Created
November 9, 2016 18:32
-
-
Save tomthetrainer/8dc108b3787e8bfb00bd44a9313b0993 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
package org.deeplearning4j.examples.dataExamples; | |
import org.datavec.api.io.labels.ParentPathLabelGenerator; | |
import org.datavec.api.records.listener.impl.LogRecordListener; | |
import org.datavec.api.split.FileSplit; | |
import org.datavec.image.loader.NativeImageLoader; | |
import org.datavec.image.recordreader.ImageRecordReader; | |
import org.deeplearning4j.datasets.datavec.RecordReaderDataSetIterator; | |
import org.deeplearning4j.eval.Evaluation; | |
import org.deeplearning4j.nn.api.OptimizationAlgorithm; | |
import org.deeplearning4j.nn.conf.MultiLayerConfiguration; | |
import org.deeplearning4j.nn.conf.NeuralNetConfiguration; | |
import org.deeplearning4j.nn.conf.Updater; | |
import org.deeplearning4j.nn.conf.inputs.InputType; | |
import org.deeplearning4j.nn.conf.layers.DenseLayer; | |
import org.deeplearning4j.nn.conf.layers.OutputLayer; | |
import org.deeplearning4j.nn.multilayer.MultiLayerNetwork; | |
import org.deeplearning4j.nn.weights.WeightInit; | |
import org.deeplearning4j.optimize.listeners.ScoreIterationListener; | |
import org.nd4j.linalg.api.ndarray.INDArray; | |
import org.nd4j.linalg.dataset.DataSet; | |
import org.nd4j.linalg.dataset.api.iterator.DataSetIterator; | |
import org.nd4j.linalg.dataset.api.preprocessor.DataNormalization; | |
import org.nd4j.linalg.dataset.api.preprocessor.ImagePreProcessingScaler; | |
import org.nd4j.linalg.lossfunctions.LossFunctions; | |
import org.slf4j.Logger; | |
import org.slf4j.LoggerFactory; | |
import java.io.File; | |
import java.util.Random; | |
/** | |
* Created by tomhanlon on 11/7/16. | |
*/ | |
public class MnistImagePipelineExampleAddNeuralNet { | |
private static Logger log = LoggerFactory.getLogger(MnistImagePipelineExampleAddNeuralNet.class); | |
public static void main(String[] args) throws Exception { | |
// image information | |
// 28 * 28 grayscale | |
// grayscale implies single channel | |
int height = 28; | |
int width = 28; | |
int channels = 1; | |
int rngseed = 123; | |
Random randNumGen = new Random(rngseed); | |
int batchSize = 128; | |
int outputNum = 10; | |
int numEpochs = 15; | |
// Define the File Paths | |
File trainData = new File("/Users/tomhanlon/SkyMind/java/dl4j-examples62/dl4j-examples/src/main/resources/mnist_png/training"); | |
File testData = new File("/Users/tomhanlon/SkyMind/java/dl4j-examples62/dl4j-examples/src/main/resources/mnist_png/testing"); | |
// Define the FileSplit(PATH, ALLOWED FORMATS,random) | |
FileSplit train = new FileSplit(trainData, NativeImageLoader.ALLOWED_FORMATS,randNumGen); | |
FileSplit test = new FileSplit(testData,NativeImageLoader.ALLOWED_FORMATS,randNumGen); | |
// Extract the parent path as the image label | |
ParentPathLabelGenerator labelMaker = new ParentPathLabelGenerator(); | |
ImageRecordReader recordReader = new ImageRecordReader(height,width,channels,labelMaker); | |
// Initialize the record reader | |
// add a listener, to extract the name | |
recordReader.initialize(train); | |
//recordReader.setListeners(new LogRecordListener()); | |
// DataSet Iterator | |
DataSetIterator dataIter = new RecordReaderDataSetIterator(recordReader,batchSize,1,outputNum); | |
// Scale pixel values to 0-1 | |
DataNormalization scaler = new ImagePreProcessingScaler(0,1); | |
scaler.fit(dataIter); | |
dataIter.setPreProcessor(scaler); | |
// Build Our Neural Network | |
log.info("**** Build Model ****"); | |
MultiLayerConfiguration conf = new NeuralNetConfiguration.Builder() | |
.seed(rngseed) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
.iterations(1) | |
.learningRate(0.006) | |
.updater(Updater.NESTEROVS).momentum(0.9) | |
.regularization(true).l2(1e-4) | |
.list() | |
.layer(0, new DenseLayer.Builder() | |
.nIn(height * width) | |
.nOut(100) | |
.activation("relu") | |
.weightInit(WeightInit.XAVIER) | |
.build()) | |
.layer(1, new OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) | |
.nIn(100) | |
.nOut(outputNum) | |
.activation("softmax") | |
.weightInit(WeightInit.XAVIER) | |
.build()) | |
.pretrain(false).backprop(true) | |
.setInputType(InputType.convolutional(height,width,channels)) | |
.build(); | |
MultiLayerNetwork model = new MultiLayerNetwork(conf); | |
model.init(); | |
model.setListeners(new ScoreIterationListener(10)); | |
log.info("*****TRAIN MODEL********"); | |
for(int i = 0; i<numEpochs; i++){ | |
model.fit(dataIter); | |
} | |
log.info("******EVALUATE MODEL******"); | |
recordReader.reset(); | |
recordReader.initialize(test); | |
DataSetIterator testIter = new RecordReaderDataSetIterator(recordReader,batchSize,1,outputNum); | |
scaler.fit(testIter); | |
testIter.setPreProcessor(scaler); | |
// Create Eval object with 10 possible classes | |
Evaluation eval = new Evaluation(outputNum); | |
while(testIter.hasNext()){ | |
DataSet next = testIter.next(); | |
INDArray output = model.output(next.getFeatureMatrix()); | |
eval.eval(next.getLabels(),output); | |
} | |
log.info(eval.stats()); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment