Skip to content
Create a gist now

Instantly share code, notes, and snippets.

Embed URL


Subversion checkout URL

You can clone with
Download ZIP
documentation on _threading_local
Help on module _threading_local:
_threading_local - Thread-local objects.
(Note that this module provides a Python version of the threading.local
class. Depending on the version of Python you're using, there may be a
faster one available. You should always import the `local` class from
Thread-local objects support the management of thread-local data.
If you have data that you want to be local to a thread, simply create
a thread-local object and use its attributes:
>>> mydata = local()
>>> mydata.number = 42
>>> mydata.number
You can also access the local-object's dictionary:
>>> mydata.__dict__
{'number': 42}
>>> mydata.__dict__.setdefault('widgets', [])
>>> mydata.widgets
What's important about thread-local objects is that their data are
local to a thread. If we access the data in a different thread:
>>> log = []
>>> def f():
... items = mydata.__dict__.items()
... items.sort()
... log.append(items)
... mydata.number = 11
... log.append(mydata.number)
>>> import threading
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
>>> log
[[], 11]
we get different data. Furthermore, changes made in the other thread
don't affect data seen in this thread:
>>> mydata.number
Of course, values you get from a local object, including a __dict__
attribute, are for whatever thread was current at the time the
attribute was read. For that reason, you generally don't want to save
these values across threads, as they apply only to the thread they
came from.
You can create custom local objects by subclassing the local class:
>>> class MyLocal(local):
... number = 2
... initialized = False
... def __init__(self, **kw):
... if self.initialized:
... raise SystemError('__init__ called too many times')
... self.initialized = True
... self.__dict__.update(kw)
... def squared(self):
... return self.number ** 2
This can be useful to support default values, methods and
initialization. Note that if you define an __init__ method, it will be
called each time the local object is used in a separate thread. This
is necessary to initialize each thread's dictionary.
Now if we create a local object:
>>> mydata = MyLocal(color='red')
Now we have a default number:
>>> mydata.number
an initial color:
>>> mydata.color
>>> del mydata.color
And a method that operates on the data:
>>> mydata.squared()
As before, we can access the data in a separate thread:
>>> log = []
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
>>> log
[[('color', 'red'), ('initialized', True)], 11]
without affecting this thread's data:
>>> mydata.number
>>> mydata.color
Traceback (most recent call last):
AttributeError: 'MyLocal' object has no attribute 'color'
Note that subclasses can define slots, but they are not thread
local. They are shared across threads:
>>> class MyLocal(local):
... __slots__ = 'number'
>>> mydata = MyLocal()
>>> mydata.number = 42
>>> mydata.color = 'red'
So, the separate thread:
>>> thread = threading.Thread(target=f)
>>> thread.start()
>>> thread.join()
affects what we see:
>>> mydata.number
>>> del mydata
class local(_localbase)
| Method resolution order:
| local
| _localbase
| __builtin__.object
| Methods defined here:
| __del__(self)
| __delattr__(self, name)
| __getattribute__(self, name)
| __setattr__(self, name, value)
| ----------------------------------------------------------------------
| Data descriptors defined here:
| __dict__
| dictionary for instance variables (if defined)
| __weakref__
| list of weak references to the object (if defined)
| ----------------------------------------------------------------------
| Static methods inherited from _localbase:
| __new__(cls, *args, **kw)
__all__ = ['local']
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Something went wrong with that request. Please try again.