Skip to content

Instantly share code, notes, and snippets.

@tkf
Last active March 22, 2019 20:22
Show Gist options
  • Star 1 You must be signed in to star a gist
  • Fork 0 You must be signed in to fork a gist
  • Save tkf/d74dc4efbaf6dc541838418741b05a2b to your computer and use it in GitHub Desktop.
Save tkf/d74dc4efbaf6dc541838418741b05a2b to your computer and use it in GitHub Desktop.
An implementation of Layer Normalization (Ba, Kiros & Hinton, 2016)
/.cache
*.pyc
import lasagne
class LayerNormLayer(lasagne.layers.BatchNormLayer):
"""
Implementation of Layer Normalization (Ba, Kiros & Hinton, 2016).
This normalizes input so that it has zero mean and unit variance
over neurons (as opposed to over batches as in the batch
normalization). Since this layer do not have learnable
parameters, it must be sandwiched by `DenseLayer` and `BiasLayer`
etc. See `layer_normalized_dense_layer`.
The current implementation assumes that the first (0th) axis is
the batch dimension and other dimensions are used to calculate the
mean and variance. In particular, it does not support recurrent
layers.
- Ba, Kiros & Hinton (2016) "Layer Normalization."
http://arxiv.org/abs/1607.06450
- https://github.com/Lasagne/Lasagne/issues/736#issuecomment-241374360
"""
def __init__(self, incoming, axes='auto', **kwargs):
if axes != 'auto':
kwargs['axes'] = axes
super(LayerNormLayer, self).__init__(
incoming,
beta=None, gamma=None,
**kwargs)
if axes == 'auto':
self.axes = tuple(range(1, len(self.input_shape)))
def get_output_for(self, input,
batch_norm_use_averages=False,
batch_norm_update_averages=False,
**kwargs):
return super(LayerNormLayer, self).get_output_for(
input,
batch_norm_use_averages=batch_norm_use_averages,
batch_norm_update_averages=batch_norm_update_averages,
**kwargs)
def layer_normalized_dense_layer(incoming, num_units,
nonlinearity=lasagne.nonlinearities.rectify,
W=lasagne.init.Normal(std=1),
b=lasagne.init.Constant(0.),
**kwargs):
assert num_units > 1
layer = lasagne.layers.DenseLayer(
incoming, num_units, W=W, b=None,
nonlinearity=lasagne.nonlinearities.linear,
**kwargs)
layer = LayerNormLayer(layer)
layer = lasagne.layers.ScaleLayer(layer)
layer = lasagne.layers.BiasLayer(layer, b=b)
return lasagne.layers.NonlinearityLayer(layer, nonlinearity=nonlinearity)
Copyright 2017, Takafumi Arakaki
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
import lasagne
import theano
class LayerNormalization(object):
def __init__(self, num_units,
nonlinearity=lasagne.nonlinearities.rectify,
b=lasagne.init.Constant(0.),
g=lasagne.init.Constant(1.),
eps=1e-5):
self.num_units = num_units
self.b = theano.shared(b.sample(num_units), name='layer_norm.b')
self.g = theano.shared(g.sample(num_units), name='layer_norm.g')
self.eps = eps
self.nonlinearity = nonlinearity
def normalizing_nonlinearity(self, x):
mean = x.mean(-1, keepdims=True)
sigma = theano.tensor.sqrt(x.var(-1, keepdims=True) + self.eps)
b = self.b.reshape((1,) * (x.ndim - 1) + (-1,))
g = self.g.reshape((1,) * (x.ndim - 1) + (-1,))
return self.nonlinearity(g * (x - mean) / sigma + b)
def register_to(self, layer):
layer.add_param(self.b, (self.num_units,))
layer.add_param(self.g, (self.num_units,))
class RecurrentNormalizingLayer(lasagne.layers.RecurrentLayer):
def __init__(self, incoming, num_units,
W_hid_to_hid=lasagne.init.Uniform(1e-4),
b=lasagne.init.Uniform(0.1),
g=lasagne.init.Constant(1.),
hid_init=lasagne.init.Uniform(0.1),
nonlinearity=lasagne.nonlinearities.rectify,
eps=0.05,
**kwargs):
self.layer_normalization = LayerNormalization(
num_units, nonlinearity=nonlinearity, b=b, g=g, eps=eps)
super(RecurrentNormalizingLayer, self).__init__(
incoming, num_units,
W_hid_to_hid=W_hid_to_hid,
b=None,
hid_init=hid_init,
nonlinearity=self.layer_normalization.normalizing_nonlinearity,
**kwargs)
self.layer_normalization.register_to(self.hidden_to_hidden)
import lasagne
import numpy as np
import pytest
from layer_normalization import LayerNormLayer, layer_normalized_dense_layer
def np_norm_layer(x, epsilon=0):
kwds = dict(axis=tuple(range(1, len(x.shape))), keepdims=True)
mean = x.mean(**kwds)
std = np.sqrt(x.var(**kwds) + epsilon)
return (x - mean) / std
@pytest.mark.parametrize('def_shape, real_shape', [
((2, 3), None),
((None, 3), (2, 3)),
((2, 3, 4), None),
((None, 3, 4), (2, 3, 4)),
])
def test_layer_norm_layer(def_shape, real_shape):
l0 = lasagne.layers.InputLayer(def_shape)
l1 = LayerNormLayer(l0)
out = lasagne.layers.get_output(l1)
rs = np.random.RandomState(0)
x = rs.randn(*(real_shape or def_shape))
actual = out.eval({l0.input_var: x})
desired = np_norm_layer(x, l1.epsilon)
assert desired.shape == x.shape
np.testing.assert_almost_equal(actual, desired)
@pytest.mark.parametrize('batchsize, in_dim, out_dim', [
(2, 3, 4),
(10, 30, 20),
])
def test_layer_normalized_dense_layer(batchsize, in_dim, out_dim):
rs = np.random.RandomState(0)
x = rs.randn(batchsize, in_dim)
W = rs.randn(in_dim, out_dim)
b = rs.randn(out_dim)
l0 = lasagne.layers.InputLayer(x.shape)
l1 = layer_normalized_dense_layer(l0, out_dim, W=W, b=b)
for layer in lasagne.layers.get_all_layers(l1):
if isinstance(layer, LayerNormLayer):
assert hasattr(layer, 'epsilon')
layer.epsilon = 0
break
else:
raise ValueError('LayerNormLayer not found')
out = lasagne.layers.get_output(l1)
actual = out.eval({l0.input_var: x})
a = np.tensordot(x, W, axes=1)
desired = l1.nonlinearity(np_norm_layer(a) + b)
assert (desired > 0).any()
np.testing.assert_almost_equal(actual, desired)
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment