Skip to content

Instantly share code, notes, and snippets.

@tobydriscoll
Last active April 1, 2022 18:14
Show Gist options
  • Save tobydriscoll/f90d93e1905b9599363c0094353d02fe to your computer and use it in GitHub Desktop.
Save tobydriscoll/f90d93e1905b9599363c0094353d02fe to your computer and use it in GitHub Desktop.
# Requires installation of [GLMakie](https://github.com/JuliaPlots/Makie.jl)
# Include this file as include("eigshow.jl"), then run eigshow()
using GLMakie, LinearAlgebra, Printf
# Toby Driscoll (driscoll@udel.edu), October 2021. Released under Creative Commons CC BY-NC 3.0 license.
# This function is inspired by EIGSHOW.M, which is held in copyright by The MathWorks, Inc and found at:
# Cleve Moler (2021). Cleve_Lab (https://www.mathworks.com/matlabcentral/fileexchange/59085-cleve_lab), MATLAB Central File Exchange. Retrieved October 25, 2021.
"""
eigshow()
Demonstrator of geometric intuition behind eigenvectors and singular vectors.
A figure opens showing a vector π‘₯ on the unit circle and its image 𝐴π‘₯ via a given 2x2 matrix 𝐴.
As you move the mouse around the circle, the image vectors trace out an ellipse. Click the mouse
to leave a marker for the current source and image vectors.
An eigenvector occurs when 𝐴π‘₯ and π‘₯ are parallel, and the associated eigenvalue is the multiplier.
When the toggle is moved to select "svd", then the images of two vectors π‘₯ and 𝑦 are shown while
π‘₯ and 𝑦 are kept perpendicular. When the image vectors are also perpendicular, then you are seeing
all of the left and right singular vectors.
The left panel includes a selector of different matrices. Some things to observe: Is the number of
eigenvectors (not counting trivial sign flips) the same in all cases? What about the singular vectors?
Does either set of vectors have any correspondence to the image ellipse?
"""
function eigshow()
fig = Figure(resolution=(1200,800))
palette = cgrad(:seaborn_colorblind)[1:8]
ax = Axis(fig[1,2],
aspect=AxisAspect(1),
limits=((-1.6,1.6),(-1.6,1.6)),
xrectzoom=false,yrectzoom=false,
xpanlock=true,ypanlock=true,
titlesize=30,
title=""
)
# create matrix menu
mtx = [[5 0;0 3]/4, [5 0;0 -3]/4, [1 0;0 1], [0 1;1 0], [0 1;-1 0], [1 3;4 2]/4, [1 3;2 4]/4, [3 1;4 2]/4, [3 1;-2 4]/4, [2 4;2 4]/4,[2 4;-1 -2]/4, [6 4;-1 2]/4, nothing]
get_matrix(i) = i < 13 ? mtx[i] : 0.75*randn(2,2)
label = [ "[5 0;0 3]/4", "[5 0;0 -3]/4", "[1 0;0 1]", "[0 1;1 0]", "[0 1;-1 0]", "[1 3;4 2]/4", "[1 3;2 4]/4", "[3 1;4 2]/4", "[3 1;-2 4]/4", "[2 4;2 4]/4","[2 4;-1 -2]/4", "[6 4;-1 2]/4", "random" ]
menu = Menu(fig, options=zip(label,mtx),textsize=26,i_selected=6)
# nodes that define the primary values
A = @lift( get_matrix($(menu.i_selected)) )
x = Observable([1.0,0.0])
y = @lift([-$x[2],$x[1]])
# pretty-print the matrix for the left panel
function sprint_matrix(B)
if Rational(B[1]).den > 99
return @sprintf(" %5.2f %5.2f \n %5.2f %5.2f",B[[1,3,2,4]]...)
else
s = sprint.(show,Rational.(B[[1,3,2,4]]))
a,b,c,d = replace.(s,"//"=>"/")
s = " $a $b\n $c $d"
s = replace(s," -"=>"-")
return replace(s,r"(\S+)/1"=>s" \1 ")
end
end
A_lbl = Label(fig,@lift(sprint_matrix($A)),textsize=30,font="mono")
# toggle for eigen/svd
toggle = Toggle(fig; active=false)
labels = [Label(fig,"eigen",textsize=26),Label(fig,"svd",textsize=26)]
# widget panel
panel = fig[1,1] = vgrid!(
Label(fig,"Choose a matrix",height=30,valign=:bottom,textsize=26),
menu,
A_lbl,
hgrid!(labels[1],toggle,labels[2], tellheight=false),
)
# sets up all the visuals for either vector x, y
function setup_show(v,c,t)
vals = Observable{Vector{typeof(v[])}}([])
dots = scatter!(@lift(Point2.($vals)),color=c[1],markersize=4)
Avals = Observable{Vector{typeof(v[])}}([])
Adots = scatter!(@lift(Point2.($Avals)),color=c[2],markersize=4)
arr = arrows!(ax,[Point2(0.,0.)],@lift([Vec2($v)]),color=c[1],linewidth=5,arrowsize=20)
arrA = arrows!(ax,[Point2(0.,0.)],@lift([Vec2($A*$v)]),color=c[2],linewidth=5,arrowsize=20)
txt = text!(L"%$t",position=@lift(Tuple(1.08*$v).+(0.05,0.05)),color=c[1],textsize=36)
txtA = text!(L"A%$t",position=@lift(Tuple(1.08*$A*$v).+(0.05,0.05)),color=c[2],textsize=36)
marked = Observable{Vector{typeof(x[])}}([])
scat = scatter!(@lift(Point2.($marked)),color=c[3],markersize=18)
return vals,Avals,marked,(;arr,arrA,txt,txtA,scat)
end
# create the visuals: source traces, image traces, marked values, visible objects
x_vals,x_Avals,x_marked,x_obj = setup_show(x,palette,"x")
y_vals,y_Avals,y_marked,y_obj = setup_show(y,palette,"y")
# listen when mouse button is clicked: add a marked point
on(events(fig).mousebutton, priority=1) do event
if event.button == Mouse.left
if event.action == Mouse.press
else
if norm(mouseposition(ax.scene)) < 1.5
append!(x_marked[],[x[],A[]*x[]])
#append!(y_marked[],[y[],A[]*y[]])
notify.((x_marked,y_marked))
end
end
end
# Do not consume the event
return Consume(false)
end
# listen when the pointer is moved: add dots to traces
on(events(fig).mouseposition) do event
z = mouseposition(ax.scene)
if norm(z) < 1.5
x[] = normalize(z)
push!(x_vals[],x[])
push!(x_Avals[],A[]*x[])
push!(y_vals[],y[])
push!(y_Avals[],A[]*y[])
notify.((x_vals,x_Avals,y_vals,y_Avals))
end
return Consume(false)
end
# clear the dot trails
function clear_dots(dummy)
obj = (x_vals,x_Avals,x_marked,y_vals,y_Avals,y_marked)
[ deleteat!(foo[],eachindex(foo[])) for foo in obj]
notify.(obj)
end
# listen when a matrix is selected
on(clear_dots,menu.i_selected)
# listen for change in the toggle
on(toggle.active) do value
if value
ax.title = "Make 𝐴π‘₯ perpendicular to 𝐴𝑦"
[ u.visible = true for u in values(y_obj) ]
else
ax.title = "Make 𝐴π‘₯ parallel to π‘₯"
[ u.visible = false for u in values(y_obj) ]
end
clear_dots(nothing)
end
# notify initial state
toggle.active[] = false
return fig
end
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment