, |
|
w; |
|
while (--i >= 0) { |
|
w = children[i]; |
|
w.z += shift; |
|
w.m += shift; |
|
shift += w.s + (change += w.c); |
|
} |
|
} |
|
|
|
// If vi-’s ancestor is a sibling of v, returns vi-’s ancestor. Otherwise, |
|
// returns the specified (default) ancestor. |
|
function nextAncestor(vim, v, ancestor) { |
|
return vim.a.parent === v.parent ? vim.a : ancestor; |
|
} |
|
|
|
function TreeNode(node, i) { |
|
this._ = node; |
|
this.parent = null; |
|
this.children = null; |
|
this.A = null; // default ancestor |
|
this.a = this; // ancestor |
|
this.z = 0; // prelim |
|
this.m = 0; // mod |
|
this.c = 0; // change |
|
this.s = 0; // shift |
|
this.t = null; // thread |
|
this.i = i; // number |
|
} |
|
|
|
TreeNode.prototype = Object.create(Node.prototype); |
|
|
|
function treeRoot(root) { |
|
var tree = new TreeNode(root, 0), |
|
node, |
|
nodes = [tree], |
|
child, |
|
children, |
|
i, |
|
n; |
|
|
|
while (node = nodes.pop()) { |
|
if (children = node._.children) { |
|
node.children = new Array(n = children.length); |
|
for (i = n - 1; i >= 0; --i) { |
|
nodes.push(child = node.children[i] = new TreeNode(children[i], i)); |
|
child.parent = node; |
|
} |
|
} |
|
} |
|
|
|
(tree.parent = new TreeNode(null, 0)).children = [tree]; |
|
return tree; |
|
} |
|
|
|
// Node-link tree diagram using the Reingold-Tilford "tidy" algorithm |
|
var tree = function() { |
|
var separation = defaultSeparation$1, |
|
dx = 1, |
|
dy = 1, |
|
nodeSize = null; |
|
|
|
function tree(root) { |
|
var t = treeRoot(root); |
|
|
|
// Compute the layout using Buchheim et al.’s algorithm. |
|
t.eachAfter(firstWalk), t.parent.m = -t.z; |
|
t.eachBefore(secondWalk); |
|
|
|
// If a fixed node size is specified, scale x and y. |
|
if (nodeSize) root.eachBefore(sizeNode); |
|
|
|
// If a fixed tree size is specified, scale x and y based on the extent. |
|
// Compute the left-most, right-most, and depth-most nodes for extents. |
|
else { |
|
var left = root, |
|
right = root, |
|
bottom = root; |
|
root.eachBefore(function(node) { |
|
if (node.x < left.x) left = node; |
|
if (node.x > right.x) right = node; |
|
if (node.depth > bottom.depth) bottom = node; |
|
}); |
|
var s = left === right ? 1 : separation(left, right) / 2, |
|
tx = s - left.x, |
|
kx = dx / (right.x + s + tx), |
|
ky = dy / (bottom.depth || 1); |
|
root.eachBefore(function(node) { |
|
node.x = (node.x + tx) * kx; |
|
node.y = node.depth * ky; |
|
}); |
|
} |
|
|
|
return root; |
|
} |
|
|
|
// Computes a preliminary x-coordinate for v. Before that, FIRST WALK is |
|
// applied recursively to the children of v, as well as the function |
|
// APPORTION. After spacing out the children by calling EXECUTE SHIFTS, the |
|
// node v is placed to the midpoint of its outermost children. |
|
function firstWalk(v) { |
|
var children = v.children, |
|
siblings = v.parent.children, |
|
w = v.i ? siblings[v.i - 1] : null; |
|
if (children) { |
|
executeShifts(v); |
|
var midpoint = (children[0].z + children[children.length - 1].z) / 2; |
|
if (w) { |
|
v.z = w.z + separation(v._, w._); |
|
v.m = v.z - midpoint; |
|
} else { |
|
v.z = midpoint; |
|
} |
|
} else if (w) { |
|
v.z = w.z + separation(v._, w._); |
|
} |
|
v.parent.A = apportion(v, w, v.parent.A || siblings[0]); |
|
} |
|
|
|
// Computes all real x-coordinates by summing up the modifiers recursively. |
|
function secondWalk(v) { |
|
v._.x = v.z + v.parent.m; |
|
v.m += v.parent.m; |
|
} |
|
|
|
// The core of the algorithm. Here, a new subtree is combined with the |
|
// previous subtrees. Threads are used to traverse the inside and outside |
|
// contours of the left and right subtree up to the highest common level. The |
|
// vertices used for the traversals are vi+, vi-, vo-, and vo+, where the |
|
// superscript o means outside and i means inside, the subscript - means left |
|
// subtree and + means right subtree. For summing up the modifiers along the |
|
// contour, we use respective variables si+, si-, so-, and so+. Whenever two |
|
// nodes of the inside contours conflict, we compute the left one of the |
|
// greatest uncommon ancestors using the function ANCESTOR and call MOVE |
|
// SUBTREE to shift the subtree and prepare the shifts of smaller subtrees. |
|
// Finally, we add a new thread (if necessary). |
|
function apportion(v, w, ancestor) { |
|
if (w) { |
|
var vip = v, |
|
vop = v, |
|
vim = w, |
|
vom = vip.parent.children[0], |
|
sip = vip.m, |
|
sop = vop.m, |
|
sim = vim.m, |
|
som = vom.m, |
|
shift; |
|
while (vim = nextRight(vim), vip = nextLeft(vip), vim && vip) { |
|
vom = nextLeft(vom); |
|
vop = nextRight(vop); |
|
vop.a = v; |
|
shift = vim.z + sim - vip.z - sip + separation(vim._, vip._); |
|
if (shift > 0) { |
|
moveSubtree(nextAncestor(vim, v, ancestor), v, shift); |
|
sip += shift; |
|
sop += shift; |
|
} |
|
sim += vim.m; |
|
sip += vip.m; |
|
som += vom.m; |
|
sop += vop.m; |
|
} |
|
if (vim && !nextRight(vop)) { |
|
vop.t = vim; |
|
vop.m += sim - sop; |
|
} |
|
if (vip && !nextLeft(vom)) { |
|
vom.t = vip; |
|
vom.m += sip - som; |
|
ancestor = v; |
|
} |
|
} |
|
return ancestor; |
|
} |
|
|
|
function sizeNode(node) { |
|
node.x *= dx; |
|
node.y = node.depth * dy; |
|
} |
|
|
|
tree.separation = function(x) { |
|
return arguments.length ? (separation = x, tree) : separation; |
|
}; |
|
|
|
tree.size = function(x) { |
|
return arguments.length ? (nodeSize = false, dx = +x[0], dy = +x[1], tree) : (nodeSize ? null : [dx, dy]); |
|
}; |
|
|
|
tree.nodeSize = function(x) { |
|
return arguments.length ? (nodeSize = true, dx = +x[0], dy = +x[1], tree) : (nodeSize ? [dx, dy] : null); |
|
}; |
|
|
|
return tree; |
|
}; |
|
|
|
var treemapSlice = function(parent, x0, y0, x1, y1) { |
|
var nodes = parent.children, |
|
node, |
|
i = -1, |
|
n = nodes.length, |
|
k = parent.value && (y1 - y0) / parent.value; |
|
|
|
while (++i < n) { |
|
node = nodes[i], node.x0 = x0, node.x1 = x1; |
|
node.y0 = y0, node.y1 = y0 += node.value * k; |
|
} |
|
}; |
|
|
|
var phi = (1 + Math.sqrt(5)) / 2; |
|
|
|
function squarifyRatio(ratio, parent, x0, y0, x1, y1) { |
|
var rows = [], |
|
nodes = parent.children, |
|
row, |
|
nodeValue, |
|
i0 = 0, |
|
i1 = 0, |
|
n = nodes.length, |
|
dx, dy, |
|
value = parent.value, |
|
sumValue, |
|
minValue, |
|
maxValue, |
|
newRatio, |
|
minRatio, |
|
alpha, |
|
beta; |
|
|
|
while (i0 < n) { |
|
dx = x1 - x0, dy = y1 - y0; |
|
|
|
// Find the next non-empty node. |
|
do sumValue = nodes[i1++].value; while (!sumValue && i1 < n); |
|
minValue = maxValue = sumValue; |
|
alpha = Math.max(dy / dx, dx / dy) / (value * ratio); |
|
beta = sumValue * sumValue * alpha; |
|
minRatio = Math.max(maxValue / beta, beta / minValue); |
|
|
|
// Keep adding nodes while the aspect ratio maintains or improves. |
|
for (; i1 < n; ++i1) { |
|
sumValue += nodeValue = nodes[i1].value; |
|
if (nodeValue < minValue) minValue = nodeValue; |
|
if (nodeValue > maxValue) maxValue = nodeValue; |
|
beta = sumValue * sumValue * alpha; |
|
newRatio = Math.max(maxValue / beta, beta / minValue); |
|
if (newRatio > minRatio) { sumValue -= nodeValue; break; } |
|
minRatio = newRatio; |
|
} |
|
|
|
// Position and record the row orientation. |
|
rows.push(row = {value: sumValue, dice: dx < dy, children: nodes.slice(i0, i1)}); |
|
if (row.dice) treemapDice(row, x0, y0, x1, value ? y0 += dy * sumValue / value : y1); |
|
else treemapSlice(row, x0, y0, value ? x0 += dx * sumValue / value : x1, y1); |
|
value -= sumValue, i0 = i1; |
|
} |
|
|
|
return rows; |
|
} |
|
|
|
var squarify = (function custom(ratio) { |
|
|
|
function squarify(parent, x0, y0, x1, y1) { |
|
squarifyRatio(ratio, parent, x0, y0, x1, y1); |
|
} |
|
|
|
squarify.ratio = function(x) { |
|
return custom((x = +x) > 1 ? x : 1); |
|
}; |
|
|
|
return squarify; |
|
})(phi); |
|
|
|
var index$1 = function() { |
|
var tile = squarify, |
|
round = false, |
|
dx = 1, |
|
dy = 1, |
|
paddingStack = [0], |
|
paddingInner = constantZero, |
|
paddingTop = constantZero, |
|
paddingRight = constantZero, |
|
paddingBottom = constantZero, |
|
paddingLeft = constantZero; |
|
|
|
function treemap(root) { |
|
root.x0 = |
|
root.y0 = 0; |
|
root.x1 = dx; |
|
root.y1 = dy; |
|
root.eachBefore(positionNode); |
|
paddingStack = [0]; |
|
if (round) root.eachBefore(roundNode); |
|
return root; |
|
} |
|
|
|
function positionNode(node) { |
|
var p = paddingStack[node.depth], |
|
x0 = node.x0 + p, |
|
y0 = node.y0 + p, |
|
x1 = node.x1 - p, |
|
y1 = node.y1 - p; |
|
if (x1 < x0) x0 = x1 = (x0 + x1) / 2; |
|
if (y1 < y0) y0 = y1 = (y0 + y1) / 2; |
|
node.x0 = x0; |
|
node.y0 = y0; |
|
node.x1 = x1; |
|
node.y1 = y1; |
|
if (node.children) { |
|
p = paddingStack[node.depth + 1] = paddingInner(node) / 2; |
|
x0 += paddingLeft(node) - p; |
|
y0 += paddingTop(node) - p; |
|
x1 -= paddingRight(node) - p; |
|
y1 -= paddingBottom(node) - p; |
|
if (x1 < x0) x0 = x1 = (x0 + x1) / 2; |
|
if (y1 < y0) y0 = y1 = (y0 + y1) / 2; |
|
tile(node, x0, y0, x1, y1); |
|
} |
|
} |
|
|
|
treemap.round = function(x) { |
|
return arguments.length ? (round = !!x, treemap) : round; |
|
}; |
|
|
|
treemap.size = function(x) { |
|
return arguments.length ? (dx = +x[0], dy = +x[1], treemap) : [dx, dy]; |
|
}; |
|
|
|
treemap.tile = function(x) { |
|
return arguments.length ? (tile = required(x), treemap) : tile; |
|
}; |
|
|
|
treemap.padding = function(x) { |
|
return arguments.length ? treemap.paddingInner(x).paddingOuter(x) : treemap.paddingInner(); |
|
}; |
|
|
|
treemap.paddingInner = function(x) { |
|
return arguments.length ? (paddingInner = typeof x === "function" ? x : constant(+x), treemap) : paddingInner; |
|
}; |
|
|
|
treemap.paddingOuter = function(x) { |
|
return arguments.length ? treemap.paddingTop(x).paddingRight(x).paddingBottom(x).paddingLeft(x) : treemap.paddingTop(); |
|
}; |
|
|
|
treemap.paddingTop = function(x) { |
|
return arguments.length ? (paddingTop = typeof x === "function" ? x : constant(+x), treemap) : paddingTop; |
|
}; |
|
|
|
treemap.paddingRight = function(x) { |
|
return arguments.length ? (paddingRight = typeof x === "function" ? x : constant(+x), treemap) : paddingRight; |
|
}; |
|
|
|
treemap.paddingBottom = function(x) { |
|
return arguments.length ? (paddingBottom = typeof x === "function" ? x : constant(+x), treemap) : paddingBottom; |
|
}; |
|
|
|
treemap.paddingLeft = function(x) { |
|
return arguments.length ? (paddingLeft = typeof x === "function" ? x : constant(+x), treemap) : paddingLeft; |
|
}; |
|
|
|
return treemap; |
|
}; |
|
|
|
var binary = function(parent, x0, y0, x1, y1) { |
|
var nodes = parent.children, |
|
i, n = nodes.length, |
|
sum, sums = new Array(n + 1); |
|
|
|
for (sums[0] = sum = i = 0; i < n; ++i) { |
|
sums[i + 1] = sum += nodes[i].value; |
|
} |
|
|
|
partition(0, n, parent.value, x0, y0, x1, y1); |
|
|
|
function partition(i, j, value, x0, y0, x1, y1) { |
|
if (i >= j - 1) { |
|
var node = nodes[i]; |
|
node.x0 = x0, node.y0 = y0; |
|
node.x1 = x1, node.y1 = y1; |
|
return; |
|
} |
|
|
|
var valueOffset = sums[i], |
|
valueTarget = (value / 2) + valueOffset, |
|
k = i + 1, |
|
hi = j - 1; |
|
|
|
while (k < hi) { |
|
var mid = k + hi >>> 1; |
|
if (sums[mid] < valueTarget) k = mid + 1; |
|
else hi = mid; |
|
} |
|
|
|
var valueLeft = sums[k] - valueOffset, |
|
valueRight = value - valueLeft; |
|
|
|
if ((y1 - y0) > (x1 - x0)) { |
|
var yk = (y0 * valueRight + y1 * valueLeft) / value; |
|
partition(i, k, valueLeft, x0, y0, x1, yk); |
|
partition(k, j, valueRight, x0, yk, x1, y1); |
|
} else { |
|
var xk = (x0 * valueRight + x1 * valueLeft) / value; |
|
partition(i, k, valueLeft, x0, y0, xk, y1); |
|
partition(k, j, valueRight, xk, y0, x1, y1); |
|
} |
|
} |
|
}; |
|
|
|
var sliceDice = function(parent, x0, y0, x1, y1) { |
|
(parent.depth & 1 ? treemapSlice : treemapDice)(parent, x0, y0, x1, y1); |
|
}; |
|
|
|
var split = function(parent, x0, y0, x1, y1) { |
|
|
|
// exit if no children |
|
if (!(parent.children) || parent.children.length === 0) { |
|
return; |
|
} |
|
|
|
function calcSum(nodes) { |
|
var sum = 0, |
|
i = 0, |
|
n = nodes.length; |
|
|
|
for ( ; i < n; ++i) { |
|
sum += nodes[i].value; |
|
} |
|
return sum; |
|
} |
|
|
|
var sum = calcSum(parent.children); |
|
|
|
splitTree(parent.children, sum, x0, y0, x1, y1); |
|
|
|
|
|
function splitTree(nodes, sum, x0, y0, x1, y1) { |
|
|
|
var i, n = nodes.length; |
|
|
|
if (n === 0) { |
|
return; |
|
} |
|
|
|
if (n === 1) { |
|
nodes[0].x0 = x0; |
|
nodes[0].x1 = x1; |
|
nodes[0].y0 = y0; |
|
nodes[0].y1 = y1; |
|
return; |
|
} |
|
|
|
var width = x1 - x0, |
|
height = y1 - y0; |
|
|
|
var list1 = [], |
|
list2 = [], |
|
r1x0 = 0, |
|
r1x1 = 0, |
|
r1y0 = 0, |
|
r1y1 = 0, |
|
r2x0 = 0, |
|
r2x1 = 0, |
|
r2y0 = 0, |
|
r2y1 = 0, |
|
halfSize = 0, |
|
tmp = 0, |
|
w1 = 0, |
|
w2 = 0; |
|
|
|
halfSize = sum / 2; |
|
for (i = 0; i < n; i++) { |
|
tmp += nodes[i].value; |
|
if (Math.abs(halfSize - tmp) > Math.abs(halfSize - w1)) { |
|
list1 = nodes.slice(0, i); |
|
break; |
|
} |
|
w1 = tmp; |
|
} |
|
|
|
list2 = nodes.slice(i); |
|
w2 = sum - w1; |
|
|
|
if (width > height) { |
|
r1x0 = x0; |
|
r1y0 = y0; |
|
r1x1 = x0 + width * w1 / sum; |
|
r1y1 = y1; |
|
|
|
r2x0 = r1x1; |
|
r2y0 = y0; |
|
r2x1 = x1; |
|
r2y1 = y1; |
|
} else { |
|
r1x0 = x0; |
|
r1y0 = y0; |
|
r1x1 = x1; |
|
r1y1 = y0 + height * w1 / sum; |
|
|
|
r2x0 = x0; |
|
r2y0 = r1y1; |
|
r2x1 = x1; |
|
r2y1 = y1; |
|
} |
|
|
|
if (list1.length > 0 && w1 > 0) { |
|
splitTree(list1, w1, r1x0, r1y0, r1x1, r1y1); |
|
} |
|
if (list2.length > 0 && w2 > 0 ) { |
|
splitTree(list2, w2, r2x0, r2y0, r2x1, r2y1); |
|
} |
|
} |
|
}; |
|
|
|
var resquarify = (function custom(ratio) { |
|
|
|
function resquarify(parent, x0, y0, x1, y1) { |
|
if ((rows = parent._squarify) && (rows.ratio === ratio)) { |
|
var rows, |
|
row, |
|
nodes, |
|
i, |
|
j = -1, |
|
n, |
|
m = rows.length, |
|
value = parent.value; |
|
|
|
while (++j < m) { |
|
row = rows[j], nodes = row.children; |
|
for (i = row.value = 0, n = nodes.length; i < n; ++i) row.value += nodes[i].value; |
|
if (row.dice) treemapDice(row, x0, y0, x1, y0 += (y1 - y0) * row.value / value); |
|
else treemapSlice(row, x0, y0, x0 += (x1 - x0) * row.value / value, y1); |
|
value -= row.value; |
|
} |
|
} else { |
|
parent._squarify = rows = squarifyRatio(ratio, parent, x0, y0, x1, y1); |
|
rows.ratio = ratio; |
|
} |
|
} |
|
|
|
resquarify.ratio = function(x) { |
|
return custom((x = +x) > 1 ? x : 1); |
|
}; |
|
|
|
return resquarify; |
|
})(phi); |
|
|
|
exports.cluster = cluster; |
|
exports.hierarchy = hierarchy; |
|
exports.pack = index; |
|
exports.packSiblings = siblings; |
|
exports.packEnclose = enclose; |
|
exports.partition = partition; |
|
exports.stratify = stratify; |
|
exports.tree = tree; |
|
exports.treemap = index$1; |
|
exports.treemapBinary = binary; |
|
exports.treemapDice = treemapDice; |
|
exports.treemapSlice = treemapSlice; |
|
exports.treemapSliceDice = sliceDice; |
|
exports.treemapSquarify = squarify; |
|
exports.treemapSplit = split; |
|
exports.treemapResquarify = resquarify; |
|
|
|
Object.defineProperty(exports, '__esModule', { value: true }); |
|
|
|
}))); |