/bm_parallel_scaling.py Secret
Created
April 24, 2023 23:34
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import pyperf | |
from multiprocessing import Process | |
from threading import Thread | |
import _xxsubinterpreters as subinterpreters | |
import itertools | |
DEFAULT_DIGITS = 2000 | |
icount = itertools.count | |
islice = itertools.islice | |
def gen_x(): | |
return map(lambda k: (k, 4 * k + 2, 0, 2 * k + 1), icount(1)) | |
def compose(a, b): | |
aq, ar, as_, at = a | |
bq, br, bs, bt = b | |
return (aq * bq, | |
aq * br + ar * bt, | |
as_ * bq + at * bs, | |
as_ * br + at * bt) | |
def extract(z, j): | |
q, r, s, t = z | |
return (q * j + r) // (s * j + t) | |
def gen_pi_digits(): | |
z = (1, 0, 0, 1) | |
x = gen_x() | |
while 1: | |
y = extract(z, 3) | |
while y != extract(z, 4): | |
z = compose(z, next(x)) | |
y = extract(z, 3) | |
z = compose((10, -10 * y, 0, 1), z) | |
yield y | |
def calc_ndigits(n=DEFAULT_DIGITS): | |
return list(islice(gen_pi_digits(), n)) | |
test =""" | |
import itertools | |
DEFAULT_DIGITS = {digits} | |
icount = itertools.count | |
islice = itertools.islice | |
def gen_x(): | |
return map(lambda k: (k, 4 * k + 2, 0, 2 * k + 1), icount(1)) | |
def compose(a, b): | |
aq, ar, as_, at = a | |
bq, br, bs, bt = b | |
return (aq * bq, | |
aq * br + ar * bt, | |
as_ * bq + at * bs, | |
as_ * br + at * bt) | |
def extract(z, j): | |
q, r, s, t = z | |
return (q * j + r) // (s * j + t) | |
def gen_pi_digits(): | |
z = (1, 0, 0, 1) | |
x = gen_x() | |
while 1: | |
y = extract(z, 3) | |
while y != extract(z, 4): | |
z = compose(z, next(x)) | |
y = extract(z, 3) | |
z = compose((10, -10 * y, 0, 1), z) | |
yield y | |
def calc_ndigits(n=DEFAULT_DIGITS): | |
return list(islice(gen_pi_digits(), n)) | |
calc_ndigits() | |
""" | |
def bench_threading(n, digits): | |
# Code to launch specific model | |
threads = [] | |
for _ in range(n): | |
t = Thread(target=calc_ndigits, args=(digits,)) | |
t.start() | |
threads.append(t) | |
for thread in threads: | |
thread.join() | |
def bench_subinterpreters(n, digits): | |
# Code to launch specific model | |
def _spawn_sub(digits): | |
sid = subinterpreters.create() | |
subinterpreters.run_string(sid, test.format(digits=digits)) | |
threads = [] | |
for _ in range(n): | |
t = Thread(target=_spawn_sub, args=(digits,)) | |
t.start() | |
threads.append(t) | |
for thread in threads: | |
thread.join() | |
def bench_multiprocessing(n, digits): | |
# Code to launch specific model | |
processes = [] | |
for _ in range(n): | |
t = Process(target=calc_ndigits, args=(digits,)) | |
t.start() | |
processes.append(t) | |
for process in processes: | |
process.join() | |
if __name__ == "__main__": | |
runner = pyperf.Runner() | |
runner.metadata['description'] = "Benchmark parallel execution scaling models" | |
for n in [5, 10]: | |
for digits in [10, 50, 100]: | |
runner.bench_func(f'threading_{n}_{digits}', bench_threading, n, digits) | |
runner.bench_func(f'subinterpreters_{n}_{digits}', bench_subinterpreters, n, digits) | |
runner.bench_func(f'multiprocessing_{n}_{digits}', bench_multiprocessing, n, digits) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment