Created
May 25, 2018 08:48
Functions to animate a multipanel plot of signal detection theory values in R
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# plot and animate SDT measures (assuming Gaussian densities) | |
# Copyright Tom Wallis, 2018. | |
# Shared under a CC-BY license. | |
library(ggplot2) | |
library(latex2exp) | |
library(animation) | |
# See bottom for a demo of animation | |
# Functions to generate plots --------------------------------------------- | |
line_alphas <- 0.4 | |
distribution_plot <- function(mu_s, lambda, sigma_s=1, | |
xlims=c(-5, 5)){ | |
my_colours <- ggthemes::fivethirtyeight_pal()(3) # blue, red, green | |
x <- seq(xlims[1], xlims[2], length.out = 100) | |
f_n <- dnorm(x) | |
f_s <- dnorm(x, mu_s, sigma_s) | |
plt <- ggplot(data.frame(x = x, y = f_n), | |
aes(x = x, y = y)) + | |
geom_line(colour = my_colours[2]) + | |
geom_line(data = data.frame(x = x, y = f_s), colour = my_colours[3]) + | |
geom_vline(xintercept = lambda, colour = my_colours[1], alpha = line_alphas) + | |
scale_x_continuous(name = TeX('Evidence $\\[\\x\\]$')) + | |
scale_y_continuous(name = "", breaks = NULL) + | |
theme_classic() | |
return(plt) | |
} | |
roc_plot_probability <- function(mu_s, lambda, sigma_s=1, | |
xlims=c(-5, 5), | |
aucs=FALSE){ | |
x <- seq(xlims[1], xlims[2], length.out = 100) | |
pfa <- 1 - pnorm(x) | |
phit <- 1 - pnorm(x, mu_s, sigma_s) | |
pfa_lambda <- 1 - pnorm(lambda) | |
phit_lambda <- 1 - pnorm(lambda, mu_s, sigma_s) | |
plt <- ggplot(data.frame(x = pfa, y = phit), | |
aes(x = x, y = y)) + | |
geom_abline(slope = 1, linetype = "dashed", alpha = 0.5) + | |
geom_line(alpha = line_alphas) + | |
geom_point(data = data.frame(x = pfa_lambda, y = phit_lambda)) + | |
scale_x_continuous(name = TeX('\\mathrm{P_F}')) + | |
scale_y_continuous(name = TeX('\\mathrm{P_H}')) + | |
theme_bw() | |
if (aucs == TRUE){ | |
label <- paste0("AUC (numeric) = ", | |
round(auc_numeric(phit, pfa), 3), | |
"\nA_z = ", | |
round(auc_z(mu_s), 3)) | |
plt <- plt + | |
annotate("text", x = 0.7, y = 0.2, | |
label=label) | |
} | |
return(plt) | |
} | |
roc_plot_gaussian <- function(mu_s, lambda, sigma_s=1, | |
xlims=c(-5, 5)){ | |
x <- seq(xlims[1], xlims[2], length.out = 100) | |
pfa <- 1 - pnorm(x) | |
phit <- 1 - pnorm(x, mu_s, sigma_s) | |
pfa_lambda <- 1 - pnorm(lambda) | |
phit_lambda <- 1 - pnorm(lambda, mu_s, sigma_s) | |
plt <- ggplot(data.frame(x = pfa, y = phit), | |
aes(x = qnorm(x), y = qnorm(y))) + | |
geom_abline(slope = 1, linetype = "dashed", alpha = 0.5) + | |
geom_line(alpha = line_alphas) + | |
geom_point(data = data.frame(x = pfa_lambda, y = phit_lambda)) + | |
scale_x_continuous(name = TeX('\\mathrm{z_F}')) + | |
scale_y_continuous(name = TeX('\\mathrm{z_H}')) + | |
theme_bw() | |
return(plt) | |
} | |
accuracy_plot <- function(mu_s, lambda, sigma_s=1, | |
p_s = 0.5, | |
xlims=c(-5, 5)){ | |
x <- seq(xlims[1], xlims[2], length.out = 100) | |
p_n <- 1 - p_s # probability of a noise trial = 1 - p(signal) | |
p_c <- p_s * (1 - pnorm(x, mu_s, sigma_s)) + p_n * pnorm(x) | |
p_c_lambda <- p_s * (1 - pnorm(lambda, mu_s, sigma_s)) + p_n * pnorm(lambda) | |
plt <- ggplot(data.frame(x = x, y = p_c), | |
aes(x = x, y = y)) + | |
geom_line(alpha = line_alphas) + | |
geom_point(data = data.frame(x = lambda, y = p_c_lambda)) + | |
scale_x_continuous(name = TeX('Decision criterion $\\[\\lambda\\]$')) + | |
scale_y_continuous(name = TeX('\\mathrm{P_C}'), | |
limits = c(0, 1), | |
breaks = seq(0, 1, by = 0.25)) + | |
annotate("text", x = 0, y = 0.2, | |
label = paste0("Proportion signal trials = ", p_s), | |
size = 4) + | |
theme_bw() | |
return(plt) | |
} | |
bias_plot <- function(mu_s, lambda, sigma_s=1, xlims=c(-5, 5)){ | |
x <- seq(xlims[1], xlims[2], length.out = 100) | |
log_beta_x <- log_beta(x, mu_s, sigma_s) | |
log_beta_lambda <- log_beta(lambda, mu_s, sigma_s) | |
plt <- ggplot(data.frame(x = x, y = log_beta_x), | |
aes(x = x, y = y)) + | |
geom_line(alpha = line_alphas) + | |
geom_point(data = data.frame(x = lambda, y = log_beta_lambda)) + | |
geom_hline(yintercept = 0, linetype = "dashed") + | |
annotate("text", x = 0, y = 0.3, label = "'No' bias") + | |
annotate("text", x = 0, y = -0.3, label = "'Yes' bias") + | |
scale_x_continuous(name = TeX('Decision criterion $\\[\\lambda\\]$')) + | |
scale_y_continuous(name = TeX('Response bias \\[$\\log \\beta$\\]')) + | |
theme_bw() | |
return(plt) | |
} | |
sensitivity_plot <- function(mu_s, sigma_s=1, xlims=c(-5, 5)){ | |
# create a vector of mu_s for plot: | |
mu_vec <- seq(0, 4, length.out = 100) | |
if (sigma_s == 1){ | |
# equal variance gaussian model | |
auc_mu_s <- auc_z(mu_s) | |
auc_vec <- auc_z(mu_vec) | |
} else { | |
x <- seq(xlims[1], xlims[2], length.out = 100) | |
calc_auc_vec <- function(mu, x, sigma_s){ | |
pfa <- 1 - pnorm(x) | |
phit <- 1 - pnorm(x, mu, sigma_s) | |
auc <- auc_numeric(phit, pfa) | |
return(auc) | |
} | |
auc_mu_s <- calc_auc_vec(mu_s, x, sigma_s) | |
auc_vec <- sapply(mu_vec, calc_auc_vec, x=x, sigma_s=sigma_s) | |
} | |
plt <- ggplot(data.frame(x = mu_vec, y = auc_vec), | |
aes(x = x, y = y)) + | |
geom_line(alpha = line_alphas) + | |
geom_point(data = data.frame(x = mu_s, y = auc_mu_s)) + | |
scale_x_continuous(name = TeX('$\\mu_s$')) + | |
scale_y_continuous(name = "AUC") + | |
theme_bw() | |
return(plt) | |
} | |
summary_plot <- function(mu_s, lambda, sigma_s=1, | |
p_s = 0.5, | |
xlims=c(-5, 5)){ | |
dists <- distribution_plot(mu_s = mu_s, lambda = lambda, | |
sigma_s = sigma_s, | |
xlims=xlims) | |
roc_1 <- roc_plot_probability(mu_s = mu_s, lambda = lambda, | |
sigma_s = sigma_s, | |
xlims=xlims) | |
roc_2 <- roc_plot_gaussian(mu_s = mu_s, lambda = lambda, | |
sigma_s = sigma_s, | |
xlims=xlims) | |
accuracy <- accuracy_plot(mu_s = mu_s, lambda = lambda, | |
sigma_s = sigma_s, | |
p_s = p_s, | |
xlims=xlims) | |
bias <- bias_plot(mu_s = mu_s, lambda = lambda, | |
sigma_s = sigma_s, | |
xlims=xlims) | |
sensitivity <- sensitivity_plot(mu_s = mu_s, | |
sigma_s = sigma_s, | |
xlims=xlims) | |
plt <- gridExtra::grid.arrange(dists, roc_1, roc_2, | |
sensitivity, bias, accuracy, | |
ncol = 3) | |
return(plt) | |
} | |
log_beta <- function(x, mu_s, sigma_s){ | |
return(0.5 * (x^2 - ((x - mu_s)^2) / sigma_s^2) - log(sigma_s)) | |
} | |
auc_numeric <- function(hr, far){ | |
# a simple numerical computation of AUC. | |
# adapted from http://blog.revolutionanalytics.com/2016/11/calculating-auc.html | |
# check that inputs are sorted inputs: | |
hr <- sort(hr) | |
far <- sort(far) | |
dfar <- c(diff(far), 0) | |
dhr <- c(diff(hr), 0) | |
return(sum(hr * dfar) + sum(dhr * dfar)/2) | |
} | |
auc_z <- function(mu_s){ | |
# assumes equal-variance Gaussian model | |
return(pnorm(mu_s / sqrt(2))) | |
} | |
# Demo animation ---------------------------------------------------------- | |
# demo with equal variance Gaussian model; dprime = 1 | |
mu_s <- 1 | |
sigma_s <- 1 | |
p_s <- 0.5 | |
# do animation: | |
x <- seq(-2, 4, length.out = 50) # you could change this to animate another parameter | |
saveGIF({ | |
for (i in 1:length(x)){ | |
plt <- summary_plot(mu_s = mu_s, | |
lambda = x[i], | |
sigma_s = sigma_s, | |
p_s = p_s, | |
xlims = c(-2, 4)) | |
} | |
}, movie.name = "sdt_animation.gif", interval = 0.1, nmax = length(x), | |
ani.width = 800, ani.height = 400) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment