library(tidyverse)
# d <- readr::read_tsv("test.tsv") |>
# janitor::clean_names()
#
# d$total <- d$biden + d$trump + d$other
# d$prop_votes_in <- d$ballots_accepted / d$total
# d$prop_biden <- d$biden / d$total
# datapasta::tribble_paste(d)
library(ggplot2)
geom_crossrange <- function(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
print.file_check_log <- function(x, ...) str(x, ...)
as_file_check_log <- function(x) UseMethod("as_file_check_log")
as_file_check_log.default <- function(x) {
structure(list(x = x, notes = list()), class = "file_check_log")
}
apply_to_file_check_log <- function(x, fn, ...) {
results <- fn(x$x, ...)
l <- list(results)
# Make a csv to read in
db1 <- DBI::dbConnect(duckdb::duckdb())
f <- tempfile("mtcars", fileext = ".csv")
write.csv(mtcars, f)
library(tidyverse)
# Read in the csv.
# Here two column types are hard-coded using a struct
Some of the rows have more columns than the first row of column names.
writeLines(
"a\tb\tc\td\te\tf
1\t2\t3\t4\t5\t6\t
1\t2\t3\t4\t5\t6\t7\t
1\t2\t3\t4\t5\t6\t7\t8
1\t2\t3\t4\t5\t6\t7\t8\t9\t10\t11
1\t2\t3\t4\t5\t6
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
``` r | |
A <- matrix(c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12), nrow = 3, ncol = 4) | |
B <- matrix(c(13, 14, 15, 16, 17, 18, 19, 20), nrow = 4, ncol = 2) | |
dot_product <- function(x, y) { | |
mapply(\(x, y) sum(x * y), x, y) | |
} | |
rows_of <- function(m) purrr::array_tree(m, 1) | |
cols_of <- function(m) purrr::array_tree(m, 2) |
Local .Rprofile
detected at C:\Users\mahr\Documents\WiscRepos\2021-04-kh-td-intel-and-rate\.Rprofile
library(faux)
#>
#> ************
#> Welcome to faux. For support and examples visit:
#> https://debruine.github.io/faux/
#> - Get and set global package options with: faux_options()
#> ************
How I made the ordinal plot for this paper https://onlinelibrary.wiley.com/doi/10.1111/dmcn.15198
Local .Rprofile
detected at C:\Users\Tristan\Documents\WiscRepos\2021-10-hl-vss\.Rprofile
library(tidyverse)
if (FALSE) {
# Read in the models and make the tribbles for the demo
draws_epred_means <- targets::tar_read("draws_epred_means")
x <- rnorm(250, 5, 2)
i <- sample.int(250, 20)
ranks <- rank(x)[i]
percentiles <- ppoints(250)[ranks]
points <- x[i]
f <- function(args, points, percentiles) {
test_quantiles <- qnorm(percentiles, args[1], args[2])
NewerOlder