Skip to content

Instantly share code, notes, and snippets.

@tonicanada
Created January 20, 2023 01:04
Show Gist options
  • Save tonicanada/c075130e98f84d2090bf331670343a54 to your computer and use it in GitHub Desktop.
Save tonicanada/c075130e98f84d2090bf331670343a54 to your computer and use it in GitHub Desktop.
using System;
using System.Collections.Generic;
namespace TspCadPlugin
{
public static class OptimalTspDynProg
{
/// <summary>
/// Function that computes the optimal TSP solution using Dynamic Programming.
/// </summary>
/// <param name="distMatrix">Distance Matrix</param>
/// <returns>Optimal TSP tour</returns>
public static int[] GetOptimalTSP(Double[,] distMatrix)
{
int n = distMatrix.GetLength(0);
double[,] memo = new double[n, (int)Math.Pow(2, n)];
for (int i=0; i<memo.GetLength(0); i++)
{
for (int j=0; j<memo.GetLength(1); j++)
{
memo[i, j] = double.PositiveInfinity;
}
}
Setup(distMatrix, memo, 0, n);
Solve(distMatrix, memo, 0, n);
FindMinCost(memo, 0, n);
int[] tour = FindOptimalTour(distMatrix, memo, 0, n);
return tour;
}
/// <summary>
/// Function that starts filling a blank memo table with the distance
/// from the starting node to every other node.
/// For example, if there are 4 nodes, and the 0 is the starting one, this
/// function will fill the values in memo table for the following subsets {10, 100, 1000}
/// </summary>
/// <param name="distMatrix">Distance Matrix</param>
/// <param name="memo">Memo table (n rows, 2^n columns)</param>
/// <param name="startNode">Starting node</param>
/// <param name="n">Number of nodes</param>
public static void Setup(Double[,] distMatrix, Double[,] memo, int startNode, int n)
{
for (int i = 0; i < n; i++)
{
if (i == startNode)
{
continue;
}
memo[i, 1 << i] = distMatrix[startNode, i];
}
}
/// <summary>
/// Function that solves the TSP problem using Dynamic Programming by a bottom-up approach.
/// It builds a memo table (n rows, 2^n columns), where each column represents a subset of nodes,
/// every row is the last node visited, and the table value is the minimum cost possible for
/// a path from the starting node to the last one (row value). Example: row = 2, column = "10101", value = 25.4;
/// This means that the optimal path from the starting node to the node 2, for the subset "10101" (bitmask notation) is 25.4.
/// </summary>
/// <param name="distMatrix">Distance Matrix</param>
/// <param name="memo">Memo table (n rows, 2^n columns)</param>
/// <param name="startNode">Starting node</param>
/// <param name="n">Number of nodes</param>
public static void Solve(Double[,] distMatrix, Double[,] memo, int startNode, int n)
{
for (int r = 3; r <= n; r++)
{
foreach (int subset in GenAllSubsets(r, n))
{
if (NotIn(startNode, subset))
{
continue;
}
else
{
for (int next = 0; next < n; next++)
{
if (next == startNode || NotIn(next, subset)) continue;
// We remove the next vertex and the starting node from the state
int state = subset ^ (1 << next);
state = state ^ (1 << startNode);
Double minDist = Double.PositiveInfinity;
for (int e = 0; e < n; e++)
{
if (e == startNode || e == next || NotIn(e, subset)) continue;
Double newDistance = memo[e, state] + distMatrix[e, next];
if (newDistance < minDist)
{
minDist = newDistance;
memo[next, subset ^ (1<<startNode)] = minDist;
}
}
}
}
}
}
Double currentMin = Double.PositiveInfinity;
for (int i=0; i<n; i++)
{
if (i == startNode) continue;
Double newDist = memo[i, GeneratePenultimateState(n, startNode)] + distMatrix[i, startNode];
if (newDist < currentMin)
{
currentMin = newDist;
}
}
memo[startNode, (1<<n) - 1] = currentMin;
}
/// <summary>
/// Function that returns the optimal cost for a solved TSP problem, given a filled memoization table.
/// </summary>
/// <param name="memo">Memo table (n rows, 2^n columns)</param>
/// <param name="startNode">Starting node</param>
/// <param name="n">Number of nodes</param>
/// <returns>TSP optimal solution cost</returns>
public static Double FindMinCost(Double[,] memo, int startNode, int n)
{
int endState = (1 << n) - 1;
Double minCostTour = memo[startNode, endState];
return minCostTour;
}
/// <summary>
/// Function that returns the optimal tour for a solved TSP problem, given a filled memoization table.
/// </summary>
/// <param name="distMatrix">Distance Matrix</param>
/// <param name="memo">Memo table (n rows, 2^n columns)</param>
/// <param name="startNode">Starting node</param>
/// <param name="n">Number of nodes</param>
/// <returns>Array of integers that represents the optimal tour</returns>
public static int[] FindOptimalTour(Double[,] distMatrix, Double[,] memo, int startNode, int n)
{
int[] tour = new int[n + 1];
int lastIndex = startNode;
int currentIndex = startNode;
int currentSubset = ((1 << n) - 1) & ~(1 << startNode);
double currentMin = double.PositiveInfinity;
int step = n - 1;
while (currentSubset > 0)
{
for (int i = 0; i < n; i++)
{
double d = memo[i, currentSubset] + distMatrix[i, lastIndex];
if (d < currentMin)
{
currentMin = d;
currentIndex = i;
}
}
tour[step] = currentIndex;
step--;
lastIndex = currentIndex;
currentSubset = currentSubset & ~(1 << lastIndex);
}
tour[n] = tour[0] = startNode;
return tour;
}
/// <summary>
/// Function that returns all sets of size n with r bits set to 1. Example: combinations(3,4) = {0111, 1011, 1101, 1110}
/// </summary>
/// <param name="r">Number of nodes</param>
/// <param name="n">Total set size</param>
/// <returns>Array of sets</returns>
public static int[] GenAllSubsets(int r, int n)
{
List<int> subsets = new List<int>();
Combinations(0, 0, r, n, subsets);
return subsets.ToArray();
}
/// <summary>
/// Recurrent function used by "GenAllSubsets" to generate all sets of size n with r bits set to 1.
/// Example: combinations(3,4) = {0111, 1011, 1101, 1110}
/// </summary>
/// <param name="set">Current subset (in decimal form)</param>
/// <param name="at">Starting index of iteration</param>
/// <param name="r">Number of bits required to be 1</param>
/// <param name="n">Total number of bits</param>
/// <param name="subsets">List of sets</param>
public static void Combinations(int set, int at, int r, int n, List<int> subsets)
{
if (r == 0)
{
subsets.Add(set);
return;
}
for (int i = at; i < n; i++)
{
// Flip the ith element
set = set | (1 << i);
Combinations(set, i + 1, r - 1, n, subsets);
set = set & ~(1 << i);
}
}
/// <summary>
/// Function that returns the penultimate state subset. For example, if starting node = 1 and n = 4,
/// the penultimate state would be {1101}.
/// </summary>
/// <param name="n">Number of nodes</param>
/// <param name="startNode">Starting node index</param>
/// <returns>Penultimate state subset in decimal form {1101} would be 13.</returns>
public static int GeneratePenultimateState(int n, int startNode)
{
return ((1 << n) - 1) & ~(1 << startNode);
}
/// <summary>
/// Function that checks if an element exists in a given subset.
/// </summary>
/// <param name="i">Index node to check</param>
/// <param name="subset">Subset in decimal form</param>
/// <returns></returns>
public static bool NotIn(int i, int subset)
{
return ((1 << i) & subset) == 0;
}
}
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment